■ PACKAGE OUTLINE

NJU7700/01F

NJU7700/01F4

VOLTAGE DETECTOR

■ GENERAL DESCRIPTION

The NJU7700/01 is a high precision and low quiescent current voltage detector.

The detection voltage is internally fixed with an accuracy of 1.0%.

The NJU7700/01 are useful for preventing malfunction of microcomputer or DSP etc. through detect a drop in voltage of battery or power supply.

NJU7700 is Nch. Open Drain and NJU7701 is a C-MOS output type.

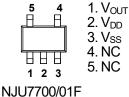
Small packaging makes NJU7700 and NJU7701 suitable for space conscious applications.

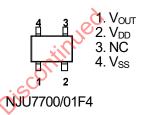
■ FEATURES

 High Precision Detection Voltage ±1.0%

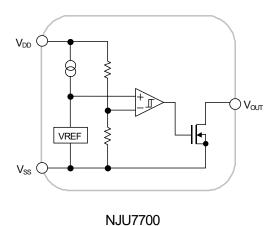
 Low Quiescent Current $0.8\mu A$ typ. (V_{DET} =3V version)

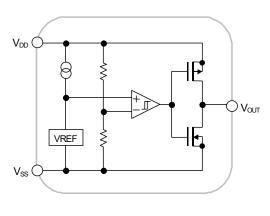
 Detection Voltage Range 1.3~6.0V(0.1V Step)


Output Configuration NJU7700: Nch. Open Drain type NJU7701: C-MOS Output type


CMOS Technology

 Package Outline SOT-23-5: NJU7700/01F


SC-82AB: NJU7700/01F4


■ PIN CONFIGURATION

■ EQUIVALENT CIRCUIT

NJU7701

■ DETECTION VOLTAGE RANK LIST

Device Name	V_{DET}						
NJU770*F4-/F13	1.3V	NJU770*F4-/F23	2.3V	NJU770*F4-/F32	3.2V	NJU770*F4-/F43	4.3V
NJU770*F4-/F15	1.5V	NJU770*F4-/F24	2.4V	NJU770*F4-/F33	3.3V	NJU770*F4-/F44	4.4V
NJU770*F4-/F16	1.6V	NJU770*F4-/F25	2.5V	NJU770*F4-/F34	3.4V	NJU770*F4-/F45	4.5V
NJU770*F4-/F17	1.7V	NJU770*F4-/F26	2.6V	NJU770*F4-/F35	3.5V	NJU770*F4-/F47	4.7V
NJU770*F4-/F18	1.8V	NJU770*F4-/F27	2.7V	NJU770*F4-/F36	3.6V	NJU770*F4-/F05	5.0V
NJU770*F4-/F19	1.9V	NJU770*F4-/F28	2.8V	NJU770*F4-/F38	3.8V	NJU770*F4-/F52	5.2V
NJU770*F4-/F02	2.0V	NJU770*F4-/F29	2.9V	NJU770*F4-/F39	3.9V	NJU770*F4-/F55	5.5V
NJU770*F4-/F21	2.1V	NJU770*F4-/F03	3.0V	NJU770*F4-/F04	4.0V	NJU770*F4-/F06	6.0V
NJU770*F4-/F22	2.2V	NJU770*F4-/F31	3.1V	NJU770*F4-/F42	4.2V		

■ NJU7700

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

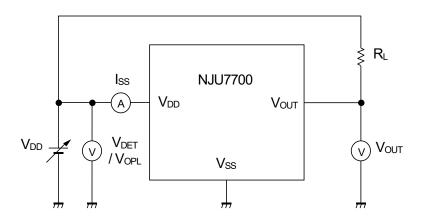
PARAMETER	SYMBOL	RATINGS		UNIT	
Input Voltage	V_{DD}	+10		V	
Output Voltage	V _{OUT}	V _{SS} -0.3~+10		V	
Output Current	l _{OUT}	50		mA	
Power Dissipation	D.	F:SOT-23-5	200(*1)	mW	
Power Dissipation	P_D	F4 : SC-82AB	250(*2)		
Operating Temperature	Topr	−40 ~ +85		°C	
Storage Temperature	Tstg	−40 ~ +125		°C	

^{(*1):} Device itself

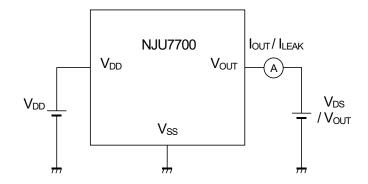
■ ELECTRICAL CHARACTERISTICS

(Ta=25°C)

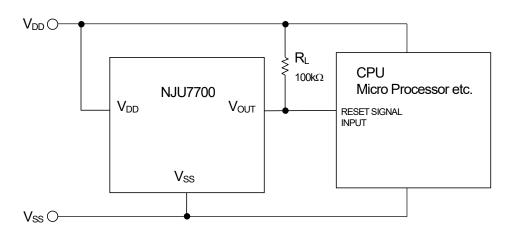
- 2 -


PARAMETER	SYMBOL	TEST CONDITION			TYP.	MAX.	UNIT
Detection Voltage	V_{DET}				_	+1.0%	V
Hysteresis Voltage	V _{HYS}				V _{DET} ×0.05	V _{DET} ×0.08	V
Quiescent Current	I _{SS}	V _{DD} =V _{DET} +1V	V _{DET} =1.3V~1.7V Version	×0.03	0.5	1.0	μA
			V _{DET} =1.8V~6.0V Version	_	8.0	1.6	μA
Output Current	Іоит	Nch,V _{DS} =0.5V	V _{DD} =1.2V	0.75	2.0	_	mA
			V _{DD} =2.4V (≥2.7V Version)	4.5	7.0	_	mA
Output Leak Current	I _{LEAK}	V _{DD} =V _{OUT} =9V		_	_	0.1	μΑ
Detection Voltage	Λ V _{DET} /Λ T a	Ta=0 ~ +85°C		_	±100	_	ppm/°C
Temperature Coefficient							PP 0
Operating Voltage(*3)	V_{DD}	R_L =100 $k\Omega$		8.0	_	9	V

^{(*3):} The minimum Operating Voltage(V_{OPL}) indicates the same value of the input voltage(V_{DD}) on condition that V_{OUT} becomes 10% or less of the input voltage(V_{DD}).


^{(*2):} Mounted on glass epoxy board based on EIA/JEDEC. (114.3x76.2x1.6mm: 2Layers)

■ TEST CIRCUIT


① COMMOM TEST CIRCUIT

② OUTPUT CURRENT/OUTPUT LEAK CURRENT TEST CIRCUIT

■ TYPICAL APPLICATION

■ NJU7701

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

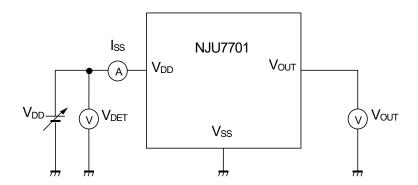
PARAMETER	SYMBOL	RATINGS		UNIT	
Input Voltage	V_{DD}	+10		V	
Output Voltage	V _{OUT}	V_{SS} -0.3 ~ V_{DD} +0.3		V	
Output Current	l _{out}	50		mA	
Power Dissipation	P_{D}	F:SOT-23-5	200(*4)	mW	
Powel Dissipation	FD	F4 : SC-82AB	250(*5)		
Operating Temperature	Topr	-40 ~ +8	°C		
Storage Temperature	Tstg	−40 ~ +125		°C	

(*4): Device itself

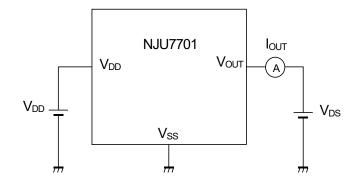
(*5): Mounted on glass epoxy board based on EIA/JEDEC. (114.3x76.2x1.6mm: 2Layers)

■ ELECTRICAL CHARACTERISTICS

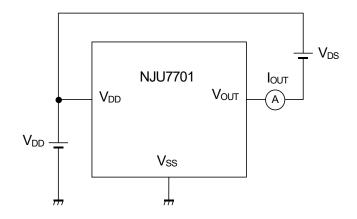
(Ta=25°C)

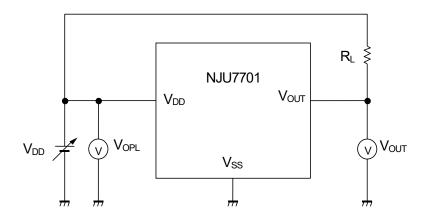

- 4 -

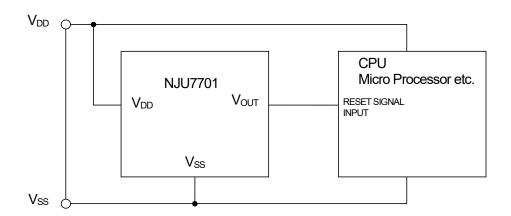
PARAMETER	SYMBOL	TEST CONDITION			TYP.	MAX.	UNIT
Detection Voltage	V_{DET}			-1.0%	_	+1.0%	V
Hysteresis Voltage	V _{HYS}			V _{DET} ×0.03	V _{DET} ×0.05	V _{DET} ×0.08	V
Quiescent Current	Iss	V _{DD} =V _{DET} +1V	V _{DET} =1.3V~1.7V Version	_	0.5	1.0	μA
			V _{DET} =1.8V~6.0V Version	_	8.0	1.6	μΑ
Output Current	Іоит	Nch,V _{DS} =0.5V	V _{DD} =1.2V	0.75	2.0	-	mA
			V _{DD} =2.4V (≥2.7V Version)	4.5	7.0	_	mA
		Pch,V _{DS} =0.5V	V _{DD} =4.8V (≤3.9V Version)	2.0	3.5	ı	mA
			V _{DD} =6.0V (4.0V~5.6V Version)	2.5	4.0	-	mA
			V _{DD} =8.4V (≥5.7V Version)	3.0	5.0	_	mA
Detection Voltage							
Temperature Coefficient	Δ V _{DET} /ΔTa	Ta=0 ∼ +85°C		_	±100	_	ppm/°C
Operating Voltage(*6)	V_{DD}	R _L =100kΩ		8.0	_	9	V


^{(*6):} The minimum Operating Voltage(V_{OPL}) indicates the same value of the input voltage(V_{DD}) on condition that V_{OUT} becomes 10% or less of the input voltage(V_{DD}).

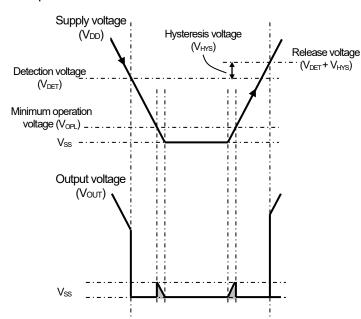
■ TEST CIRCUIT


① COMMON TEST CIRCUIT


② Nch OUTPUT CURRENT TEST CIRCUIT


3 Pch OUTPUT CURRENT TEST CIRCUIT

4 MINUMUM OPERATING VOLTAGE TEST CIRCUIT


■ TYPICAL APPLICATION

Ver.2024-04-17 - 6 -

■ FUNCTIONAL DESCRIPTION

(1) Basic operation

- (1) When supply voltage(V_{DD}) drops below detection voltage(V_{DET}), Output voltage(V_{OUT}) changes "H" to "L" to alert reset state.
- (2) The reset state is kept while V_{DD} is lower than release voltage. The release voltage is a sum of V_{DET} and Hysterisis voltage (V_{HYS}). Please refer to the (*7) below.
- (3) When V_{DD} becomes higher than the release voltage, then V_{OUT} changes from "L" to "H" to resume normal state.
- (*7) V_{HYS} is to avoid unstable V_{OUT} state caused by rapid voltage change at nearby V_{DET}.

(*8): C-MOS output product (NJU7701): When V_{DD} less than V_{OPL} , V_{OUT} is free of the shaded region.

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Ver.2024-04-17

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - · Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period
 - In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
 - 8-2. Quality Warranty Remedies
 - When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
 - Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
 - 8-3. Remedies after Quality Warranty Period
 - With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/