

Low Power Windowed Watchdog with Reset, Sleep Mode Functions

Description

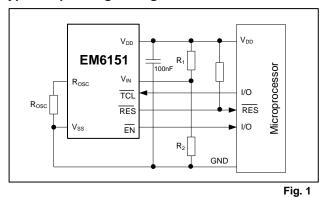
The EM6151 offers a high level of integration by combining voltage monitoring and software monitoring using a windowed watchdog.

A comparator monitors the voltage applied at the V_{IN} input comparing it with an internal voltage reference V_{REF}. The power-on reset function is initialized after V_{IN} reaches V_{REF} and takes the reset output inactive after a delay T_{POR} depending on external resistance R_{OSC}. The reset output goes active low when the V_{IN} voltage is less than V_{REF}. The RES and EN outputs are guaranteed to be in a correct state for a supply voltage as low as 1.2 V. The watchdog function monitors software cycle time and execution.

If software clears the watchdog too quickly (incorrect cycle time) or too slowly (incorrect execution) it will cause the system to be reset. For enhanced security, the watchdog must be serviced within an "open" time window. During the remaining time, the watchdog time window is "closed" and a reset will occur should a TCL pulse be received by the watchdog during this "closed" time window. The ratio of the open/closed window is either 33%/67% or 67%/33%.

The system ENABLE output prevents critical control functions being activated until software has successfully cleared the watchdog three times. Such a security could be used to prevent motor controls being energized on repeated resets of a faulty system.

When the microcontroller goes in stand-by mode or stops working, no signal is received on the \overline{TCL} input of the EM6151 (version 55) and it goes into a stand-by mode in order to save power (CAN-bus sleep detector).


Features

- \Box Low quiescent current 35 μ A
- □ -40°C to +125°C temperature range
- □ Windowed watchdog with an adjustable time windows, guaranteeing a minimum time and a maximum time between software clearing of the watchdog
- □ Time base accuracy ±8% (at 100ms)
- $\label{eq:constraint} \square \ \ \mbox{Voltage reference accuracy $\pm 3\%$}$
- □ Sleep mode function (V55)
- Adjustable threshold voltage using external resistors
- Adjustable power on reset (POR) delay using one external resistor
- Open-drain active-low RESET output
- Reset output guaranteed for regulated output voltage down to 1.2 V
- □ System ENABLE output offers added security
- Qualified according to AEC-Q100
- Green SO-8 package (RoHS compliant)

Applications

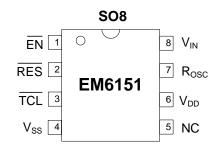
- Automotive systems
- Industrial
- Home security systems
- Telecom / Networking
- Computers
- Set top boxes

Typical Operating Configuration

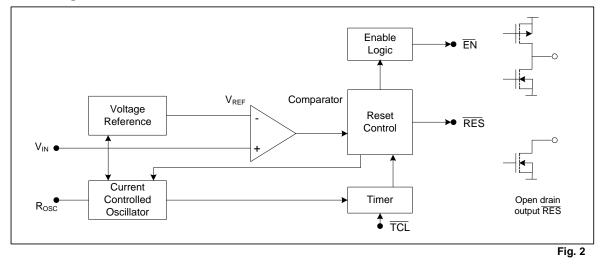
Selection Table

Part Number	V _{REF}	Closed Window	Open Window	CAN-bus sleep detector
EM6151 V30	1.17 V	67%	33%	No
EM6151 V50	1.52 V	67%	33%	No
EM6151 V53	1.52 V	33%	67%	No
EM6151 V55	1.275 V	67%	33%	Yes

Please refer to Fig. 4 for more information about the open/closed window of the watchdog.


Ordering Information

Part Number	Version	VREF	Package	Delivery Form	Package Marking	
EM6151V30SO8A+	V30 1.17 V		SO-8	Stick, 97 pcs	6151030	
EM6151V30SO8B+	V30	1.17 V	50-8	Tape & Reel, 2500 pcs	0151050	
EM6151V50SO8A+	V50	1.52 V	SO-8	Stick, 97 pcs	6151050	
EM6151V50SO8B+	V50			Tape & Reel, 2500 pcs	0151050	
EM6151V53SO8A+	V53	1 50 1/	1.52 V SO-8	Stick, 97 pcs	6151053	
EM6151V53SO8B+	V 33	1.52 V		Tape & Reel, 2500 pcs	0101003	
EM6151V55SO8A+				Stick, 97 pcs		6464066
EM6151V55SO8B+	V55	1.275 V	SO-8	Tape & Reel, 2500 pcs	6151055	


Note: the "+" symbol at the end of the part number means that this product is RoHS compliant (green). For version V30, please contact EM Microelectronic.

Pin Assignment and Description

SO8	Name	Function
1	ĒN	Push-pull active low enable output
2	RES	Open drain active low reset output. $\overline{\text{RES}}$ must be pulled up to V _{DD} even if unused
3	TCL	Watchdog timer clear input signal
4	Vss	GND terminal
5	NC	No connect
6	Vdd	Supply voltage
7	Rosc	Rosc input for RC oscillator tuning
8	V _{IN}	Voltage comparator input

Block Diagram EM6151

Absolute Maximum Ratings

Parameter	Symbol	Conditions		
Max. voltage at VDD	VDDMAX	Vss + 7.0V		
Max. voltage at any signal pin	VMAX	V _{DD} + 0.3V		
Min. voltage at any signal pin	V _{MIN}	$V_{SS} - 0.3V$		
Storage temperature	Tsto	-65 to +150 °C		
ESD According to MIL-STD-883C method 3015.7	V _{Smax}	2000V		

Table 1

Stresses above these listed maximum ratings may cause permanent damages to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

Handling Procedures

This device has built-in protection against high static voltages or electric fields; however, it is advised that normal precautions be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the voltage range. At any time, all inputs must be tied to a defined logic voltage level.

Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Operating junction temperature	Tj	-40	+125	°C
Supply voltage	V _{DD}	1.2	5.5	V
RES and EN guaranteed (note 1)	V _{DD}	1.2		V
Comparator input voltage	VIN	0	V _{DD}	V
RC-oscillator programming	Rosc	10	1000	kΩ

Table 2

Electrical Characteristics

 V_{DD} = 5.0V, T_j = -40 to +125°C, unless otherwise specified

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Supply current	IDD	$R_{OSC} = 100k\Omega V_{IN} \text{ and } \overline{TCL} = V_{DD}, O/P_S 1M\Omega \text{ to } V_{DD}$		35	60	μΑ
Supply current in standby mode and sleep mode for V55	I _{DD}	R_{OSC} = don't care, \overline{TCL} = V _{DD} , V _{IN} = 0 V		25	50	μA
RES and EN		$V_{DD} = 4.5 \text{ V}, I_{OL} = 8 \text{ mA}$		0.25	0.45	V
Output Low Voltage	Vol	$V_{DD} = 2.0 \text{ V}, I_{OL} = 4 \text{ mA}$		0.2	0.4	V
		$V_{DD} = 1.2 \text{ V}, I_{OL} = 0.5 \text{ mA}$		0.04	0.2	V
EN		$V_{DD} = 4.5 \text{ V}, I_{OH} = -1 \text{ mA}$	3.5	4.1		V
Output High Voltage	Vон	V _{DD} = 2.0 V, I _{OH} = -100 μA	1.8	1.9		V
		V _{DD} = 1.2 V, I _{OH} = -20 μA	0.9	1.05		V
TCL Input Low Level	VIL		Vss		0.5	V
TCL Input High Level	VIH		2.5		Vdd	V
Leakage current	ILI	$V_{SS} \leq V_{TCL} \leq V_{DD}$		0.05		μA
		Version V30 (replaces V6130)	1.135	1.170	1.205	V
Comparator reference (note 2)	Vref	Version V50 (replaces V6150)	1.475	1.520	1.565	V
		Version V53	1.475	1.520	1.565	V
		Version V55 (replaces V6155)	1.235	1.275	1.315	V
Comparator hysteresis (note 2)	V _{HY}			2		mV
V _{IN} input resistance	Rvin			100		MΩ

Table 3

Note 1: RES must be pulled up externally to V_{DD} even if it is unused. (RES and EN are used as inputs by EM test)

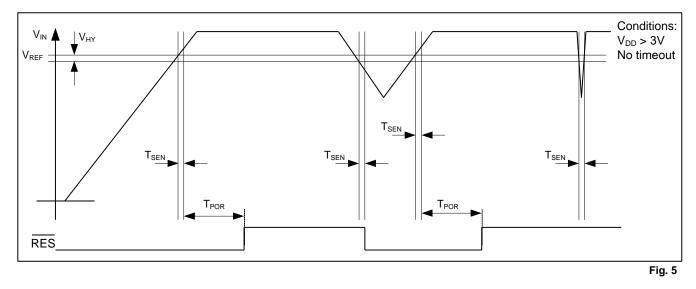
Note 2: the comparator reference is the power-down reset threshold. The power-on reset threshold equals the comparator reference voltage plus the comparator hysteresis (see Fig. 5).

Timing Characteristics

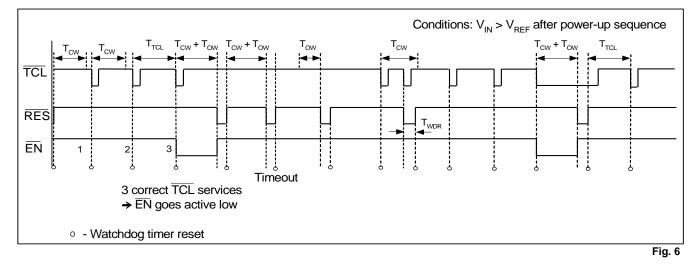

 V_{DD} = 5.0 V, T_{j} = -40 to +125 °C, unless otherwise specified

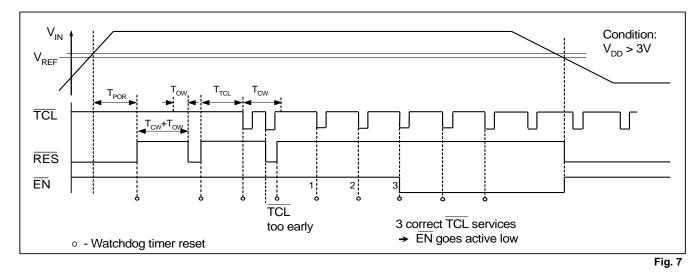
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Propagation delay TCL to Output Pins	T _{DIDO}			250	500	ns
V _{IN} sensitivity	TSEN	VINhigh=1.1xVREF, VINIOW=0.9xVREF	1	5	20	μS
Watchdog Reset Pulse Period	TWDRP	TCL inactive	Tcw	+ Tow+ 7	Twdr	ms
Version V30						
Power-on Reset delay	TPOR	Rosc= 116.9 kΩ ±1%	91.6	100	108.3	
Closed Window Time	T _{CW}		74	80	85.76	
Open Window Time	Tow		37	40	42.88	ms
Watchdog Time	Twd		92.5	100	107.2	
Watchdog Reset Pulse Width if no TCL	Twdr		2.25	2.5	2.75	
Version V50						
Power-on Reset delay	TPOR	Rosc= 121.6 kΩ ±1%	91.6	100	108.3	
Closed Window Time	T _{CW}		74	80	85.76	
Open Window Time	Tow		37	40	42.88	ms
Watchdog Time	Twd		92.5	100	107.2	
Watchdog Reset Pulse Width if no TCL	T _{WDR}		2.25	2.5	2.75	
Version V53						
Power-on Reset delay	TPOR	$R_{OSC} = 23.2 \text{ k}\Omega \pm 1\%$	4.57	5.0	5.44	
Closed Window Time	Tcw		9.24	10	10.77	
Open Window Time	Tow		18.48	20	21.54	ms
Watchdog Time	Twd		18.48	20	21.54	1
Watchdog Reset Pulse Width if no TCL	T _{WDR}		0.56	0.625	0.69	
Version V55						
Power-on Reset delay	TPOR	Rosc = 107.5 kΩ ±1%	91.6	100	108.3	
Closed Window Time	T _{CW}		74	80	85.76	
Open Window Time	Tow		37	40	42.88	
Watchdog Time	Twd		92.5	100	107.2	ms
Watchdog Reset Pulse Width if no TCL	Twdr		2.25	2.5	2.75]
Watchdog Reset Pulse Width in Sleep Mode	T _{WDRS}	Rosc off; RINT=1MΩ	2.8	3.2	3.6]
Watchdog Reset Pulse Period in Sleep Mode	TWDRPS	TCL inactive	750	1100	1450	1

For different values of T_{WD} and R_{OSC} , see figures 9 to 12.


Timing Waveforms

Watchdog Timeout Period





Voltage Monitoring

Timer Reaction

Combined Voltage and Timer Reaction

Functional Description

VIN Monitoring

The power-on reset and the power-down reset are generated as a response to the external voltage level applied on the V_{IN} input. The threshold voltage at which reset is asserted or released (V_{RESET}) is determined by the external voltage divider between V_{DD} and V_{SS}, as shown on Fig. 8. A part of V_{DD} is compared to the internal voltage reference. To determine the values of the divider, the leakage current at V_{IN} must be taken into account as well as the current consumption of the divider itself. Low resistor values will need more current, but high resistor values will make the reset threshold less accurate at high temperature, due to a possible leakage current at the V_{IN} input. The sum of the two resistors (R₁ + R₂) should stay below 500 kΩ. The formula is:

 $V_{RESET} = V_{REF} x (1 + R_1/R_2).$

Example: choosing $R_1 = 200 \ k\Omega$ and $R_2 = 100 \ k\Omega$ gives $V_{\text{RESET}} = 4.56 \ V$ (typical) for version V50 and V53.

At power-up the reset output (\overline{RES}) is held low (see Fig. 5).

When V_{IN} becomes greater than V_{REF} , the \overline{RES} output is held low for an additional power-on-reset (POR) delay T_{POR} (defined with the external resistor connected at R_{OSC} pin). The T_{POR} delay prevents repeated toggling of \overline{RES} even if V_{DD} voltage drops out and recovers. The T_{POR} delay allows the microprocessor's crystal oscillator time to start and stabilize and ensures correct recognition of the reset signal to the microprocessor.

The $\overline{\text{RES}}$ output goes active low generating the powerdown reset whenever V_{IN} falls below $V_{\text{REF}}.$ The sensitivity or reaction time of the internal comparator to the voltage level on V_{IN} is typically 3 $\mu s.$

Timer Programming

The on-chip oscillator allows the user to adjust the power-on reset (POR) delay T_{POR} and the watchdog time T_{WD} by changing the resistor value of the external resistor R_{OSC} connected between the pin R_{OSC} and V_{SS} (see Fig. 8). The closed and open window times (T_{CW} and T_{OW}) as well as the watchdog reset pulse width (T_{WDR}), which are T_{TCL} dependent, will vary accordingly. The watchdog time T_{WD} can be obtained with figures 9 to 12 or with the Excel application EM6151ResCalc.xls available on EM website. T_{POR} is equal to T_{WD} with the minimum and maximum tolerances increased by 1% (For Version 53, T_{POR} is one fourth of T_{WD}).

Note that the current consumption increases as the frequency increases.

CAN-Bus Sleep Mode Detector (version 55)

When the microcontroller goes into a standby mode, it implies that it does not send any pulses on the $\overline{\text{TCL}}$ input of the EM6151. After three reset pulse periods (T_{CW} + T_{OW} + T_{WDR}) on the RES output, the circuit switches on an internal resistor of 1 MΩ, and it will have a reset pulse of typically 3 ms every 1 second on the RES output. When a $\overline{\text{TCL}}$ edge (rising or falling) appears on the $\overline{\text{TCL}}$ input or the power supply goes down and up, the circuit switches to the R_{OSC}.

Watchdog Timeout Period Description

The watchdog timeout period is divided into two periods, a closed window period (T_{CW}) and an open window period (T_{OW}), see Fig. 4. If no pulse is applied on the \overline{TCL} input during the open window period T_{OW} , the \overline{RES} output goes low for a time T_{WDR} . When a pulse is applied on the \overline{TCL} input, the cycle is restarted with a close window period.

For example if $T_{WD} = T_{POR} = 100$ ms, $T_{CW} = 80$ ms, $T_{OW} = 40$ ms and $T_{WDR} = 2.5$ ms.

When V_{IN} recovers after a drop below V_{REF} , the pad \overline{RES} is set low for the time T_{POR} during which any \overline{TCL} activation is disabled.

Timer Clearing and RES Action

The watchdog circuit monitors the activity of the processor. If the user's software does not send a pulse to the TCL input within the programmed open window timeout period a short watchdog RES pulse is generated which is equal to T_{WDR} (see Fig. 6).

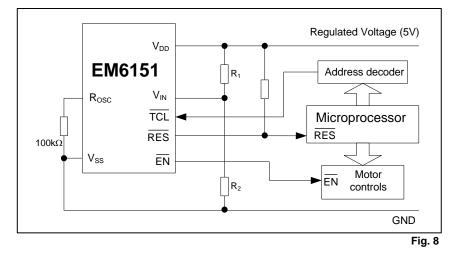
With the open window constraint, new security is added to conventional watchdogs by monitoring both software cycle time and execution. Should software clear the watchdog too quickly (incorrect cycle time) or too slowly (incorrect execution) it will cause the system to be reset. If software is stuck in a loop which includes the routine to clear the watchdog then a conventional watchdog would not make a system reset even though the software is malfunctioning; the circuit would make a system reset because the watchdog would be cleared too quickly.

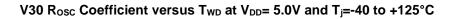
If no TCL signal is applied before the closed and open windows expire, RES will start to generate square waves of period ($T_{CW} + T_{OW} + T_{WDR}$). The watchdog will remain in this state until the next TCL falling edge appears during an open window, or until a fresh power-up sequence. The system enable output, EN, can be used to prevent critical control functions being activated in the event of the system going into this failure mode (see section "Enable-EN Output").

The $\overline{\text{RES}}$ output must be pulled up to V_{DD} even if the output is not used by the system (see Fig 8).

Combined Voltage and Timer Action

The combination of voltage and timer actions is illustrated by the sequence of events shown in Fig. 6. On power-up, when the voltage at VIN reaches VREF, the power-on-reset, POR, delay is initialized and holds RES active for the time of the POR delay. A TCL pulse will have no effect until this power-on-reset delay is completed. When the risk exists that TCL temporarily floats, e.g. during T_{POR}, a pull-up to V_{DD} is required on that pin. After the POR delay has elapsed, RES goes inactive and the watchdog timer starts acting. If no TCL pulse occurs, RES goes active low for a short time T_{WDR} after each closed and open window period. A TCL pulse coming during the open window clears the watchdog timer. When the $\overline{\text{TCL}}$ pulse occurs too early (during the closed window), RES goes active and a new timeout sequence starts. A voltage drop below the VREF level for longer than typically $3\mu s$ overrides the timer and immediately forces RES active and EN inactive. Any further TCL pulse has no effect until the next power-up sequence has completed.


Enable - EN Output


The system enable output, \overline{EN} , is inactive always when \overline{RES} is active and remains inactive after a \overline{RES} pulse until the watchdog is serviced correctly 3 consecutive times (i.e. the \overline{TCL} pulse must come in the open window). After three consecutive services of the watchdog with \overline{TCL} during the open window, the \overline{EN} goes active low.

A malfunctioning system would be repeatedly reset by the watchdog. In a conventional system critical motor controls

could be energized each time reset goes inactive (time allowed for the system to restart) and in this way the electrical motors driven by the system could function out of control. The circuit prevents the above failure mode by using the \overline{EN} output to disable the motor controls until software has successfully cleared the watchdog three times (i.e. the system has correctly re-started after a reset condition).

Typical Application

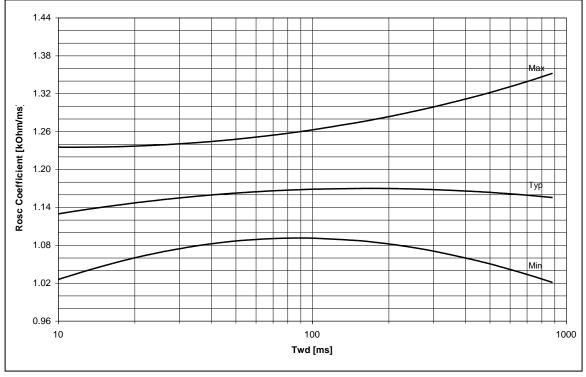
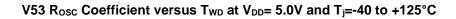



Fig. 9

V50 R_{osc} Coefficient versus T_{WD} at V_{DD} = 5.0V and T_j =-40 to +125°C

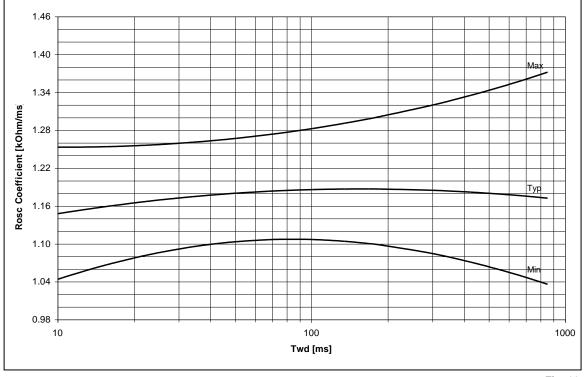
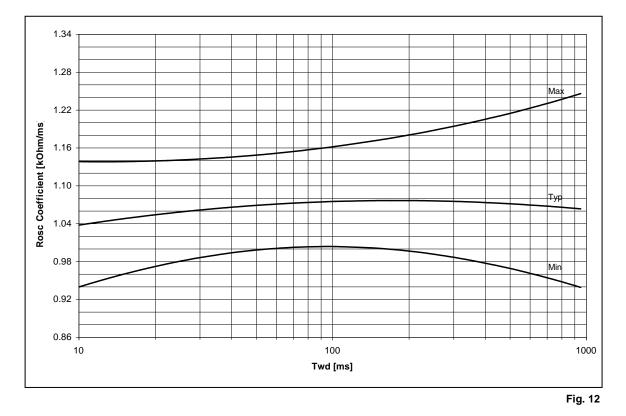



Fig. 11

V55 R_{osc} Coefficient versus T_{WD} at V_{DD} = 5.0V and T_j =-40 to +125°C

Package Information

Dimensions of 8-pin SOIC Package

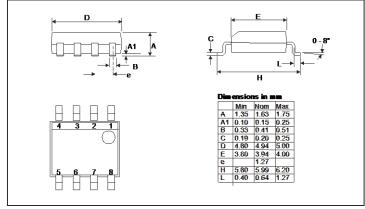


Fig. 13

EM Microelectronic-Marin SA ("EM") makes no warranties for the use of EM products, other than those expressly contained in EM's applicable General Terms of Sale, located at http://www.emmicroelectronic.com. EM assumes no responsibility for any errors which may have crept into this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein.

No licenses to patents or other intellectual property rights of EM are granted in connection with the sale of EM products, neither expressly nor implicitly.

In respect of the intended use of EM products by customer, customer is solely responsible for observing existing patents and other intellectual property rights of third parties and for obtaining, as the case may be, the necessary licenses.

Important note: The use of EM products as components in medical devices and/or medical applications, including but not limited to, safety and life supporting systems, where malfunction of such EM products might result in damage to and/or injury or death of persons is expressly prohibited, as EM products are neither destined nor qualified for use as components in such medical devices and/or medical applications. The prohibited use of EM products in such medical devices and/or medical applications is exclusively at the risk of the customer