3.3V Differential LVPECL/LVDS/CML to LVTTL/LVCMOS Translator The MC100EPT21 is a Differential LVPECL/LVDS/CML to LVTTL/LVCMOS translator. Because LVPECL (Positive ECL), LVDS, and positive CML input levels and LVTTL/LVCMOS output levels are used, only +3.3 V and ground are required. The small outline 8–lead SOIC package makes the EPT21 ideal for applications which require the translation of a clock or data signal. The V_{BB} output allows this EPT21 to be cap coupled in either single–ended or differential input mode. When single–ended cap coupled, V_{BB} output is tied to the \overline{D} input and D is driven for a non–inverting buffer, or V_{BB} output is tied to the D input and \overline{D} is driven for an inverting buffer. When cap coupled differentially, V_{BB} output is connected through a resistor to each input pin. If used, the V_{BB} pin should be bypassed to V_{CC} via a 0.01 μF capacitor. For additional information see AND8020/D. For a single–ended direct connection use an external voltage reference source such as a resistor divider. Do not use V_{BB} for a single–ended direct connection or port to another device. #### **Features** - 1.4 ns Typical Propagation Delay - Maximum Frequency > 275 MHz Typical - LVPECL/LVDS/CML Inputs, LVTTL/LVCMOS Outputs - 24 mA TTL outputs - Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.6 V with GND = 0 V - The 100 Series Contains Temperature Compensation - V_{BB} Output - These Devices are Pb-Free and are RoHS Compliant ## ON Semiconductor® http://onsemi.com ## MARKING DIAGRAMS* SO-8 D SUFFIX CASE 751 TSSOP-8 DT SUFFIX CASE 948R 1 DFN8 MN SUFFIX CASE 506AA A = Assembly Location L = Wafer Lot Y = Year W = Work Week M = Date Code ■ = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. Figure 1. Logic Diagram and 8-Lead Pinout (Top View) ## **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |-----------------|--| | Q | LVTTL/LVCMOS Output | | D*, <u>D</u> * | Differential LVPECL/LVDS/CML Input | | V _{CC} | Positive Supply | | V_{BB} | Output Reference Voltage | | GND | Ground | | NC | No Connect | | EP | (DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open. | ^{*} Pin will default to 1/2 of V_{CC} when left open. ## Table 2. ATTRIBUTES | Characteristic | Value | | | | | |--|---|-------------------------------|--|--|--| | Internal Input Pulldown Resistor | D | 50 kΩ | | | | | Internal Input Pulldown Resistor | D | 50 kΩ | | | | | Internal Input Pullup Resistor | D, \overline{D} | 50 kΩ | | | | | ESD Protection | Human Body Model
Machine Model
Charged Device Model | > 1.5 kV
> 100 V
> 2 kV | | | | | Moisture Sensitivity, Indefinite Time Ou | Level 1
Level 3
Level 1 | | | | | | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | | | Transistor Count | | 81 Devices | | | | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | | | | | | ^{1.} For additional information, see Application Note AND8003/D. **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|---|--------------------|-------------|------| | V _{CC} | PECL Power Supply | GND = 0 V | | 3.8 | V | | V _{IN} | PECL Input Voltage | GND = 0 V | $V_I \leq V_{CC}$ | 0 to 3.8 | V | | I _{BB} | V _{BB} Sink/Source | | | ± 0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SO-8
SO-8 | 190
130 | °C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | SO-8 | 41 to 44 | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | TSSOP-8
TSSOP-8 | 185
140 | °C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | TSSOP-8 | 41 to 44 | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | DFN8
DFN8 | 129
84 | °C/W | | T _{sol} | Wave Solder Pb Pb-Free | < 2 to 3 sec @ 248°C
<2 to 3 sec @ 260°C | | 265
265 | °C | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | (Note 2) | DFN8 | 35 to 40 | °C/W | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. Table 4. PECL INPUT DC CHARACTERISTICS V_{CC} = 3.3 V, GND = 0.0 V (Note 3) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|--|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2075 | | 2420 | 2075 | | 2420 | 2075 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1355 | | 1675 | 1355 | | 1675 | 1355 | | 1675 | mV | | V _{BB} | Output Voltage Reference | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 4) | 1.2 | | 3.3 | 1.2 | | 3.3 | 1.2 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | -150 | | | -150 | | | -150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. ^{2.} JEDEC standard multilayer board - 2S2P (2 signal, 2 power) Input parameters vary 1:1 with V_{CC}. V_{IHCMR} min varies 1:1 with GND, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 5. LVTTL/LVCMOS OUTPUT DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$, GND = 0.0 V, $T_A = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$ | Symbol | Characteristic | Condition | Min | Тур | Max | Unit | |------------------|------------------------------|----------------------------|------|-----|-----|------| | V _{OH} | Output HIGH Voltage | $I_{OH} = -3.0 \text{ mA}$ | 2.4 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 24 mA | | | 0.5 | V | | I _{CCH} | Power Supply Current | Outputs set to HIGH | 5 | 17 | 25 | mA | | I _{CCL} | Power Supply Current | Outputs set to LOW | 8 | 21 | 30 | mA | | los | Output Short Circuit Current | | -130 | | -80 | mA | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. Table 6. AC CHARACTERISTICS V_{CC} = 3.0 V to 3.6 V, GND = 0.0 V (Note 5) | | | | -40°C | | 25°C | | 85°C | | | | | | |--|---|------|-------------|--------------|--------------|-------------|--------------|--------------|-------------|--------------|--------------|------| | Symbol | Characteristic | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Frequency
(Figure 2) | | 275 | 350 | | 275 | 350 | | 275 | 350 | | MHz | | t _{PLH} ,
t _{PHL} | Propagation Delay to
Output Differential | | 800
1200 | 1400
1400 | 2050
1800 | 800
1200 | 1400
1400 | 2250
1800 | 900
1100 | 1600
1300 | 2950
1900 | ps | | t _{SKEW} | Duty Cycle Skew (Note 6) | | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | % | | t _{SKPP} | Part-to-Part Skew (Note 6) | | | | 500 | | | 500 | | | 500 | ps | | t _{JITTER} | Random Clock Jitter (RMS) | | | 3.5 | 5 | | 3.5 | 5 | | 3.5 | 5 | ps | | V _{PP} | Input Voltage Swing
(Differential Configuration) | | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV | | t _r
t _f | Output Rise/Fall Times
(0.8V - 2.0V) | Q, Q | 250 | 600 | 900 | 250 | 600 | 900 | 250 | 600 | 900 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 5. Measured with a 750 mV 50% duty-cycle clock source. R_L = 500 Ω to GND and C_L = 20 pF to GND. Refer to Figure 3. - 6. Skews are measured between outputs under identical transitions. Duty cycle skew is measured between differential outputs using the deviations of the sum Tpw- and Tpw+. Figure 2. F_{max} Figure 3. TTL Output Loading Used For Device Evaluation #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|----------------------|-----------------------| | MC100EPT21DG | SOIC-8
(Pb-Free) | 98 Units / Rail | | MC100EPT21DR2G | SOIC-8
(Pb-Free) | 2500 / Tape & Reel | | MC100EPT21DTG | TSSOP-8
(Pb-Free) | 100 Units / Rail | | MC100EPT21DTR2G | TSSOP-8
(Pb-Free) | 2500 / Tape & Reel | | MC100EPT21MNR4G | DFN8
(Pb-Free) | 1000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices 0.10 ## DFN8 2x2, 0.5P CASE 506AA ISSUE F **DATE 04 MAY 2016** **TOP VIEW** #### NOTES - DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994 . CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED - PAD AS WELL AS THE TERMINALS. | | MILLIMETERS | | | | | | |-----|-------------|-----------|--|--|--|--| | DIM | MIN | MAX | | | | | | Α | 0.80 | 1.00 | | | | | | A1 | 0.00 | 0.05 | | | | | | А3 | 0.20 | REF | | | | | | b | 0.20 | 0.30 | | | | | | D | 2.00 | 2.00 BSC | | | | | | D2 | 1.10 | 1.30 | | | | | | Е | 2.00 | BSC | | | | | | E2 | 0.70 | 0.90 | | | | | | ө | 0.50 BSC | | | | | | | Κ | 0.30 REF | | | | | | | Ĺ | 0.25 | 0.25 0.35 | | | | | | L1 | | 0.10 | | | | | ## **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS **DETAIL A** ←D2 → 0.10 CAB е С 0.05 NOTE 3 **BOTTOM VIEW** ## **GENERIC MARKING DIAGRAM*** XX = Specific Device Code = Date Code = Pb-Free Device *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON18658D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | | |------------------|---------------------------|---|-------------|--|--|--| | DESCRIPTION: | DFN8, 2.0X2.0, 0.5MM PITO | CH | PAGE 1 OF 1 | | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. ## SOIC-8 NB CASE 751-07 **ISSUE AK** **DATE 16 FEB 2011** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. - 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. | | MILLIN | IETERS | INCHES | | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | C | 1.35 | 1.75 | 0.053 | 0.069 | | | D | 0.33 | 0.51 | 0.013 | 0.020 | | | G | 1.27 | 7 BSC | 0.050 BSC | | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | | 7 | 0.19 | 0.25 | 0.007 | 0.010 | | | K | 0.40 | 1.27 | 0.016 | 0.050 | | | М | 0 ° | 8 ° | 0 ° | 8 ° | | | N | 0.25 | 0.50 | 0.010 | 0.020 | | | S | 5.80 | 6.20 | 0.228 | 0.244 | | ## **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W = Pb-Free Package XXXXXX = Specific Device Code = Assembly Location Α = Year ww = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. ## **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Docume
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red | | | | | |------------------|-------------|--|-------------|--|--|--| | DESCRIPTION: | SOIC-8 NB | | PAGE 1 OF 2 | | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ## SOIC-8 NB CASE 751-07 ISSUE AK ## **DATE 16 FEB 2011** | | | | DITTE TO LED 2 | |--|---|--|--| | STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER | STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 | STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 | STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE | | STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE | STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE | STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd | STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 | | STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON | STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND | STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 | STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN | 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON | STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 | | STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 | STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 | STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN | STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 24: PIN 1. BASE | | 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 | 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND | 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT | 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE | | STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT | STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC | STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN | STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN | | STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 | STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 | | | | DOCUMENT NUMBER: | 98ASB42564B | Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-8 NB | | PAGE 2 OF 2 | | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ## **TSSOP 8 CASE 948R-02 ISSUE A** ## **DATE 04/07/2000** -V- **DETAIL E** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH. OR GATE BURRS SHALL NOT EXCEED 0.15 - (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED - AT DATUM PLANE -W-. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 2.90 | 3.10 | 0.114 | 0.122 | | В | 2.90 | 3.10 | 0.114 | 0.122 | | С | 0.80 | 1.10 | 0.031 | 0.043 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.40 | 0.70 | 0.016 | 0.028 | | G | 0.65 BSC | | 0.026 BSC | | | K | 0.25 | 0.40 | 0.010 | 0.016 | | L | 4.90 BSC | | 0.193 BSC | | | М | 0° | 6 ° | 0° | 6° | | DOCUMENT NUMBER: | 98AON00236D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | TSSOP 8 | | PAGE 1 OF 1 | | ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales