

Features

- SMALL VOLTAGE OFFSET:
 - TPA2295C: ±0.5mV (MAX)
- WIDE COMMON MODE VOLTAGE: -0.1V to +70V
- WIDE CMRR THROUGH COMMON VOLTAGE: 130dB
- SUPPLY VOLTAGE: 3.0V to +18V
- ACCURACY and ZERO-DRIFT PERFORMANCE
 - ±0.5% Gain Error (Max, -40°C ~125°C)
 - ♦ 0.5µV/°C Offset Drift (Max, -40°C ~125°C)
 - 5ppm/°C Gain Drift (Max, -40°C ~125°C)
- FIVE GAIN OPTIONS for VOLTAGE OUTPUT
 - TPA2295CT: 20V/V
 - TPA2295CF: 50V/V
 - TPA2295CS: 60V/V
 - TPA2295CH: 100V/V
 - TPA2295CW: 200V/V
- Comparator :
 - 0.6-V Internal Voltage Reference
 - Open-Drain Output with Latch control

Applications

- CURRENT SENSING (High-Side/Low-Side)
- BATTERY CHARGERS & POWER MANAGEMENT
- AUTOMOTIVE & INDUSTRIAL CONTROL
- BASE STATIONS & TELECOM EQUIPMENT

Functional Block Diagram

Description

The TPA2295C family is of high voltage, high side current sense amplifier with voltage output, internal comparator, and voltage reference. The TPA2295C can sense drops across shunts at common-mode voltages from –0.1V to 70 V. The TPA2295C are available with five output voltage scales: 20V/V, 50V/V, 60V/V, 100V/V, 200V/V, with up to 0.5MHz bandwidth.

The TPA2295C features one open drain comparator with internal 0.6V references. Comparator works with a latching capability.

The TPA2295C operates from single 3.0V to 18V supply, offers breakthrough performance throughout the -40° C to $+125^{\circ}$ C temperature range. It features a zero drift core, which leads to an offset drift of 0.5μ V/°C throughout the operating temperature range and the common-mode voltage range.

The TPA2295C is offered in 8-pin MSOP package.

Pin Configuration

PIN No.	PIN NAME	TPA2295C DESCRIPTION				
1	Vs	Power supply				
2	OUT	Output				
3	CMPIN	Comparator input				
4	GND	Ground				
5	RESET	Comparator reset pin, active low				
6	CMPOUT	Comparator output				
7	IN-	Negative Input				
8	IN+	Positive Input.				

Table of Contents

Features
Applications 1
Description 1
Functional Block Diagram1
Pin Configuration 1
Revision History
Order Information
Absolute Maximum Ratings Note 2
ESD, Electrostatic Discharge Protection
Thermal Resistance
Electrical Characteristics
Typical Performance Characteristics
Applications Information
Application schematic7
Selecting Rsense
Recommended Component Values7
Internal Comparator
Power Supply Recommendation7
Layout: Kelvin connection
Package Outline Dimensions
MSOP-8
IMPORTANT NOTICE AND DISCLAIMER

Revision History

Date	Revision	Notes
2019/03/15	Rev.Pre	Initial Version
2019/10/24	Rev.A.0	Released version
2020/8/24	Rev.A.1	Improve HBM ESD to 2kV

	2022/5/1	Rev.A.2	Update order information and package outline dimensions
--	----------	---------	---

Order Information

Model Name	Order Number	Gain	Internal Comparators	Package	Transport Media, Quantity	Package Marking
TPA2295C	TPA2295CT-VS1R-S	20V/V	1	MSOP8	Tape and Reel, 3,000	295CT
	TPA2295CF-VS1R-S	50V/V	1	MSOP8	Tape and Reel, 3,000	295CF
	TPA2295CS-VS1R-S Note 1	60V/V	1	MSOP8	Tape and Reel, 3,000	295CS
	TPA2295CH-VS1R-S	100V/V	1	MSOP8	Tape and Reel, 3,000	295CH
	TPA2295CW-VS1R-S Note 1	200V/V	1	MSOP8	Tape and Reel, 3,000	295CW

Note 1: Future product, contact 3PEAK factory for more information and sample.

Absolute Maximum Ratings Note 2

Supply Voltage18V	Operating Temperature Range–40°C to 125°C
Input Common Voltage (Continuous)0.3 to 75V	Maximum Junction Temperature 150°C
Input Common Voltage (Survival)0.3 to 80V	Storage Temperature Range –65°C to 150°C
Input Current: +IN –IN Note 3 +10mA	

Note 2: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 3: The inputs are protected by ESD protection diodes to each power supply.

ESD, Electrostatic Discharge Protection

Symbol	Parameter Condition		Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001	2	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002	1.5	kV

Thermal Resistance

Package Type	θ _{JA}	θ _{JC}	Unit
MSOP8	210	45	°C/W

Electrical Characteristics

The specifications are at T = 25°C, VSENSE = VIN+ – VIN– = 1mV, Vs = 12V, VIN+ = 70V, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
INPUT					1	
Vos	Input Offset Voltage	-40°C to 125°C, TPA2295C		±50	±500	μV
V _{OS} TC Note4	Input Offset Voltage Drift	-40°C to 125°C			0.5	µV/°C
V _{CM}	Common-mode Input Range	-40°C to 125°C	-0.1		70	V
CMRR	Common Mode Rejection Ratio	-40°C to 125°C, -0.3V < V+ < 70V	110	130		dB
		DC to 50kHz		90		dB
Ι _Β	Input Bias Current	-40°C to 125°C			210	μA
l _{os}	Input Offset Current	-40°C to 125°C			1	μA
PSRR	Power Supply Rejection Ratio	-40°C to 125°C		110		dB
NOISE RTI Not	e 5	I			1	
en	Input Voltage Noise Density	f = 1kHz		55		nV/√Hz
OUTPUT						
		TPA2295CT		20		V/V
		TPA2295CF		50		V/V
G	Gain	TPA2295CS		60		V/V
		TPA2295CH		100		V/V
		TPA2295CW		200		V/V
GE	Gain Error	-40°C to 125°C		±0.1%	±0.5%	
GE TC	Gain Error Vs Temperature	-40°C to 125°C		3	5	ppm
CLOAD	Maxim capacitive load	No oscillation		0.5		nF
V _{OH}	Output Swing from Supply Rail	-40°C to 125°C, Source 1.2mA		0.15	0.310	V
V _{OL}	Output Swing from GND	-40°C to 125°C		0.01	0.02	V
FREQUENCY	RESPONSE			1		
BW	Bandwidth	All Gain Configuration		500		kHz
SR	Slew Rate	VSENSE = VIN+ – VIN– = 500mV		20		V/µs
Comparator						
VR	Internal voltage reference	-40°C to 125°C	586	600	630	mV
Hysteresis	Comparator Hysteresis			-8		mV
IBC	Comparator input current	-40°C to 125°C		5		nA
VINC	Input voltage range		0		Vs-1.5V	V
VOLC	Low level Open Drain output			100	150	mV
TR	Response time			1		μs
	RESET threshold			1.1		V
	Logic input impedance			2		MΩ
	Minimum RESET pulse width			0.2		μs

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
	RESET propagation delay			0.5		μs		
POWER SUP	PLY							
Vs	Supply Voltage		3.0		18	V		
lα	Quiescent Current	-40°C to 125°C		600	1000	μA		
TEMPERATU	TEMPERATURE RANGE							
	Specified range		-40		125	°C		

Note 4: Maxim specification is calculated with limited sample quantity in laboratory.

Note 5: RTI = referred to input.

Typical Performance Characteristics

The TPA2295C is used for characteristics at TA = 25°C, VSENSE = VIN+ – VIN– = 1mV, Vs = 12V, VIN+ = 24V, unless otherwise noted

Applications Information

Application schematic

Selecting Rsense

The zero-drift offset performance of the TPA2295C offers several benefits. Most often, the primary advantage of the low offset characteristic enables lower full-scale drops across the Rsense. For example, non-zero-drift current sense monitors typically require a full-scale range of 100 mV. The TPA2295C family gives equivalent accuracy at a full-scale range on the order of 10 mV. This accuracy reduces Rsense dissipation by an order of magnitude with many additional benefits.

Alternatively, there are applications that must measure current over a wide dynamic range that can take advantage of the low offset on the low end of the measurement. Most often, these applications can use the lower gains of the TPA2295C to accommodate larger Rsense drops on the upper end of the scale.

Recommended Component Values

Ideally, the maximum load current develops the full-scale sense voltage across the current-sense resistor. Choose the gain needed to match the maximum output voltage required for the application:

Vout = Vsense x Av

Where Vsense is the full-scale sense voltage, and Av is the gain of the TPA2295C.

In applications of monitoring a high current, ensure that Rsense is able to dissipate its own I²R power loss. If the resistor's power dissipation exceeds the nominal value, its value may drift or it may fail altogether. The TPA2295C senses a wide variety of currents with different sense-resistor values.

Internal Comparator

The TPA2295C family has an internal open-drain comparator, which has typically 2mV voltage offset and a 1µs response time. The RESET pin reset the comparator output, and the output latches.

Power Supply Recommendation

The input circuitry of the TPA2295C can accurately measure beyond its power-supply voltage, Vs. For example, the Vs power supply can be 5V, whereas the load power-supply voltage can be as high as 70V. However, the output voltage range of the OUT pin is limited by the voltages on the power-supply pin.

Layout: Kelvin connection

Below figure shows a typical routing of Kelvin-sensed traces to the inputs of the TPA2295C. The Kelvin-sense traces should be as

HV, High side Current Sense Amplifier with Internal Comparator

close as possible to the current-sense resistor's solder contact pads. Any additional high-current carrying impedance can cause significant measurement errors because the current resistor has a very low value.

Package Outline Dimensions

MSOP-8

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.