KRDS SERIES # Single Shot # **Wiring Diagram** V = Voltage S1 = Initiate Switch C = Common, Transfer Contact NO = Normally Open NC = Normally Closed UTL = Untimed Load R_T is used when external adjustment is ordered. A knob is supplied for adjustable units. The untimed load is optional. Relay contacts are isolated. # **Ordering Information** | MODEL | INPUT VOLTAGE | ADJUSTMENT | TIME DELAY | |-----------|---------------|------------|------------| | KRDS1135M | 12VDC | Fixed | 35m | | KRDS120 | 12VDC | Onboard | 0.1 - 10s | | KRDS221 | 24VAC/DC | Onboard | 1 - 100s | | KRDS420 | 120VAC | Onboard | 0.1 - 10s | | KRDS421 | 120VAC | Onboard | 1 - 100s | | KRDS424 | 120VAC | Onboard | 1 - 100m | | KRDS430 | 120VAC | External | 0.1 - 10s | If desired part number is not listed, please call us to see if it is technically possible to build. # **Description** The KRDS Series is a compact time delay relay measuring only 2 in. (50.8 mm) square. Its microcontroller timing circuit provides excellent repeat accuracy and stability. Encapsulation protects against shock, vibration, and humidity. The KRDS Series is a cost effective approach for OEM applications that require small size, isolation, reliability, and long life. ### Operation (Single Shot) Input voltage must be applied before and during timing. Upon momentary or maintained closure of the initiate switch, the output relay energizes for a measured interval of time. At the end of the delay, the output de-energizes. Opening or reclosing the initiate switch during timing has no affect on the time delay. The output will energize if the initiate switch is closed when input voltage is applied. Reset: Reset occurs when the time delay is complete and the initiate switch is opened. Loss of input voltage resets the time delay and output. ### **Features & Benefits** | FEATURES | BENEFITS | | |--|--|--| | Compact, low cost design measuring 2 in. (50.8mm) square | Allows flexiblility for OEM applications | | | Microcontroller based | Repeat Accuracy + / -0.5%,
Factory calibration + / - 5% | | | Isolated, 10A, SPDT output contacts | Allows control of loads for AC or DC voltages | | | Encapsulated | To protect against shock, vibration, and humidity | | #### **Accessories** #### P1004-95, P1004-95-X Versa-Pot Panel mountable, industrial potentiometer recommended for remote time delay adjustment. #### P1023-6 Mounting bracket The 90° orientation of mounting slots makes installation/removal of modules quick and easy. #### P0700-7 Versa-Knob Designed for 0.25 in (6.35 mm) shaft of Versa-Pot. Semi-gloss industrial black finish. # P1015-64 (AWG 14/16) Female Quick Connect These 0.25 in. (6.35 mm) female terminals are constructed with an insulator barrel to provide strain relief. #### P1015-18 Quick Connect to Screw Adapter Screw adapter terminal designed for use with all modules with 0.25 in. (6.35 mm) male quick connect terminals. # KRDS SERIES #### **Accessories** #### C103PM (AL) DIN Rail 35 mm aluminum DIN rail available in a 36 in. (91.4 cm) length. #### P1023-20 DIN Rail Adapter Allows module to be mounted on a 35 mm DIN type rail with two #10 screws. # **External Resistance vs. Time Delay** This chart applies to externally adjustable part numbers. The time delay is adjustable over the time delay range selected by varying the resistance across the R_T terminals; as the resistance increases the tie When selecting an external R_{T} , add the tolerances of the timer and the R_{T} for the full time range adjustment. **Examples:** 1 to 50 S adjustable time delay, select time delay range 1 and a 50 K ohn $R_{T}.$ For 1 to 100 S use a 100 K ohm $R_{T}.$ # **Output Current/Ambient Temperature** # **Specifications** **Time Delay** Microcontroller with watchdog circuitry Type Range 0.1s - 1000m in 6 adjustable ranges or fixed ±0.5% or 20ms, whichever is greater Repeat Accuracy Tolerance (Factory Calibration) $\leq \pm 5\%$ **Reset Time** ≤ 150ms **Initiate Time** ≤ 40ms Time Delay vs Temp. & Voltage $\leq \pm 5\%$ Input Voltage 12, 24 or 110VDC; 24, 120 or 230VAC **Tolerance** **12VDC & 24VDC/AC** -15% - 20% 110VDC, 120VAC or 230VAC -20% - 10% **AC Line Frequency/DC Ripple** $50/60 \text{ Hz} / \leq 10\%$ **Power Consumption** $AC \leq 2VA; \ DC \leq 2W$ Output Type Isolated relay contacts **Form SPDT** 10A resistive @ 125VAC; Rating (at 40°C) 5A resistive @ 230VAC & 28VDC; 1/4 hp @ 125VAC Life (Operations) Mechanical - 1 x 107; Electrical - 1 x 105 **Protection** Circuitry Encapsulated ≥ 1500V RMS input to output **Isolation Voltage** **Insulation Resistance** $\geq 100~M\Omega$ DC units are reverse polarity protected **Polarity** Mechanical Mounting Surface mount with one #10 (M5 x 0.8) screw **H** 50.8 mm (2.0"); **W** 50.8 mm (2.0"); **Dimensions** **D** 30.7 mm (1.21") **Termination** 0.25 in. (6.35 mm) male quick connect terminals **Environmental** Operating/Storage **Temperature** -40° to 60°C/-40° to 85°C Humidity 95% relative, non-condensing Weight ≈ 2.6 oz (74 g) # **Function Diagram** V = Voltage S1 = Initiate Switch NO = Normally Open Contact NC = Normally **Closed Contact** TD = Time Delay R = Reset