2-Bit 20 Mb/s Dual-Supply **Level Translator**

The NLSX4373 is a 2-bit configurable dual-supply bidirectional auto sensing translator that does not require a directional control pin. The V_{CC} I/O and V_L I/O ports are designed to track two different power supply rails, V_{CC} and V_L respectively. The V_{CC} supply rail is configurable from 1.5 V to 5.5 V while V_L supply rail is configurable to 1.5 V to 5.5 V. This allows voltage logic signals on the V_L side to be translated into lower, higher or equal value voltage logic signals on the V_{CC} side, and vice-versa.

The NLSX4373 translator has open-drain outputs with integrated $10 \text{ k}\Omega$ pullup resistors on the I/O lines. The integrated pullup resistors are used to pullup the I/O lines to either V_L or V_{CC}. The NLSX4373 is an excellent match for open-drain applications such as the I²C communication bus.

Features

- V_L can be Less than, Greater than or Equal to V_{CC}
- Wide V_{CC} Operating Range: 1.5 V to 5.5 V Wide V_L Operating Range: 1.5 V to 5.5 V
- High-Speed with 20 Mb/s Guaranteed Date Rate
- Low Bit-to-Bit Skew
- Enable Input and I/O Lines have Overvoltage Tolerant (OVT) to
- Nonpreferential Powerup Sequencing
- Integrated 10 kΩ Pullup Resistors
- Small packaging: UDFN8, SO-8, Micro8
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable*
- This is a Pb-Free Device

Typical Applications

- I²C, SMBus, PMBus
- Low Voltage ASIC Level Translation
- Mobile Phones, PDAs, Cameras

Important Information

- ESD Protection for All Pins
 - Human Body Model (HBM) > 7000 V

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

UDFN8 MU SUFFIX CASE 517AJ

= Specific Device Code Date Code Pb-Free Package

SO-8 D SUFFIX CASE 751

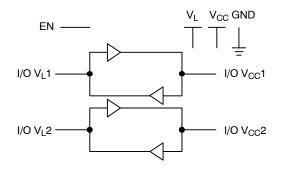
 Assembly Location Wafer Lot = Work Week = Pb-Free Package

1

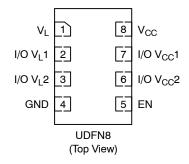
Micro8™ **DM SUFFIX** CASE 846A

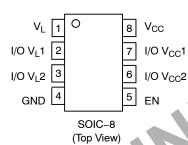
= Assembly Location

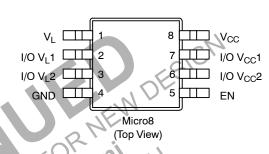
= Year


= Work Week W = Pb-Free Package

ORDERING INFORMATION


Device	Package	Shipping [†]
NLSX4373MUTAG	UDFN8 (Pb-Free)	3000/Tape & Reel
NLVSX4373MUTAG*	UDFN8 (Pb-Free)	3000/Tape & Reel
NLSX4373DR2G	SO-8 (Pb-Free)	2500/Tape & Reel
NLVSX4373DR2G*	SO-8 (Pb-Free)	2500/Tape & Reel
NLSX4373DMR2G	Micro8 (Pb-Free)	4000/Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


LOGIC DIAGRAM

PIN ASSIGNMENTS

PIN ASSIGNMENT

Pins	Description
V _{CC}	V _{CC} Input Voltage
V _L	V _L Input Voltage
GND	Ground
EN	Output Enable
I/O V _{CC} n	V _{CC} I/O Port, Referenced to V _{CC}
I/O V _L n	V _L I/O Port, Referenced to V _L
THI	SDEVICEPLERESEN

FUNCTION TABLE	emilon	
EN	Operating Mode	
16,100,501	Hi–Z	
H 1471	I/O Buses Connected	

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V _{CC}	High-side DC Supply Voltage	-0.3 to +7.0		V
V _L	High-side DC Supply Voltage	-0.3 to +7.0		V
I/O V _{CC}	V _{CC} -Referenced DC Input/Output Voltage	-0.3 to (V _{CC} + 0.3)		V
I/O V _L	V _L -Referenced DC Input/Output Voltage	-0.3 to (V _L + 0.3)		V
V _{EN}	Enable Control Pin DC Input Voltage	-0.3 to +7.0		V
I _{I/O_SC}	Short-Circuit Duration (I/O V_L and I/O V_{CC} to GND)	40	Continuous	mA
T _{STG}	Storage Temperature	-65 to +150		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max (5)	Unit
V _{CC}	High-side Positive DC Supply Voltage	1.5	5.5	V
V _L	High-side Positive DC Supply Voltage	1.5	5.5	V
V _{EN}	Enable Control Pin Voltage	GND	5.5	٧
V _{IO}	Enable Control Pin Voltage	GND	5.5	V
T _A	Operating Temperature Range	<u></u> –40	+85	°C

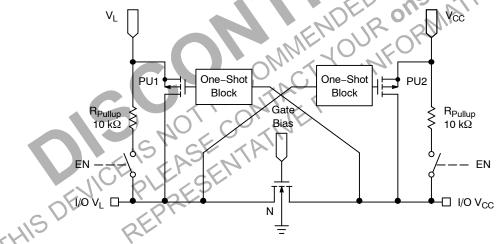


Figure 1. Block Diagram (1 I/O Line)

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 1.5 \text{ V}$ to 5.5 V and $V_L = 1.5 \text{ V}$ to 5.5 V, unless otherwise specified)

			_	40°C to +85°0		
Symbol	Parameter	Test Conditions	Min	Typ (Notes 1, 2)	Max	Unit
V_{IHC}	I/O V _{CC} Input HIGH Voltage		V _{CC} - 0.4	-	-	V
V_{ILC}	I/O V _{CC} Input LOW Voltage		-	-	0.15	V
V_{IHL}	I/O V _L Input HIGH Voltage		V _L - 0.2	-	-	V
V _{ILL}	I/O V _L Input LOW Voltage		-	-	0.15	V
V _{IH}	Control Pin Input HIGH Voltage		V _L - 0.2	-	_	V
V _{IL}	Control Pin Input LOW Voltage		-	-	0.15	V
V _{OHC}	I/O V _{CC} Output HIGH Voltage	I/O V _{CC} Source Current = 20 μA	2/3 * V _{CC}	-	-	V
V _{OLC}	I/O V _{CC} Output LOW Voltage	I/O V _{CC} Sink Current = 20 μA	-	-	1/3 * V _{CC}	V
V _{OHL}	I/O V _L Output HIGH Voltage	I/O V _L Source Current = 20 μA	2/3 * V _L	-	- \	٧
V _{OLL}	I/O V _L Output LOW Voltage	I/O V _L Sink Current = 20 μA	-	-	1/3 * V _L	V
I _{QVCC}	V _{CC} Supply Current	I/O V_{CC} and I/O V_L Unconnected, $V_{EN} = V_L$		0.5	2.0	μΑ
I_{QVL}	V _L Supply Current	I/O V_{CC} and I/O V_L Unconnected, $V_{EN} = V_L$	NE	0.3	1.5	μΑ
I _{TS-VCC}	V _{CC} Tristate Output Mode Supply Current	I/O V_{CC} and I/O V_{L} Unconnected, V_{EN} = GND	DR-W	0.1	1.0	μΑ
I _{TS-VL}	V _L Tristate Output Mode Supply Current	I/O V_{CC} and I/O V_L Unconnected, V_{EN} = GND	nsel	(10)	1.0	μΑ
loz	I/O Tristate Output Mode Leakage Current	T _A = +25°G	24/11	0.1	1.0	μА
R _{PU}	Pullup Resistor I/O V _L and V _{CC}	T _A = +25°C), -	10	ı	kΩ
Typical values are for V_{CC} = +2.8 V, V_L = +1.8 V and T_A = +25°C. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.						

TIMING CHARACTERISTICS - RAIL-TO-RAIL DRIVING CONFIGURATIONS

(I/O test circuit of Figures 2 and 3, C_{LOAD} = 15 pF, driver output impedance \leq 50 Ω , R_{LOAD} = 1 M Ω)

			-40°C to +85°C (Notes 3 and 4)			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _L = 1.5 V, \	/ _{CC} = 5.5 V			•	•	
t _{RVCC}	I/O V _{CC} Risetime				15	ns
t _{FVCC}	I/O V _{CC} Falltime				20	ns
t _{RVL}	I/O V _L Risetime				30	ns
t _{FVL}	I/O V _L Falltime				10	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O V _L)				20	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})				20	ns
t _{PPSKEW}	Part-to-Part Skew				5	nS
	Maximum Data Rate		20		19	Mb/s
V _L = 1.8 V, \	/ _{CC} = 2.8 V			15	O	
t _{RVCC}	I/O V _{CC} Risetime			0	15	ns
t _{FVCC}	I/O V _{CC} Falltime		-M	~	15	ns
t _{RVL}	I/O V _L Risetime	7			25	ns
t _{FVL}	I/O V _L Falltime	10h	in		10	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O V _L)	10 68	, , ()/	15	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})	I OF ON	0,		15	ns
t _{PPSKEW}	Part-to-Part Skew	ENTIR RA			5	nS
	Maximum Data Rate	Mr. 100 160,	20			Mb/s
V _L = 2.5 V, \	/ _{CC} = 3.6 V	CI OIL	•		•	
t _{RVCC}	I/O V _{CC} Risetime	20/			15	ns
t _{FVCC}	I/O V _{CC} Falltime	K			10	ns
t _{RVL}	I/O V _L Risetime	1			15	ns
t _{FVL}	I/O V _L Falltime				10	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O VL)				15	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})				15	ns
t _{PPSKEW}	Part-to-Part Skew				5	nS
1	Maximum Data Rate		20			Mb/s
V _L = 2.8 V, \	/ _{CC} = 1.8 V		•		•	
t _{RVCC}	I/O V _{CC} Risetime				25	ns
t _{FVCC}	I/O V _{CC} Falltime				10	ns
t _{RVL}	I/O V _L Risetime				20	ns
t _{FVL}	I/O V _L Falltime				15	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O V _L)				15	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})				15	ns
t _{PPSKEW}	Part-to-Part Skew				5	nS
	Maximum Data Rate		20			Mb/s

^{3.} Typical values are for V_{CC} = +3.3 V, V_L = +1.8 V and T_A = +25°C. 4. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

TIMING CHARACTERISTICS - RAIL-TO-RAIL DRIVING CONFIGURATIONS

(I/O test circuit of Figures 2 and 3, C_{LOAD} = 15 pF, driver output impedance \leq 50 Ω , R_{LOAD} = 1 M Ω)

				0°C to +85 otes 3 and		
Symbol	Parameter	Test Conditions		Тур	Max	Unit
V _L = 3.6 V, \	/ _{CC} = 2.5 V			•		•
t _{RVCC}	I/O V _{CC} Risetime				15	ns
t _{FVCC}	I/O V _{CC} Falltime				10	ns
t _{RVL}	I/O V _L Risetime				15	ns
t _{FVL}	I/O V _L Falltime				15	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O V _L)				15	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})				15	ns
t _{PPSKEW}	Part-to-Part Skew				5	nS
	Maximum Data Rate		20	. (SP	Mb/s
V _L = 5.5 V, \	/ _{CC} = 1.5 V			15		
t _{RVCC}	I/O V _{CC} Risetime			OF	30	ns
t _{FVCC}	I/O V _{CC} Falltime		-M		10	ns
t _{RVL}	I/O V _L Risetime	700			15	ns
t _{FVL}	I/O V _L Falltime	100	in	4	20	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O V _L)	0, 66	~/(),	20	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})	10k on 1	61.		20	ns
t _{PPSKEW}	Part-to-Part Skew	IEM IK ORN			5	nS
	Maximum Data Rate	4,10,10,	20			Mb/s

^{3.} Typical values are for V_{CC} = +3.3 V, V_{L} = +1.8 V and T_{A} = +25°C.

TIMING CHARACTERISTICS - OPEN DRAIN DRIVING CONFIGURATIONS

(I/O test circuit of Figures 4 and 5, C_{LOAD} = 15 pF, driver output impedance \leq 50 Ω , R_{LOAD} = 1 M Ω)

	ICE OF EASEMIN		-40°C to +85°C (Notes 5 and 6)			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
+1.5 ≤ V _L ≤	$1.5 \le V_L \le V_{CC} \le +5.5 \text{ V}$					
t _{RVCC}	I/O V _{CC} Risetime				400	ns
t _{FVCC}	I/O V _{CC} Falltime				50	ns
t _{RVL}	I/O V _L Risetime				400	ns
t _{FVL}	I/O V _L Falltime				60	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O V _L)				1000	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})				1000	ns
tppskew	Part-to-Part Skew				50	nS
MDR	Maximum Data Rate		2			Mb/s

^{4.} All units are production tested at $T_A = +25$ °C. Limits over the operating temperature range are guaranteed by design.

 ^{5.} Typical values are for V_{CC} = +3.3 V, V_L = +1.8 V and T_A = +25°C.
 6. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

TEST SETUPS

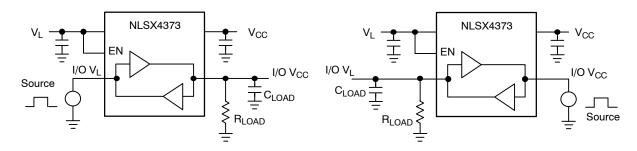


Figure 2. Rail-to-Rail Driving I/O V_L

Figure 3. Rail-to-Rail Driving I/O V_{CC}

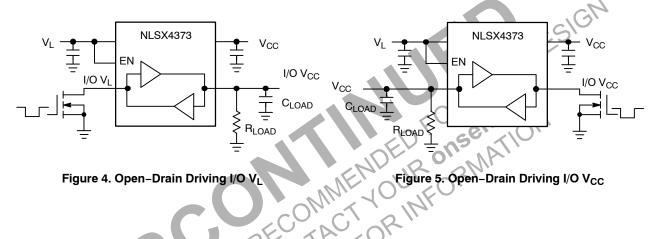
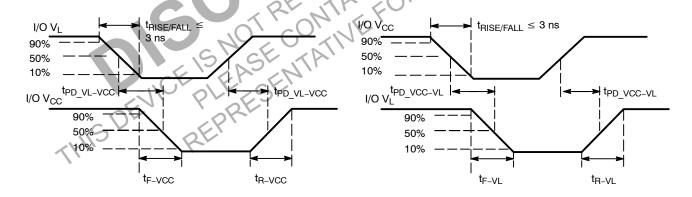
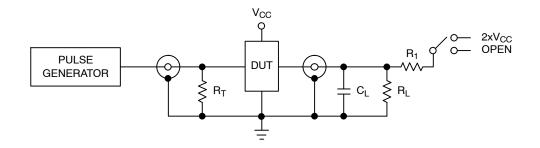
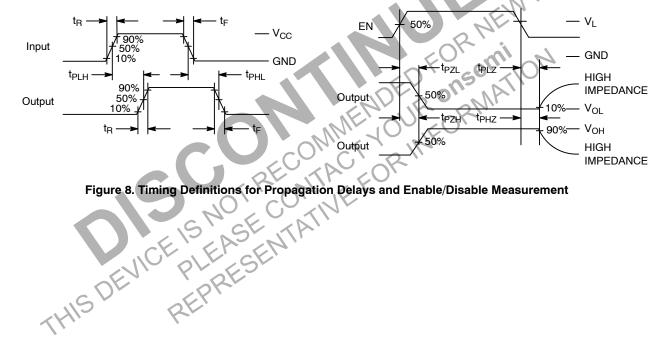


Figure 4. Open-Drain Driving I/O VL


Figure 6. Definition of Timing Specification Parameters

Test	Switch
tpzH, tpHZ	Open
t _{PZL} , t _{PLZ}	2 x V _{CC}

 $C_L=15$ pF or equivalent (Includes jig and probe capacitance) $R_L=R_1=50~k\Omega$ or equivalent $R_T=Z_{OUT}$ of pulse generator (typically 50 $\Omega)$

Figure 7. Test Circuit for Enable/Disable Time Measurement

APPLICATIONS INFORMATION

Level Translator Architecture

The NLSX4373 auto sense translator provides bi-directional voltage level shifting to transfer data in multiple supply voltage systems. This device has two supply voltages, V_L and V_{CC} , which set the logic levels on the input and output sides of the translator. When used to transfer data from the V_L to the V_{CC} ports, input signals referenced to the V_L supply are translated to output signals with a logic level matched to V_{CC} . In a similar manner, the V_{CC} to V_L translation shifts input signals with a logic level compatible to V_{CC} to an output signal matched to V_L .

The NLSX4373 consists of two bi-directional channels that independently determine the direction of the data flow without requiring a directional pin. The one-shot circuits are used to detect the rising or falling input signals. In addition, the one shots decrease the rise and fall time of the output signal for high-to-low and low-to-high transitions.

Each input/output channel has an internal 10 k Ω pull. The magnitude of the pullup resistors can be reduced by connecting external resistors in parallel to the internal 10 k Ω resistors.

Input Driver Requirements

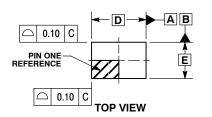
The rise (t_R) and fall (t_F) timing parameters of the open drain outputs depend on the magnitude of the pull-up resistors. In addition, the propagation times (t_{PD}), skew (t_{PSKEW}) and maximum data rate depend on the impedance of the device that is connected to the translator. The timing

parameters listed in the data sheet assume that the output impedance of the drivers connected to the translator is less than $50~k\Omega$.

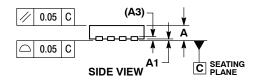
Enable Input (EN)

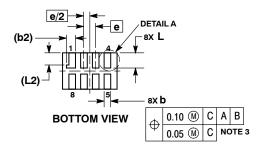
The NLSX4373 has an Enable pin (EN) that provides tri–state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O $V_{\rm CC}$ and I/O $V_{\rm L}$ pins to a high impedance state. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the $V_{\rm L}$ supply and has Overvoltage Tolerant (OVT) protection.

Power Supply Guidelines

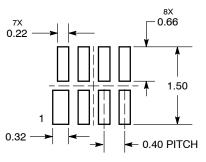

During normal operation, supply voltage V_L can be greater than, less than or equal to $V_{\rm CC}$. The sequencing of the power supplies will not damage the device during the power up operation.

For optimal performance, 0.01 μF to 0.1 μF decoupling capacitors should be used on the V_L and V_{CC} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.


SCALE 4:1



DATE 08 NOV 2006



MOUNTING FOOTPRINT SOLDERMASK DEFINED

DIMENSIONS: MILLIMETERS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED
- DINICIPION D APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN
 0.15 AND 0.30 mm FROM TERMINAL TIP.
 MOLD FLASH ALLOWED ON TERMINALS
 ALONG EDGE OF PACKAGE, FLASH MAY
 NOT EXCEED 0.03 ONTO BOTTOM
 SURFACE OF TERMINALS.
 DETAIL A SHOWS ODTIONAL
- DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

	MILLIMETERS				
DIM	MIN MAX				
Α	0.45	0.55			
A1	0.00	0.05			
A3	0.127	REF			
b	0.15	0.25			
b2	0.30	REF			
D	1.80	BSC			
E	1.20	BSC			
е	0.40	BSC			
L	0.45	0.55			
L1	0.00	0.03			
L2	0.40	REF			

GENERIC MARKING DIAGRAM*

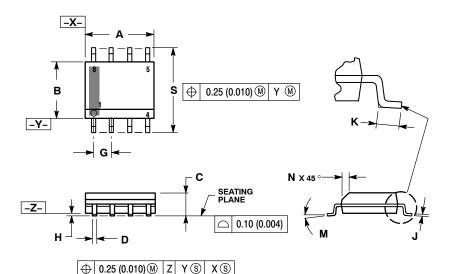
XX = Specific Device Code

= Date Code

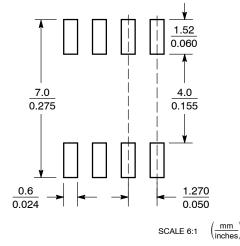
= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

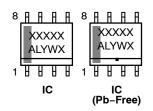
DOCUMENT NUMBER:	98AON23417D	Electronic versions are uncontrolled except when accessed directly from the Document Repo- Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN8 1.8X1.2, 0.4P		PAGE 1 OF 1	


ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

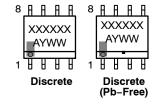
SOIC-8 NB CASE 751-07 **ISSUE AK**


DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*


^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

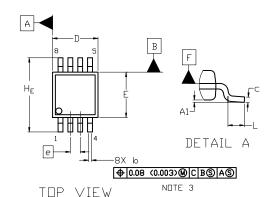
DOCUMENT NUMBER:	98ASB42564B	B42564B Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

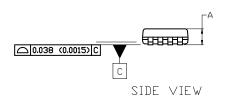
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

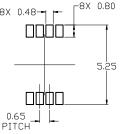
			DITTE TO LED 2
STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 22: PIN 1. I/O LINE 1	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 24: PIN 1. BASE
2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		


DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when stamped "CONTROLLED	COPY" in red.
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2


onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

Micro8 CASE 846A-02 ISSUE K

DATE 16 JUL 2020



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DDES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

RECOMMENDED MOUNTING FOOTPRINT

MID	MI	LLIMETE	RS		
DIM	MIN.	N□M.	MAX.		
Α	-	-	1.10		
A1	0.05	0.08	0.15		
b	0.25	0.33	0.40		
С	0.13	0.18	0.23		
D	2.90	3.00	3.10		
E	2.90	3.00	3.10		
e	0.65 BSC				
HE	4.75	4.90	5.05		
L	0.40	0.55	0.70		

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

Υ = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
SOURCE	2. GATE 1	2. N-GATE
SOURCE	3. SOURCE 2	P-SOURCE
GATE	4. GATE 2	4. P-GATE
DRAIN	5. DRAIN 2	5. P-DRAIN
DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	MICRO8		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales