N

MICROCHIP

MPLAB C32
C COMPILER
USER’S GUIDE

Note the following details of the code protection feature on Microchip devices:
. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 —

DS51686A-page ii © 2007 Microchip Technology Inc.

MPLAB® C32 C COMPILER
MICROCHIP USER’S GUIDE

Table of Contents
=Y - 1 1
Chapter 1. Language Specifics
1.1 INtrodUCHION ... 7
238 1T | o] e |) - SRR 7
T8 OVEIVIEW e 7
1.4 File Naming Conventions ..o 7
1.5 Data StOrage ...cooiiiieie e 8
1.6 Predefined MACIOSooiiiiiiiiiiie et e e e e e e 10
1.7 Attributes and Pragmascceuiiiiiiiii e 11
1.8 Command Line OPLioNScooooiiiiiiii i 15
1.9 Compiling a Single File on the Command Lineccccooiiiiiiiiiiiniee 40
1.10 Compiling Multiple Files on the Command Linecccccceiiiiiiiiinnnnnnnns 41
Chapter 2. Library Environment
P20 B 10 oY [T 4o) o PP 43
2.2 HIGhIIGOTS oo e e e e e e 43
PG IS = 1 o F= 1 (o N 1 PP 43
2.4 WeaK FUNCHONSuuiiiiiiiiiiiiiii ettt e e e e e e e e e e e e eeeeeas 43
2.5 “Helper’ Header FileS ...ttt see e eeeeees 44
2.6 MUIIDS ettt e e e e e e e e e e e e 44
Chapter 3. Interrupts
K 20t I [Vi o Yo [1 T 1o] o TN PP 47
3.2 HIGhIIGOES oo 47
3.3 Specifying an Interrupt Handler Functioncccccoiiiiin 47
3.4 Associating a Handler Function with an Exception Vector 48
KRR o (ot=Y o (o] o T o F=T g T | 1= T PP 49
Chapter 4. Low Level Processor Control
4.1 INtrodUCHION ... e 51
4.2 HIGhlIGNtS ...oeeieeiiiie e e e e e e et e e e e e e ee e 51
4.3 Generic Processor Header Filecccoo oo 51
4.4 Processor Support Header Filescccoooiiiiiiiiiiii e 51
4.5 Peripheral Library FUNCLONSoooiiiii e 52
4.6 Special Function RegiSter ACCESScccccccuuuiiuiiiiiiiiiiiiiiiivievarevreveanaenes 53
4.7 CPO REGISIEI ACCESS ...eeiiiiiiiiiiiiiii ittt e e e 53
4.8 Configuration Bit ACCESSccoiiiiiiiiiiii i 54

© 2007 Microchip Technology Inc. DS51686A-page iii

MPLAB® C32 C Compiler User’s Guide

Chapter 5. Compiler Runtime Environment

£ 700 I [0] Yo [T3 1T o TSRS 57
5.2 HIGhIIGOES ..o e e e a e 57
5.3 Register Conventionsuuiiiiiii i e 57
5.4 STACK USAQGEeeeiiiiiiiiii e 58
5.5 HEAP USAQE ..oeeiiiiiiii it e e e 59
5.6 Function Calling Conventioncoooiiiiiiiiic e 59
5.7 Startup and Initialization ..o 61
5.8 Contents of the Default Linker Script ... 73
5.9 RAM FUNCHONS ...oiiiiiiiiiiiiiiee et 85
Appendix A. Implementation Defined Behavior
A INTrOdUCHION oo e 87
A2 HIghIIGhts .. e e e e e e 87
A3 OVEIVIEW ..ottt et e e e e e e eeaeaaeans 87
R I = 1= F= 11T o 87
AL ENVIFONMENT ..o e e 88
F N o =Y o1 13- ST 89
A7 ChAracterscooiiiiiiec et 89
R ST 1) (=T =T P 90
A9 Floating-POiNtoooiiiie s 91
A.10 Arrays and POINEEIS ...ooovuiiiiii i e 92
AT HINES o e 93
A.12 Structures, Unions, Enumerations, and Bit-fieldsccocvevveiieieiiie. 93
N G T U= 1o = PP 94
N B 1= Tor = = (o] 94
ANS SEAEMENTS .o 94
A.16 Pre-Processing DIr€ClVEScooeeiiiiiiiii e 94
AT Library FUNCHONSoooiiiiiiieiie et e 96
F N R I Y o g1 =T (1] = 101
Appendix B. Open Source Licensing
B.1 INtrodUCHION ... 103
B.2 General PUbIliC LICENSEcoooiiiii e 103
B.3 BSD LICENSE ...t 103
B.4 Sun MiCrosystems ..., 104
g o = 105
Worldwide Sales and Service ... 116

DS51686A-page iv

© 2007 Microchip Technology Inc.

MPLAB® C32 C COMPILER

MICROCHIP USER’S GUIDE

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
MPLAB C32 C Compiler. Items discussed in this chapter include:

* Document Layout

» Conventions Used in this Guide

* Recommended Reading

» The Microchip Web Site

» Development Systems Customer Change Notification Service

» Customer Support

* Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MPLAB C32 C Compiler as a development
tool to emulate and debug firmware on a target board. The document layout is as
follows:

» Chapter 1. Language Specifics — discusses command line usage of the MPLAB
C32 C compiler, attributes, pragmas, and data representation

» Chapter 2. Library Environment — discusses using the MPLAB C32 C libraries

» Chapter 3. Interrupts — presents an overview of interrupt processing

» Chapter 4. Low Level Processor Control — discusses access to the low level
registers and configuration of the PIC32MX devices

» Chapter 5. Compiler Runtime Environment — discusses the MPLAB C32 C
compiler runtime environment

» Appendix A. Implementation Defined Behavior — discusses the choices for
implementation defined behavior in MPLAB C32 C compiler

+ Appendix B. Open Source Licensing — gives a summary of the open source
licenses used for portions of the MPLAB C32 C compiler package

© 2007 Microchip Technology Inc. DS51686A-page 1

www.microchip.com

MPLAB® C32 C Compiler User’s Guide

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

| Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User’s Guide

Emphasized text

...Is the only compiler...

Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”
dialog
Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

A tab

Click the Power tab

N‘Rnnnn

A number in verilog format,
where N is the total number of
digits, Ris theradix and n is a
digit.

4'b0010, 2'hF1

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier New font:

Plain Courier New

Sample source code

#define START

Filenames autoexec.bat
File paths c:\mccl18\h
Keywords _asm, _endasm, static

Command-line options

-Opa+, -Opa-

Bit values

0, 1

Constants

OxFF, ‘A’

Italic Courier New

A variable argument

file.o, where file can be
any valid filename

Square brackets []

Optional arguments

mccl8 [options] file

[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]1}

Ellipses...

Replaces repeated text

var_name [,
var_name. . .]

Represents code supplied by
user

void main (void)
{
}

DS51686A-page 2

© 2007 Microchip Technology Inc.

Preface

RECOMMENDED READING

This user's guide describes how to use MPLAB C32 C Compiler. Other useful
documents are listed below. The following Microchip documents are available and
recommended as supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.

Device-Specific Documentation

The Microchip website contains many documents that describe 16-bit device functions
and features. Among these are:

* Individual and family data sheets

» Family reference manuals

» Programmer’s reference manuals

MPLAB® C32 C Compiler Libraries (DS51685)

Reference guide for MPLAB C32 libraries and precompiled object files. Lists all library
functions provided with the MPLAB C32 C compiler with detailed descriptions of their
use.

PIC32MX Configuration Settings

Lists the Configuration Bit Settings for the Microchip PIC32MS devices supported by
the MPLAB C32 C compiler’s #pragma config.

C Standards Information

American National Standard for Information Systems — Programming Language — C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. lts purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

GCC Documents
http://gcc.gnu.org/onlinedocs/

http://sourceware.org/binutils/

© 2007 Microchip Technology Inc. DS51686A-page 3

http://gcc.gnu.org/onlinedocs/
http://sourceware.org/binutils/

MPLAB® C32 C Compiler User’s Guide

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DS51686A-page 4 © 2007 Microchip Technology Inc.

www.microchip.com

Preface

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

» Compilers — The latest information on Microchip C compilers and other language
tools. These include the MPLAB C18, MPLAB C30 and MPLAB C32 C compilers;
MPASM™ and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30
object linkers; and MPLIB™ and MPLAB LIB30 object librarians.

* Emulators — The latest information on Microchip in-circuit emulators. This
includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.

* In-Circuit Debuggers — The latest information on the Microchip in-circuit
debuggers. These include MPLAB ICD 2 and PICkit™ 2.

- MPLAB® IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 device programmer and the PICSTART® Plus, PICkit™ 1 and
PICkit™ 2 development programmers.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

+ Distributor or Representative

* Local Sales Office

+ Field Application Engineer (FAE)

 Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY
Revision A (October 2007)

« |nitial Release of this document.

© 2007 Microchip Technology Inc. DS51686A-page 5

http://support.microchip.com
www.microchip.com

MPLAB® C32 C Compiler User’s Guide

NOTES:

DS51686A-page 6 © 2007 Microchip Technology Inc.

MPLAB® C32 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 1. Language Specifics

1.1 INTRODUCTION

This chapter discusses command line usage of the MPLAB C32 C compiler, attributes,
pragmas and data representation.

1.2 HIGHLIGHTS

Iltems discussed in this chapter are:

* Overview

+ File Naming Conventions

» Data Storage

* Predefined Macros

* Attributes and Pragmas

+ Command Line Options

» Compiling a Single File on the Command Line
» Compiling Multiple Files on the Command Line

1.3 OVERVIEW

The compilation driver program (pic32-gcc) compiles, assembles and links C and
assembly language modules and library archives. Most of the compiler command line
options are common to all implementations of the GCC toolset. A few are specific to
the MPLAB C32 C compiler.

The basic form of the compiler command line is:

pic32-gcc [options] files

Note: Command line options and file name extensions are case sensitive. I

The available options are described in Section 1.8 “Command Line Options”.

For example, to compile, assemble and link the C source file hello. ¢, creating the
absolute executable hello. out.

pic32-gcc -o hello.out hello.c

1.4 FILE NAMING CONVENTIONS

The compilation driver recognizes the following file extensions, which are case

sensitive.
TABLE 1-1: FILE NAMES
Extensions Definition
file.c A C source file that must be preprocessed.
file.h A header file (not to be compiled or linked).
file.1 A C source file that has already been pre-processed.
file.o An object file.
file.s An assembly language source file.

© 2007 Microchip Technology Inc. DS51686A-page 7

MPLAB® C32 C Compiler User’s Guide

TABLE 1-1: FILE NAMES (CONTINUED)

Extensions Definition
file.S An assembly language source file that must be preprocessed.
other A file to be passed to the linker.

1.5 DATA STORAGE

1.5.1 Storage Endianness

MPLAB C32 C compiler stores multi-byte values in little-endian format. That is, the
least significant byte is stored at the lowest address.

For example, the 32-bit value 0x12345678 would be stored at address 0x100 as:

Address 0x100 0x101 0x102 0x103
Data 0x78 0x56 0x34 0x12
1.5.2 Integer Representation

Integer values in MPLAB C32 C compiler are represented in 2's complement and vary
in size from 8 to 64 bits. These values are available in compiled code via 1imits.h.

Type Bits Min Max
char, signed char 8 -128 127
unsigned char 8 0 255
short, signed short 16 -32768 | 32767
unsigned short 16 0 65535
int, signed int, long, signed long 32 -231 2311
unsigned int, unsigned long 32 0 2321
long long, signed long long 64 263 2634
unsigned long long 64 0 264_1

1.5.3 Signed and Unsigned Character Types

By default, values of type plain char are signed values. This behavior is
implementation-defined by the C standard, and some environments' define a plain
char value to be unsigned. The command line option - funsigned-char can be used
to set the default type to unsigned for a given translation unit.

154 Floating-Point Representation

MPLAB C32 C compiler uses the IEEE-754 floating-point format. Detail regarding the
implementation limits is available to a translation unitin float.h.

Type Bits
float 32
double 64
long double 64

1.5.5 Pointers
Pointers in MPLAB C32 C compiler are all 32 bits in size.

1. Notably, PowerPC and ARM

DS51686A-page 8

© 2007 Microchip Technology Inc.

Language Specifics

1.5.6 limits.h

The 1imits.h header file defines the ranges of values which can be represented by
the integer types.

Macro name Value Description
CHAR BIT 8 The size, in bits, of the smallest non-bitfield
object.
SCHAR_MIN -128 The minimum value possible for an object
of type signed char.
SCHAR_MAX 127 The maximum value possible for an object
of type signed char.
UCHAR MAX 255 The maximum value possible for an object
of type unsigned char.
CHAR MIN -128 (or 0, see The minimum value possible for an object
Signed and Unsigned | of type char.
Character Types)
CHAR MAX 127 (or 255, see The maximum value possible for an object
Signed and Unsigned | of type char.
Character Types)
MB_LEN MAX 16 The maximum length of multibyte character
in any locale.
SHRT MIN -32768 The minimum value possible for an object
of type short int.
SHRT MAX 32767 The maximum value possible for an object
of type short int.
USHRT MAX 65535 The maximum value possible for an object
of type unsigned short int.
INT MIN 231 The minimum value possible for an object
of type int.
INT MAX 2319 The maximum value possible for an object
of type int.
UINT MAX 2521 The maximum value possible for an object

of type unsigned int.

LONG_MIN =231 The minimum value possible for an object
of type long.

LONG_MAX 2311 The maximum value possible for an object
of type long.

ULONG_MAX 2321 The maximum value possible for an object
of type unsigned long.

LLONG_MIN 263 The minimum value possible for an object
of type long long.

LLONG_MAX 2631 The maximum value possible for an object
of type long long.

ULLONG_MAX 2641 The maximum value possible for an object

of type unsigned long long.

© 2007 Microchip Technology Inc. DS51686A-page 9

MPLAB® C32 C Compiler User’s Guide

1.6 PREDEFINED MACROS
1.6.1 MPLAB C32 C Compiler Macros

MPLAB C32 C compiler defines a number of macros, most with the prefix © MCHP_,

which characterize the various target specific options, the target processor and other

aspects of the host environment.

_MCHP_SZINT

32 or 64, depending on command line options
to set the size of an integer (-mint32
-minté64).

_MCHP_SZLONG

32 or 64, depending on command line options
to set the size of an integer (-mlong32
-mlongé64).

_MCHP_SZPTR

32 always since all pointers are 32 bits.

_ mchp no_float

Defined if -mno-float specified.

__NO_FLOAT Defined if -mno-float specified.

___SOFT_FLOAT Defined if -mno- £ loat not specified.
Indicates that floating-point is supported via
library calls.

__PIC The translation unit is being compiled for

__pic position independent code.

___PIC32MX Always defined.

__PIC32MX_

PIC32MX Defined if -ansi is not specified.

__ LANGUAGE ASSEMBLY

_LANGUAGE_ASSEMBLY

__ LANGUAGE_ASSEMBLY

Defined if compiling a pre-processed
assembly file (.S files).

LANGUAGE_ASSEMBLY

Defined if compiling a pre-processed
assembly file (.S files) and -ansi is not
specified.

__LANGUAGE_C
__ LANGUAGE_C__
_LANGUAGE_C

Defined if compiling a C file.

LANGUAGE_C

Defined if compiling a C file and -ans1i is not
specified.

processor

Where “processor” is the capitalized argument
to the -mprocessor option. E.g.,
-mprocessor=32mx12£3456 will define
_ 32MX12F3456_ .

1.6.2 SDE Compatibility Macros

The MIPS® SDE (Software Development Environment) defines a number of macros,
most with the prefix “_MIPS_,” which characterize various target specific options, some
determined by command line options (e.g., -mint64). Where applicable, these
macros will be defined by the MPLAB C32 C compiler in order to ease porting
applications and middleware from the SDE to MPLAB C32 C compiler.

_MIPS_SZINT

32 or 64, depending on command line options
to set the size of an integer (-mint32
-minté4).

_MIPS_SZLONG

32 or 64, depending on command line options
to set the size of an integer (-mlong32
-mlongé64).

_MIPS_SZPTR

32 always since all pointers are 32 bits.

_ mips_no_float

Defined if -mno-float specified.

DS51686A-page 10

© 2007 Microchip Technology Inc.

Language Specifics

_ mips Always defined.
_mips

_MIPS ARCH PIC32MX
MIPS TUNE PIC32MX
_R3000

__R3000

__R3000__

_ mips_soft_float
__ MIPSEL

__ MIPSEL

_MIPSEL

R3000 Defined if -ansi is not specified.
MIPSEL

_mips_fpr Defined as 32.

__mipslé Defined if -mips16 or -mips16e specified.
__mipslée

__mips Defined as 32.

_ mips _isa_rev Defined as 2.
_MIPS ISA Defined as MIPS ISA MIPS32.
__mips single float Defined if -msingle-float specified.

1.7 ATTRIBUTES AND PRAGMAS
1.71 Function Attributes

always inline

If the function is declared inline, always inline the function, even if no optimization
level was specified.

longcall

Always invoke the function by first loading its address into a register and then using the
contents of that register. This allows calling a function located beyond the 28 bit
addressing range of the direct call instruction.

far
Functionally equivalent to 1ongcall.
near

Always invoke the function with an absolute call instruction, even when the
-mlong-calls command line option is specified.

mipsl6
Generate code for the function in the MIPS16 instruction set.
nomipsl6

Always generate code for the function in the MIPS32 instruction set, even when
compiling the translation unit with the -mips16 command line option.

interrupt

Generate prologue and epilogue code for the function as an interrupt handler function.
See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.

vector

Generate a branch instruction at the indicated exception vector which targets the
function. See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.

© 2007 Microchip Technology Inc. DS51686A-page 11

MPLAB® C32 C Compiler User’s Guide

at_vector

Place the body of the function at the indicated exception vector address. See Chapter
3. “Interrupts” and Section 3.5 “Exception Handlers”.

naked

Generate no prologue or epilogue code for the function.

section (“name”)

Place the function into the named section.

For example,

void _ attribute ((section (“.wilma”))) baz () {return;}
Function baz will be placed in section . wilma.

The -ffunction-sections command line option has no effect on functions defined
with a section attribute.

unique section

Place the function in a uniquely named section, just as if - ffunction-sections had
been specified. If the function also has a section attribute, use that section name as
the prefix for generating the unique section name.

For example,

void _ attribute ((section (“.fred”), unique section) foo (void) {return;}
Function foo will be placed in section . fred. foo.

noreturn

Indicate to the compiler that the function will never return. In some situations, this can
allow the compiler to generate more efficient code in the calling function since
optimizations can be performed without regard to behavior if the function ever did
return. Functions declared as noreturn should always have a return type of void.

noinline
The function will never be considered for inlining.
pure

If a function has no side effects other than its return value, and the return value is
dependent only on parameters and/or (nonvolatile) global variables, the compiler can
perform more aggressive optimizations around invocations of that function. Such
functions can be indicated with the pure attribute.

const

If a pure function determines its return value exclusively from its parameters (i.e., does
not examine any global variables), it may be declared const, allowing for even more
aggressive optimization. Note that a function which de-references a pointer argument
is not const since the pointer de-reference uses a value which is not an parameter,
even though the pointer itself is a parameter.

format (type, format index, first to_ check)

The format attribute indicates that the function takes a printf, scanf, strftime,
or strfmon style format string and arguments and that the compiler should type check
those arguments against the format string, just as it does for the standard library
functions.

The type parameteris one of printf, scanf, strftime or st rfmon (optionally with
surrounding double underscores, e.g., printf) and determines how the format
string will be interpreted.

The format index parameter specifies which function parameter is the format string.
Function parameters are numbered from the left-most parameter, starting from 1.

DS51686A-page 12

© 2007 Microchip Technology Inc.

Language Specifics

The first_ to_check parameter specifies which parameter is the first to check
against the format string. If first to_ check is zero, type checking is not performed
and the compiler only checks the format string for consistency (e.g., viprintf).

format arg (index)

The format_arg attribute specifies that a function manipulates a print £ style format
string and that the compiler should check the format string for consistency. The function
attribute which is a format string is identified by index.

nonnull (index, ...)

Indicate to the compiler that one or more pointer arguments to the function must be
non-null. If the compiler determines that a null pointer is passed as a value to a non-null
argument, and the -Wwnonnull command line option was specified, a warning
diagnostic is issued.

If no arguments are give to the nonnul1 attribute, all pointer arguments of the function
are marked as non-null.

unused

Indicate to the compiler that the function may not be used. The compiler will not issue
a warning for this function if it is not used.

used

Indicate to the compiler that the function is always used and code must be generated
for the function even if the compiler cannot see a reference to the function. For
example, if inline assembly is the only reference to a static function.

deprecated
When a function specified as deprecated is used, a warning is generated.
warn unused result

A warning will be issued if the return value of the indicated function is unused by a
caller.

weak

A weak symbol indicates that if another version of the same symbol is available, that
version should be used instead. For example, this is useful when a library function is
implemented such that it can be overridden by a user written function.

malloc

Any non-null pointer return value from the indicated function will not alias any other
pointer which is live at the point when the function returns. This allows the compiler to
improve optimization.

alias (“symbol”)
Indicates that the function is an alias for another symbol. For example,

void foo (void) { /* stuff */ }
void bar (void) _ attribute ((alias(“foo”)));

Symbol bar is considered to be an alias for symbol foo.

1.7.2 Variable Attributes

aligned (n)
The attributed variable will aligned on the next n byte boundary.

The aligned attribute can also be used on a structure member. Such a member will
be aligned to the indicated boundary within the structure.

If the alignment value n is omitted, the alignment of the variable is set 8 (the largest
alignment value for a basic data type).

© 2007 Microchip Technology Inc. DS51686A-page 13

MPLAB® C32 C Compiler User’s Guide

Note that the aligned attribute is used to increase the alignment of a variable, not
reduce it. To decrease the alignment value of a variable, use the packed attribute.

cleanup (function)

Indicate a function to call when the attributed automatic function scope variable goes
out of scope.

The indicated function should take a single parameter, a pointer to a type compatible
with the attributed variable, and have void return type.

deprecated
When a variable specified as deprecated is used, a warning is generated.
packed

The attributed variable or structure member will have the smallest possible alignment.
That is, no alignment padding storage will be allocated for the declaration. Used in
combination with the aligned attribute, packed can be used to set an arbitrary
alignment restriction, greater or lesser than the default alignment for the type of the
variable or structure member.

section (“name”)

Place the function into the named section.

For example,

unsigned int dan _ attribute ((section (“.quixote”)))
Variable dan will be placed in section . quixote.

The -fdata-sections command line option has no effect on variables defined with
a section attribute unless unique section is also specified.

unique_ section

Place the variable in a uniquely named section, just asif -fdata-sections had been
specified. If the variable also has a section attribute, use that section name as the
prefix for generating the unique section name.

For example,

int tin attribute ((section (“.ofcatfood”), unique section)
Variable tin will be placed in section .ofcatfood.

transparent union

When a function parameter of union type has the transparent union attribute
attached, corresponding arguments are passed as if the type were the type of the first
member of the union.

unused

Indicate to the compiler that the variable may not be used. The compiler will not issue
a warning for this variable if it is not used.

weak

A weak symbol indicates that if another version of the same symbol is available, that
version should be used instead.

1.7.3 Pragmas

#pragma interrupt

Mark a function as an interrupt handler. The prologue and epilogue code for the
function will perform more extensive context preservation. See Chapter
3. “Interrupts” and Section 3.5 “Exception Handlers”.

#pragma vector

DS51686A-page 14

© 2007 Microchip Technology Inc.

Language Specifics

Generate a branch instruction at the indicated exception vector which targets the
function. See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.
#pragma config

The #pragma config directive specifies the processor-specific configuration settings
(i.e., configuration bits) to be used by the application. See Chapter 4. “Low Level
Processor Control”.

1.8 COMMAND LINE OPTIONS

MPLAB C32 C compiler has many options for controlling compilation, all of which are
case sensitive.

» Options Specific to PIC32MX Devices

» Options for Controlling the Kind of Output

» Options for Controlling the C Dialect

» Options for Controlling Warnings and Errors
» Options for Debugging

» Options for Controlling Optimization

+ Options for Controlling the Preprocessor

» Options for Assembling

 Options for Linking

» Options for Directory Search

* Options for Code Generation Conventions

1.8.1 Options Specific to PIC32MX Devices
TABLE 1-2: PIC32MX DEVICE-SPECIFIC OPTIONS

Option Definition
-mprocessor Selects the device for which to compile
(e.g., -mprocessor=32MX360F512L)
-mipslé6 Generate (do not generate) MIPS16 code.
-mno-mipslé
-mno-float Don’t use floating-point libraries.
-msingle-float Assume that the floating-point coprocessor only

supports single-precision operations.

-mdouble-float Assume that the floating-point coprocessor supports
double-precision operations. This is the default.

-mlong64 Force long types to be 64 bits wide. See -mlong32
for an explanation of the default and the way that the
pointer size is determined.

-mlong32 Force long, int, and pointer types to be 32 bits wide.
The default size of ints, longs and pointers is 32
bits.

-G num Put global and static items less than or equal to num

bytes into the small data or bss section instead of the
normal data or bss section. This allows the data to be
accessed using a single instruction.

All modules should be compiled with the same -G num
value.

© 2007 Microchip Technology Inc. DS51686A-page 15

MPLAB® C32 C Compiler User’s Guide

TABLE 1-2: PIC32MX DEVICE-SPECIFIC OPTIONS (CONTINUED)

Option

Definition

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if
possible, then next in the small data section if possible,
otherwise in data. This gives slightly slower code than
the default, but reduces the amount of RAM required
when executing, and thus may be preferred for some
embedded systems.

-muninit-const-in-rodata
-mno-uninit-const-in-rodata

Put uninitialized const variables in the read-only data
section. This option is only meaningful in conjunction
with -membedded-data.

-mcheck-zero-division
-mno-check-zero-division

Trap (do not trap) on integer division by zero. The
default is -mcheck-zero-division.

-mmemcpy
-mno-memcpy

Force (do not force) the use of memcpy () for
non-trivial block moves. The default is -mno-memcpy,
which allows GCC to inline most constant-sized
copies.

-mlong-calls
-mno-long-calls

Disable (do not disable) use of the jal instruction.
Calling functions using jal is more efficient but
requires the caller and callee to be in the same 256
megabyte segment.

This option has no effect on abicalls code. The default
is -mno-long-calls.

-mno-peripheral-1libs

Do not use the standard peripheral libraries when
linking.

DS51686A-page 16

© 2007 Microchip Technology Inc.

Language Specifics

1.8.2 Options for Controlling the Kind of Output

The following options control the kind of output produced by the compiler.

KIND-OF-OUTPUT CONTROL OPTIONS

Definition

Compile or assemble the source files, but do not link. The default file
extension is .o.

Stop after the preprocessing stage, i.e., before running the compiler
proper. The default output file is stdout.

Place the outputin file.

Stop after compilation proper (i.e., before invoking the assembler). The
default output file extension is . s.

Print the commands executed during each stage of compilation.

You can specify the input language explicitly with the -x option:

-x language

Specify explicitly the language for the following input files (rather than
letting the compiler choose a default based on the file name suffix).
This option applies to all following input files until the next -x option.
The following values are supported by MPLAB C32 C compiler:

(¢}

c-header

cpp-output

assembler

assembler-with-cpp

-X none

Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes. This is the default
behavior but is needed if another -x option has been used. For
example:

pic32-gcc -x assembler foo.asm bar.asm -x none
main.c mabonga.s

Without the -x none, the compiler assumes all the input files are for
the assembler.

TABLE 1-3:
Option

-c

-E

-o file

-S

-v

-X

--help

Print a description of the command line options.

© 2007 Microchip Technology Inc.

DS51686A-page 17

MPLAB® C32 C Compiler User’s Guide

1.8.3

Options for Controlling the C Dialect

The following options define the kind of C dialect used by the compiler.

TABLE 1-4:

C DIALECT CONTROL OPTIONS

Option

Definition

-ansi

Support all (and only) ANSI-standard C programs.

-aux-info filename

Output to the given filename prototyped declarations for all
functions declared and/or defined in a translation unit,
including those in header files. This option is silently
ignored in any language other than C. Besides
declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the
declaration was implicit, prototyped or unprototyped (I, N
for new or O for old, respectively, in the first character after
the line number and the colon), and whether it came from a
declaration or a definition (C or F, respectively, in the
following character). In the case of function definitions, a
K&R-style list of arguments followed by their declarations is
also provided, inside comments, after the declaration.

-ffreestanding

Assert that compilation takes place in a freestanding
environment. This implies -fno-builtin. A freestanding
environment is one in which the standard library may not
exist, and program startup may not necessarily be at main.
The most obvious example is an OS kernel. This is
equivalent to - fno-hosted.

-fno-asm

Do not recognize asm, inline or typeof as a keyword,
so that code can use these words as identifiers. You can
use the keywords __asm , inline and
___typeof _ instead.

-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Don't recognize built-in functions that do not begin with
__builtin_as prefix.

-fsigned-char

Let the type char be signed, like signed char.
(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit field is signed or
unsigned, when the declaration does not use either signed
or unsigned. By default, such a bit field is signed, unless
-traditional is used, in which case bit fields are always
unsigned.

-funsigned-char

Let the type char be unsigned, like unsigned char.

-fwritable-strings

Store strings in the writable data segment and don’t make
them unique.

DS51686A-page 18

© 2007 Microchip Technology Inc.

Language Specifics

1.8.4 Options for Controlling Warnings and Errors

Warnings are diagnostic messages that report constructions that are not inherently
erroneous but that are risky or suggest there may have been an error.

You can request many specific warnings with options beginning -w, for example,
-Wimplicit, to request warnings on implicit declarations. Each of these specific
warning options also has a negative form beginning -wWno- to turn off warnings, for
example, -Wno-implicit. This manual lists only one of the two forms, whichever is

not the default.

The following options control the amount and kinds of warnings produced by the

MPLAB C32 C Compiler.

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL
Option Definition

-fsyntax-only

Check the code for syntax, but don’t do anything beyond that.

-pedantic

Issue all the warnings demanded by strict ANSI C. Reject all
programs that use forbidden extensions.

-pedantic-errors

Like -pedantic, except that errors are produced rather than
warnings.

Inhibit all warning messages.

-Wall

All of the -w options listed in this table combined. This
enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify
to prevent the warning), even in conjunction with macros.

-Wchar-subscripts

Warn if an array subscript has type char.

-Wcomment
-Wcomments

Warn whenever a comment-start sequence /* appears in a
/* comment, or whenever a Backslash-Newline appearsin a
// comment.

-Wdiv-by-zero

Warn about compile-time integer division by zero. To inhibit
the warning messages, use -Wno-div-by-zero.
Floating-point division by zero is not warned about, as it can
be a legitimate way of obtaining infinities and NaNs.

(This is the default.)

-Werror-implicit-

function-declaration

Give an error whenever a function is used before being
declared.

-Wformat Check calls to printf and scanf, etc., to make sure that
the arguments supplied have types appropriate to the format
string specified.

-Wimplicit Equivalent to specifying both -Wimplicit-int and

-Wimplicit-function-declaration.

declaration

-Wimplicit-function-

Give a warning whenever a function is used before being
declared.

-Wimplicit-int

Warn when a declaration does not specify a type.

-Wmain

Warn if the type of main is suspicious. main should be a
function with external linkage, returning int, taking either
zero, two or three arguments of appropriate types.

-Wmissing-braces

Warn if an aggregate or union initializer is not fully bracketed.
In the following example, the initializer for a is not fully
bracketed, but that for b is fully bracketed.

int al[2] [2] { o, 1,2, 3};

int bl2][2] = { {0, 1}, {2, 3} };

© 2007 Microchip Technology Inc.

DS51686A-page 19

MPLAB® C32 C Compiler User’s Guide

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL (CONTINUED)

Option

Definition

-Wmultichar
-Wno-multichar

Warn if a multi-character character constant is used.
Usually, such constants are typographical errors. Since they
have implementation-defined values, they should not be
used in portable code. The following example illustrates the
use of a multi-character character constant:

char

xx (void)

{

return('xx') ;

}

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as
when there is an assignment in a context where a truth value
is expected, or when operators are nested whose
precedence people often find confusing.

-Wreturn-type

Warn whenever a function is defined with a return-type that
defaults to int. Also warn about any return statement with
no return-value in a function whose return-type is not void.

-Wsequence-point

Warn about code that may have undefined semantics
because of violations of sequence point rules in the C
standard.

The C standard defines the order in which expressionsina C
program are evaluated in terms of sequence points, which
represent a partial ordering between the execution of parts of
the program: those executed before the sequence point and
those executed after it. These occur after the evaluation of a
full expression (one which is not part of a larger expression),
after the evaluation of the first operand of a &&, | |, ? : or,
(comma) operator, before a function is called (but after the
evaluation of its arguments and the expression denoting the
called function), and in certain other places. Other than as
expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather
than a total order, since, for example, if two functions are
called within one expression with no sequence point between
them, the order in which the functions are called is not
specified. However, the standards committee has ruled that
function calls do not overlap.

It is not specified, when, between sequence points
modifications to the values of objects take effect. Programs
whose behavior depends on this have undefined behavior,
The C standard specifies that “Between the previous and
next sequence point, an object shall have its stored value
modified, at most once, by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine
the value to be stored.” If a program breaks these rules, the
results on any particular implementation are entirely
unpredictable.

Examples of code with undefined behaviorare a = a++;,
aln] = bln++] andal[i++] = i;.Some more
complicated cases are not diagnosed by this option, and it
may give an occasional false positive result, but in general it
has been found fairly effective at detecting this sort of
problem in programs.

DS51686A-page 20

© 2007 Microchip Technology Inc.

Language Specifics

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL (CONTINUED)

Option

Definition

-Wswitch

Warn whenever a switch statement has an index of
enumeral type and lacks a case for one or more of the named
codes of that enumeration. (The presence of a default label
prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wsystem-headers

Print warning messages for constructs found in system
header files. Warnings from system headers are normally
suppressed, on the assumption that they usually do not
indicate real problems and would only make the compiler
output harder to read. Using this command line option tells
MPLAB C32 C compiler to emit warnings from system
headers as if they occurred in user code. However, note that
using -Wall in conjunction with this option does not warn
about unknown pragmas in system headers. For that,
-Wunknown-pragmas must also be used.

-Wtrigraphs Warn if any trigraphs are encountered (assuming they are
enabled).
-Wuninitialized Warn if an automatic variable is used without first being

initialized.

These warnings are possible only when optimization is
enabled, because they require data flow information that is
computed only when optimizing.

These warnings occur only for variables that are candidates
for register allocation. Therefore, they do not occur for a
variable that is declared volatile, or whose address is
taken, or whose size is other than 1, 2, 4 or 8 bytes. Also,
they do not occur for structures, unions or arrays, even when
they are in registers.

Note that there may be no warning about a variable that is
used only to compute a value that itself is never used,
because such computations may be deleted by data flow
analysis before the warnings are printed.

-Wunknown-pragmas

Warn when a #pragma directive is encountered which is not
understood by MPLAB C32 C compiler. If this command line
option is used, warnings are even be issued for unknown
pragmas in system header files. This is not the case if the
warnings were only enabled by the -wall command line
option.

-Wunused

Warn whenever a variable is unused aside from its
declaration, whenever a function is declared static but never
defined, whenever a label is declared but not used, and
whenever a statement computes a result that is explicitly not
used.

In order to get a warning about an unused function
parameter, both -W and -Wunused must be specified.
Casting an expression to void suppresses this warning for an
expression. Similarly, the unused attribute suppresses this
warning for unused variables, parameters and labels.

-Wunused-function

Warn whenever a static function is declared but not defined
or a non-inline static function is unused.

-Wunused-label

Warn whenever a label is declared but not used. To suppress
this warning, use the unused attribute.

© 2007 Microchip Technology Inc.

DS51686A-page 21

MPLAB® C32 C Compiler User’s Guide

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY

-WALL (CONTINUED)
Option Definition
-Wunused-parameter Warn whenever a function parameter is unused aside from its
declaration. To suppress this warning, use the unused
attribute.
-Wunused-variable Warn whenever a local variable or non-constant static

variable is unused aside from its declaration. To suppress this
warning, use the unused attribute.

-Wunused-value Warn whenever a statement computes a result that is
explicitly not used. To suppress this warning, cast the
expression to void.

DS51686A-page 22 © 2007 Microchip Technology Inc.

Language Specifics

The following -w options are not implied by -wall. Some of them warn about

constructions that users generally do not consider questionable, but which you might
occasionally wish to check for. Others warn about constructions that are necessary or
hard to avoid in some cases, and there is no simple way to modify the code to suppress

the warning.
TABLE 1-6: WARNING AND ERROR OPTIONS NOT IMPLIED BY
-WALL
Option Definition

Print extra warning messages for these events:

« A nonvolatile automatic variable might be changed by a
call to longjmp. These warnings are possible only in
optimizing compilation. The compiler sees only the calls
to setjmp. It cannot know where 1ongjmp will be called.
In fact, a signal handler could call it at any point in the
code. As a result, a warning may be generated even
when there is in fact no problem, because 1ongjmp
cannot in fact be called at the place that would cause a
problem.

+ A function could exit both via return value; and
return;. Completing the function body without passing
any return statement is treated as return;.

» An expression-statement or the left-hand side of a
comma expression contains no side effects. To suppress
the warning, cast the unused expression to void. For
example, an expression such as x[1,j] causes a
warning, but x [(void) i, j] does not.

* An unsigned value is compared against zero with < or <=.

» A comparison like x<=y<=z appears, This is equivalent
to (x<=y 2 1:0) <= z, which is a different
interpretation from that of ordinary mathematical notation.

+ Storage-class specifiers like static are not the first
things in a declaration. According to the C Standard, this
usage is obsolescent.

* If -wall or -Wunused is also specified, warn about
unused arguments.

» A comparison between signed and unsigned values could
produce an incorrect result when the signed value is
converted to unsigned. (But don’t warn if
-Wno-sign-compare is also specified.)

* An aggregate has a partly bracketed initializer. For
example, the following code would evoke such a warning,
because braces are missing around the initializer for
x.h:
struct s { int £, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

* An aggregate has an initializer that does not initialize all
members. For example, the following code would cause
such a warning, because x . h would be implicitly
initialized to zero:
struct s { int £, g, h; };
struct s x = { 3, 4 };

-Waggregate-return

Warn if any functions that return structures or unions are
defined or called.

-Wbad-function-cast

Warn whenever a function call is cast to a non-matching type.
For example, warn if int foof () is cast to anything *.

© 2007 Microchip Technology Inc.

DS51686A-page 23

MPLAB® C32 C Compiler User’s Guide

TABLE 1-6: WARNING AND ERROR OPTIONS NOT IMPLIED BY
-WALL (CONTINUED)

Option

Definition

-Wcast-align

Warn whenever a pointer is cast, such that the required
alignment of the target is increased. For example, warn if a
char *iscasttoan int *.

-Wcast-qual

Warn whenever a pointer is cast, so as to remove a type
qualifier from the target type. For example, warn if a
const char *is casttoan ordinary char *.

-Wconversion

Warn if a prototype causes a type conversion that is different
from what would happen to the same argument in the
absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing the
width or signedness of a fixed point argument, except when
the same as the default promotion.

Also, warn if a negative integer constant expression is
implicitly converted to an unsigned type. For example, warn
about the assignment x = -1 if x is unsigned. But do not
warn about explicit casts like (unsigned) -1.

-Werror

Make all warnings into errors.

-Winline

Warn if a function can not be inlined, and either it was
declared as inline, or else the -finline-functions option
was given.

-Wlarger-than-len

Warn whenever an object of larger than 1en bytes is defined.

-Wlong-1long
-Wno-long-long

Warn if Long long type is used. This is default. To inhibit the
warning messages, use -Wno-long-long. Flags
-Wlong-long and -Wno-1long-1long are taken into account
only when -pedantic flag is used.

-Wmissing-declarations

Warn if a global function is defined without a previous
declaration. Do so even if the definition itself provides a
prototype.

-Wmissing-
format-attribute

If -wformat is enabled, also warn about functions that might
be candidates for format attributes. Note these are only
possible candidates, not absolute ones. This option has no
effect unless -Wformat is enabled.

-Wmissing-noreturn

Warn about functions that might be candidates for attribute
noreturn. These are only possible candidates, not absolute
ones. Care should be taken to manually verify functions.
Actually, do not ever return before adding the noreturn
attribute, otherwise subtle code generation bugs could be
introduced.

-Wmissing-prototypes

Warn if a global function is defined without a previous
prototype declaration. This warning is issued even if the
definition itself provides a prototype. (This option can be used
to detect global functions that are not declared in header files.)

-Wnested-externs

Warn if an extern declaration is encountered within a
function.

-Wno-deprecated-
declarations

Do not warn about uses of functions, variables and types
marked as deprecated by using the deprecated attribute.

-Wpadded

Warn if padding is included in a structure, either to align an
element of the structure or to align the whole structure.

-Wpointer-arith

Warn about anything that depends on the size of a function
type or of void. MPLAB C32 C compiler assigns these types
a size of 1, for convenience in calculations with void *
pointers and pointers to functions.

DS51686A-page 24

© 2007 Microchip Technology Inc.

Language Specifics

TABLE 1-6: WARNING AND ERROR OPTIONS NOT IMPLIED BY
-WALL (CONTINUED)

Option

Definition

-Wredundant-decls

Warn if anything is declared more than once in the same
scope, even in cases where multiple declaration is valid and
changes nothing.

-Wshadow

Warn whenever a local variable shadows another local
variable.

-Wsign-compare
-Wno-sign-compare

Warn when a comparison between signed and unsigned
values could produce an incorrect result when the signed
value is converted to unsigned. This warning is also enabled
by -w. To get the other warnings of -w without this warning,
use -W -Wno-sign-compare.

-Wstrict-prototypes

Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted
without a warning if preceded by a declaration which specifies
the argument types.)

-Wtraditional

Warn about certain constructs that behave differently in

traditional and ANSI C.

* Macro arguments occurring within string constants in the
macro body. These would substitute the argument in
traditional C, but are part of the constant in ANSI C.

» A function declared external in one block and then used
after the end of the block.

+ A switch statement has an operand of type 1ong.

» A nonstatic function declaration follows a static one. This
construct is not accepted by some traditional C compilers.

-Wundef

Warn if an undefined identifier is evaluated in an #if
directive.

-Wunreachable-code

Warn if the compiler detects that code will never be executed.
It is possible for this option to produce a warning even though
there are circumstances under which part of the affected line
can be executed, so care should be taken when removing
apparently-unreachable code. For instance, when a function is
inlined, a warning may mean that the line is unreachable in
only one inlined copy of the function.

-Wwrite-strings

Give string constants the type const char [length] so that
copying the address of one into a non-const char * pointer
gets a warning. At compile time, these warnings help you find
code that you can try to write into a string constant, but only if
you have been very careful about using const in declarations
and prototypes. Otherwise, it’s just a nuisance, which is why
-Wall does not request these warnings.

© 2007 Microchip Technology Inc.

DS51686A-page 25

MPLAB® C32 C Compiler User’s Guide

1.8.5 Options for Debugging

The following options are used for debugging.

TABLE 1-7:

DEBUGGING OPTIONS

Option

Definition

Produce debugging information.

MPLAB C32 C compiler supports the use of -g with -0 making it

possible to debug optimized code. The shortcuts taken by

optimized code may occasionally produce surprising results:

* Some declared variables may not exist at all;

* Flow of control may briefly move unexpectedly;

+ Some statements may not be executed because they
compute constant results or their values were already at
hand;

+ Some statements may execute in different places because
they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This

makes it reasonable to use the optimizer for programs that might

have bugs.

Makes the compiler print out each function name as it is
compiled, and print some statistics about each pass when it
finishes.

-save-temps

Don’t delete intermediate files. Place them in the current
directory and name them based on the source file. Thus,
compiling foo.c with -¢ -save-temps would produce the
following files:

foo.i (preprocessed file)

foo.s (assembly language file)

foo.o (object file)

DS51686A-page 26

© 2007 Microchip Technology Inc.

Language Specifics

1.8.6 Options for Controlling Optimization

The following options control compiler optimizations.
TABLE 1-8: GENERAL OPTIMIZATION OPTIONS

Option Definition

-00 Do not optimize. (This is the default.)

Without -0, the compiler’s goal is to reduce the cost of
compilation and to make debugging produce the expected
results. Statements are independent: if you stop the program
with a breakpoint between statements, you can then assign a
new value to any variable or change the program counter to
any other statement in the function and get exactly the results
you would expect from the source code.

The compiler only allocates variables declared register in

registers.
-0 Optimization level 1. Optimizing compilation takes somewhat
-01 longer, and a lot more host memory for a large function.
With -0, the compiler tries to reduce code size and execution
time.

When -0 is specified, the compiler turns on
-fthread-jumps and

-fdefer-pop. The compiler turns on
-fomit-frame-pointer.

-02 Optimization level 2. MPLAB C32 C compiler performs nearly
all supported optimizations that do not involve a space-speed
trade-off. -02 turns on all optional optimizations except for
loop unrolling (-funroll-loops), function inlining
(-finline-functions), and strict aliasing optimizations
(-fstrict-aliasing). It also turns on force copy of
memory operands (- f force-mem) and Frame Pointer
elimination (- fomit-frame-pointer). As compared to -0,
this option increases both compilation time and the
performance of the generated code.

-03 Optimization level 3. -03 turns on all optimizations specified
by -02 and also turns on the inline-functions option.

-0s Optimize for size. -0s enables all -02 optimizations that do
not typically increase code size. It also performs further
optimizations designed to reduce code size.

The following options control specific optimizations. The -02 option turns on all of
these optimizations except -funroll-loops, -funroll-all-loops and
-fstrict-aliasing.

© 2007 Microchip Technology Inc. DS51686A-page 27

MPLAB® C32 C Compiler User’s Guide

You can use the following flags in the rare cases when “fine-tuning” of optimizations to

be performed is desired.

TABLE 1-9: SPECIFIC OPTIMIZATION OPTIONS

Option

Definition

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater
than n, skipping up to n bytes. For instance,
-falign-functions=32 aligns functions to the next
32-byte boundary, but -falign-functions=24 would align
to the next 32-byte boundary only if this can be done by
skipping 23 bytes or less.

-fno-align-functionsand -falign-functions=1 are
equivalent and mean that functions are not aligned.

The assembler only supports this flag when n is a power of
two, so n is rounded up. If n is not specified, use a
machine-dependent default.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping
up to n bytes like -falign-functions. This option can
easily make code slower, because it must insert dummy
operations for when the branch target is reached in the usual
flow of the code.

If -falign-loops or -falign-jumps are applicable and
are greater than this value, then their values are used instead.
If nis not specified, use a machine-dependent default which is
very likely to be 1, meaning no alignment.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes
like -falign-functions. The hope is that the loop is
executed many times, which makes up for any execution of
the dummy operations.

If nn is not specified, use a machine-dependent default.

-fcaller-saves

Enable values to be allocated in registers that are clobbered
by function calls, by emitting extra instructions to save and
restore the registers around such calls. Such allocation is
done only when it seems to result in better code than would
otherwise be produced.

-fcse-follow-jumps

In common subexpression elimination, scan through jump
instructions when the target of the jump is not reached by any
other path. For example, when CSE encounters an if
statement with an else clause, CSE follows the jump when
the condition tested is false.

-fcse-skip-blocks

This is similar to -fcse-follow-jumps, but causes CSE to
follow jumps which conditionally skip over blocks. When CSE
encounters a simple if statement with no else clause,
-fcse-skip-blocks causes CSE to follow the jump around
the body of the if.

-fexpensive-
optimizations

Perform a number of minor optimizations that are relatively
expensive.

-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the
output file. The name of the function or the name of the data
item determines the section's name in the output file.

Only use these options when there are significant benefits for
doing so. When you specify these options, the assembler and
linker may create larger object and executable files and is also
slower.

-fgcse

Perform a global common subexpression elimination pass.
This pass also performs global constant and copy
propagation.

DS51686A-page 28

© 2007 Microchip Technology Inc.

Language Specifics

TABLE 1-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)
Option Definition

-fgcse-1m When - fgcse-1mis enabled, global common subexpression
elimination attempts to move loads which are only killed by
stores into themselves. This allows a loop containing a
load/store sequence to change to a load outside the loop, and
a copy/store within the loop.

-fgcse-sm When -fgcse-smis enabled, a store motion pass is run after

global common subexpression elimination. This pass attempts
to move stores out of loops. When used in conjunction with
-fgcse-1m, loops containing a load/store sequence can
change to a load before the loop and a store after the loop.

-fmove-all-movables

Forces all invariant computations in loops to be moved outside
the loop.

-fno-defer-pop

Always pop the arguments to each function call as soon as
that function returns. The compiler normally lets arguments
accumulate on the stack for several function calls and pops
them all at once.

-fno-peephole
-fno-peephole2

Disable machine specific peephole optimizations. Peephole
optimizations occur at various points during the compilation.
-fno-peephole disables peephole optimization on machine
instructions, while - fno-peephole2 disables high level
peephole optimizations. To disable peephole entirely, use both
options.

-foptimize-
register-move
-fregmove

Attempt to reassign register numbers in move instructions and
as operands of other simple instructions in order to maximize
the amount of register tying.

-fregmove and -foptimize-register-moves are the
same optimization.

-freduce-all-givs

Forces all general-induction variables in loops to be
strength-reduced.

These options may generate better or worse code. Results
are highly dependent on the structure of loops within the
source code.

-frename-registers

Attempt to avoid false dependencies in scheduled code by
making use of registers left over after register allocation. This
optimization most benefits processors with lots of registers. It
can, however, make debugging impossible, since variables no
longer stay in a “home register”.

-frerun-cse-after-
loop

Rerun common subexpression elimination after loop
optimizations has been performed.

-frerun-loop-opt

Run the loop optimizer twice.

-fschedule-insns

Attempt to reorder instructions to eliminate instruction stalls
due to required data being unavailable.

-fschedule-insns2

Similar to -fschedule-insns, but requests an additional
pass of instruction scheduling after register allocation has
been done.

-fstrength-reduce

Perform the optimizations of loop strength reduction and
elimination of iteration variables.

© 2007 Microchip Technology Inc.

DS51686A-page 29

MPLAB® C32 C Compiler User’s Guide

TABLE 1-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option

Definition

-fstrict-aliasing

Allows the compiler to assume the strictest aliasing rules
applicable to the language being compiled. For C, this
activates optimizations based on the type of expressions. In
particular, an object of one type is assumed never to reside at
the same address as an object of a different type, unless the
types are almost the same. For example, an unsigned int
can alias an int, but not a void* or a double. A character
type may alias any other type.
Pay special attention to code like this:
union a union {

int 1i;

double d;

i

int £() {

union a union t;

t.d = 3.0;

return t.i;
}
The practice of reading from a different union member than
the one most recently written to (called “type-punning”) is
common. Even with -fstrict-aliasing, type-punning is
allowed, provided the memory is accessed through the union
type. So, the code above works as expected. However, this
code might not:
int £() {

a_union t;

int* ip;

t.d = 3.0;

ip = &t.1i;

return *ip;

}

-fthread-jumps

Perform optimizations where a check is made to see if a jump
branches to a location where another comparison subsumed
by the first is found. If so, the first branch is redirected to either
the destination of the second branch or a point immediately
following it, depending on whether the condition is known to
be true or false.

-funroll-loops

Perform the optimization of loop unrolling. This is only done
for loops whose number of iterations can be determined at
compile time or runtime. -funroll-loops implies both
-fstrength-reduce and -frerun-cse-after-loop.

-funroll-all-loops

Perform the optimization of loop unrolling. This is done for all
loops and usually makes programs run more slowly.
-funroll-all-loops implies -fstrength-reduce, as
well as -frerun-cse-after-loop.

DS51686A-page 30

© 2007 Microchip Technology Inc.

Language Specifics

Options of the form - £ f1ag specify machine-independent flags. Most flags have both
positive and negative forms. The negative form of - ffoo would be - fno-foo. In the
table below, only one of the forms is listed (the one that is not the default.)

TABLE 1-10: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS

Option

Definition

-fforce-mem

Force memory operands to be copied into registers
before doing arithmetic on them. This produces better
code by making all memory references potential common
subexpressions. When they are not common
subexpressions, instruction combination should eliminate
the separate register-load. The -02 option turns on this
option.

-finline-functions

Integrate all simple functions into their callers. The
compiler heuristically decides which functions are simple
enough to be worth integrating in this way. If all calls to a
given function are integrated, and the function is declared
static, then the function is normally not output as
assembler code in its own right.

-finline-limit=n

By default, MPLAB C32 C compiler limits the size of
functions that can be inlined. This flag allows the control
of this limit for functions that are explicitly marked as
inline (i.e., marked with the inline keyword). n is the
size of functions that can be inlined in number of pseudo
instructions (not counting parameter handling). The
default value of n is 10000. Increasing this value can
result in more inlined code at the cost of compilation time
and memory consumption.

Decreasing usually makes the compilation faster and less
code is inlined (which presumably means slower
programs). This option is particularly useful for programs
that use inlining.

Note: Pseudo instruction represents, in this particular
context, an abstract measurement of function's size. In no
way does it represent a count of assembly instructions
and as such, its exact meaning might change from one
release of the compiler to an another.

-fkeep-inline-functions

Even if all calls to a given function are integrated, and the
function is declared static, output a separate runtime
callable version of the function. This switch does not
affect extern inline functions.

-fkeep-static-consts

Emit variables declared static const when optimization
isn't turned on, even if the variables are not referenced.
MPLAB C32 C compiler enables this option by default. If
you want to force the compiler to check if the variable was
referenced, regardless of whether or not optimization is
turned on, use the - fno-keep-static-consts option.

-fno-function-cse

Do not put function addresses in registers. Make each
instruction that calls a constant function contain the
function's address explicitly.

This option results in less efficient code, but some
strange hacks that alter the assembler output may be
confused by the optimizations performed when this option
is not used.

© 2007 Microchip Technology Inc.

DS51686A-page 31

MPLAB® C32 C Compiler User’s Guide

TABLE 1-10: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS

Option

Definition

-fno-inline

Do not pay attention to the inline keyword. Normally
this option is used to keep the compiler from expanding
any functions inline. If optimization is not enabled, no
functions can be expanded inline.

-fomit-frame-pointer

Do not keep the Frame Pointer in a register for functions
that don't need one. This avoids the instructions to save,
set up and restore Frame Pointers. It also makes an extra
register available in many functions.

-foptimize-sibling-calls |Optimize sibling and tail recursive calls.

1.8.7 Options for Controlling the Preprocessor

The following options control the compiler preprocessor.
TABLE 1-11: PREPROCESSOR OPTIONS

Option

Definition

-Aquestion (answer)

Assert the answer answer for question question, in case itis
tested with a preprocessing conditional such as #if
#question (answer). -A- disables the standard assertions
that normally describe the target machine.

For example, the function prototype for main might be declared
as follows:

#if #environ (freestanding)

int main(void) ;

#telse

int main(int argc, char *argv[]);

#endif

A -A command line option could then be used to select
between the two prototypes. For example, to select the first of
the two, the following command line option could be used:
-Aenviron (freestanding)

-A -predicate =answer

Cancel an assertion with the predicate predicate and
answer answer.

-A predicate =answer

Make an assertion with the predicate predicate and answer
answer. This form is preferred to the older form

-A predicate (answer), which is still supported, because it
does not use shell special characters.

-C Tell the preprocessor not to discard comments. Used with the
-E option.

-dD Tell the preprocessor to not remove macro definitions into the
output, in their proper sequence.

-Dmacro Define macro macro with the string 1 as its definition.

-Dmacro=defn

Define macro macro as defn. All instances of -D on the
command line are processed before any -U options.

-dMm Tell the preprocessor to output only a list of the macro
definitions that are in effect at the end of preprocessing. Used
with the -E option.

-dN Like -dD except that the macro arguments and contents are

omitted. Only #define name is included in the output.

-fno-show-column

Do not print column numbers in diagnostics. This may be
necessary if diagnostics are being scanned by a program that
does not understand the column numbers, such as dejagnu.

Print the name of each header file used, in addition to other
normal activities.

DS51686A-page 32

© 2007 Microchip Technology Inc.

Language Specifics

TABLE 1-11:

PREPROCESSOR OPTIONS (CONTINUED)

Option

Definition

Any directories you specify with -I options before the -1-
options are searched only for the case of #include "file".
They are not searched for #include <files.

If additional directories are specified with - I options after the
-I-, these directories are searched for all #include
directives. (Ordinarily all -1 directories are used this way.)

In addition, the - - option inhibits the use of the current
directory (where the current input file came from) as the first
search directory for #include "file". There is no way to
override this effect of -I-. With -I. you can specify searching
the directory that was current when the compiler was invoked.
That is not exactly the same as what the preprocessor does by
default, but it is often satisfactory.

-I- does not inhibit the use of the standard system directories
for header files. Thus, -I- and -nostdinc are independent.

-Idir

Add the directory dir to the head of the list of directories to be
searched for header files. This can be used to override a
system header file, substituting your own version, since these
directories are searched before the system header file
directories. If you use more than one -I option, the directories
are scanned in left-to-right order. The standard system
directories come after.

-idirafter dir

Add the directory dir to the second include path. The
directories on the second include path are searched when a
header file is not found in any of the directories in the main
include path (the one that -I adds to).

-imacros file

Process file as input, discarding the resulting output, before
processing the regular input file. Because the output generated
from the file is discarded, the only effect of -imacros fileis
to make the macros defined in file available for use in the main
input.

Any -D and -U options on the command line are always
processed before -imacros file, regardless of the orderin
which they are written. All the -include and -imacros
options are processed in the order in which they are written.

-include file

Process file as input before processing the regular input file. In
effect, the contents of file are compiled first. Any -D and -U
options on the command line are always processed before
-include file, regardless of the order in which they are
written. All the -include and - imacros options are
processed in the order in which they are written.

-iprefix prefix

Specify prefix as the prefix for subsequent -iwithprefix
options.

-isystem dir

Add a directory to the beginning of the second include path,
marking it as a system directory, so that it gets the same special
treatment as is applied to the standard system directories.

-iwithprefix dir

Add a directory to the second include path. The directory’s
name is made by concatenating prefix and dir, where prefix
was specified previously with -iprefix. If a prefix has not yet
been specified, the directory containing the installed passes of
the compiler is used as the default.

-iwithprefixbefore
dir

Add a directory to the main include path. The directory’s name
is made by concatenating prefix and dir, as in the case of
-iwithprefix.

© 2007 Microchip Technology Inc.

DS51686A-page 33

MPLAB® C32 C Compiler User’s Guide

TABLE 1-11: PREPROCESSOR OPTIONS (CONTINUED)

Option

Definition

Tell the preprocessor to output a rule suitable for make
describing the dependencies of each object file. For each
source file, the preprocessor outputs one make-rule whose
target is the object file name for that source file and whose
dependencies are all the #include header files it uses. This
rule may be a single line or may be continued with \ -newline
if it is long. The list of rules is printed on standard output instead
of the preprocessed C program.

-M implies -E (see Section 1.8.2 “Options for Controlling
the Kind of Output”).

-MD

Like -M but the dependency information is written to a file and
compilation continues. The file containing the dependency
information is given the same name as the source file witha .d
extension.

-MF file

When used with -M or -MM, specifies a file in which to write the
dependencies. If no -MF switch is given, the preprocessor
sends the rules to the same place it would have sent
preprocessed output.

When used with the driver options, -MD or -MMD, -MF,
overrides the default dependency output file.

-MG

Treat missing header files as generated files and assume they
live in the same directory as the source file. If -MG is specified,
then either -M or -MM must also be specified. -MG is not
supported with -MD or -MMD.

-MM

Like -M but the output mentions only the user header files
included with #include “file”. System header files included
with #include <file> are omitted.

-MMD

Like -MD except mention only user header files, not system
header files.

-MP

This option instructs CPP to add a phony target for each
dependency other than the main file, causing each to depend
on nothing. These dummy rules work around errors make gives
if you remove header files without updating the make-file to
match.

This is typical output:

test.o: test.c test.h

test.h:

-MQ

Same as -MT, but it quotes any characters which are special to
make.

-MQ '$ (objpfx)foo.o' gives $$ (objpfx) foo.o:
foo.c

The default target is automatically quoted, as if it were given
with -MQ.

-MT target

Change the target of the rule emitted by dependency
generation. By default, CPP takes the name of the main input
file, including any path, deletes any file suffix such as . c, and
appends the platform's usual object suffix. The result is the
target.

An -MT option sets the target to be exactly the string you
specify. If you want multiple targets, you can specify them as a
single argument to -MT, or use multiple -MT options.

For example:

-MT '$ (objpfx)foo.o' might give $ (objpfx) foo.o:
foo.c

DS51686A-page 34

© 2007 Microchip Technology Inc.

Language Specifics

TABLE 1-11: PREPROCESSOR OPTIONS (CONTINUED)

Option

Definition

-nostdinc

Do not search the standard system directories for header files.
Only the directories you have specified with - I options (and the
current directory, if appropriate) are searched. (See

Section 1.8.10 “Options for Directory Search”) for
information on -1I.

By using both -nostdinc and -1-, the include-file search
path can be limited to only those directories explicitly specified.

Tell the preprocessor not to generate #1ine directives. Used
with the -E option (see Section 1.8.2 “Options for
Controlling the Kind of Output”).

-trigraphs

Support ANSI C trigraphs. The -ansi option also has this
effect.

-Umacro

Undefine macro macro. -U options are evaluated after all -D
options, but before any -include and - imacros options.

-undef

Do not predefine any nonstandard macros (including
architecture flags).

1.8.8 Options for Assembling

The following options control assembler operations.
TABLE 1-12: ASSEMBLY OPTIONS

Option

Definition

-Wa, option

Pass option as an option to the assembler. If option contains
commas, it is split into multiple options at the commas.

© 2007 Microchip Technology Inc.

DS51686A-page 35

MPLAB® C32 C Compiler User’s Guide

1.8.9 Options for Linking

If any of the options -c, -s or -E are used, the linker is not run and object file names
should not be used as arguments.

TABLE 1-13: LINKING OPTIONS

Option

Definition

-Ldir

Add directory dir to the list of directories to be searched for libraries
specified by the command line option -1.

-llibrary

Search the library named 1ibrary when linking.

The linker searches a standard list of directories for the library, which is
actually a file named 1ibIlibrary.a. The linker then uses this file as if
it had been specified precisely by name.

It makes a difference where in the command you write this option. The
linker processes libraries and object files in the order they are specified.
Thus, foo.o -1z bar.o searches library z after file foo. o but before
bar.o. If bar.o refers to functions in 1ibz. a, those functions may not
be loaded.

The directories searched include several standard system directories,
plus any that you specify with - L.

Normally the files found this way are library files (archive files whose
members are object files). The linker handles an archive file by scanning
through it for members which define symbols that have so far been
referenced but not defined. But if the file that is found is an ordinary
object file, it is linked in the usual fashion. The only difference between
using an -1 option (e.g., -1mylib) and specifying a file name (e.g.,
libmylib.a) is that -1 searches several directories, as specified.

By default the linker is directed to search:

<install-path>\1lib

for libraries specified with the -1 option. For a compiler installed into the
default location, this would be:

c:\Program Files\Microchip\MPLAB C32\1lib

This behavior can be overridden using the environment variables.

-nodefaultlibs

Do not use the standard system libraries when linking. Only the libraries
you specify are passed to the linker. The compiler may generate calls to
memcmp, memset and memcpy. These entries are usually resolved by
entries in the standard compiler libraries. These entry points should be
supplied through some other mechanism when this option is specified.

-nostdlib

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify are passed to the linker.
The compiler may generate calls to memcmp, memset and memcpy.
These entries are usually resolved by entries in standard compiler
libraries. These entry points should be supplied through some other
mechanism when this option is specified.

Remove all symbol table and relocation information from the
executable.

-u symbol

Pretend symbol is undefined to force linking of library modules to
define the symbol. It is legitimate to use -u multiple times with different
symbols to force loading of additional library modules.

-Wl,option

Pass option as an option to the linker. If option contains commas, it
is split into multiple options at the commas.

-Xlinker option

Pass option as an option to the linker. You can use this to supply
system-specific linker options that MPLAB C32 C compiler does not
know how to recognize.

DS51686A-page 36

© 2007 Microchip Technology Inc.

Language Specifics

1.8.10 Options for Directory Search

The following options specify to the compiler where to find directories and files to
search.

TABLE 1-14: DIRECTORY SEARCH OPTIONS
Option Definition

-Bprefix This option specifies where to find the executables, libraries,
include files and data files of the compiler itself.

The compiler driver program runs one or more of the
sub-programs pic32-cpp, pic32-ccl, pic32-as and
pic32-1d. It tries prefix as a prefix for each program it tries to
run.

For each sub-program to be run, the compiler driver first tries the
-B prefix, if any. Lastly, the driver searches the current PATH
environment variable for the subprogram.

-B prefixes that effectively specify directory names also apply to
libraries in the linker, because the compiler translates these
options into -L options for the linker. They also apply to include
files in the preprocessor, because the compiler translates these
options into -isystem options for the preprocessor. In this case,
the compiler appends include to the prefix.

-specs=file Process file after the compiler reads in the standard specs file, in
order to override the defaults that the pic32-gcc driver program
uses when determining what switches to pass to pic32-ccl,
pic32-as,pic32-14, etc. More than one -specs=file canbe
specified on the command line, and they are processed in order,
from left to right.

© 2007 Microchip Technology Inc. DS51686A-page 37

MPLAB® C32 C Compiler User’s Guide

1.8.11 Options for Code Generation Conventions

Options of the form - £ £1ag specify machine-independent flags. Most flags have both
positive and negative forms. The negative form of - ffoo would be - fno-foo. In the
table below, only one of the forms is listed (the one that is not the default.)

TABLE 1-15: CODE GENERATION CONVENTION OPTIONS

Option

Definition

-fargument-alias

-fargument-noalias

-fargument -
noalias-global

Specify the possible relationships among parameters and between
parameters and global data.

-fargument -alias specifies that arguments (parameters) may
alias each other and may alias global storage.

-fargument -noalias specifies that arguments do not alias
each other, but may alias global storage.
-fargument-noalias-global specifies that arguments do not
alias each other and do not alias global storage.

Each language automatically uses whatever option is required by
the language standard. You should not need to use these options
yourself.

-fcall-saved-reg

Treat the register named reg as an allocatable register saved by
functions. It may be allocated even for temporaries or variables
that live across a call. Functions compiled this way saves and
restores the register reg if they use it.

It is an error to used this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine’s execution model produces
disastrous results.

A different sort of disaster results from the use of this flag for a
register in which function values are returned.

This flag should be used consistently through all modules.

-fcall-used-reg

Treat the register named reg as an allocatable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
do not save and restore the register reg.

It is an error to use this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine’s execution model produces
disastrous results.

This flag should be used consistently through all modules.

-ffixed-reg

Treat the register named reg as a fixed register. Generated code
should never refer to it (except perhaps as a Stack Pointer, Frame
Pointer or in some other fixed role).

reg must be the name of a register, e.g., -ffixed-$0.

DS51686A-page 38

© 2007 Microchip Technology Inc.

Language Specifics

TABLE 1-15: CODE GENERATION CONVENTION OPTIONS (CONTINUED)
Option Definition
-finstrument- Generate instrumentation calls for entry and exit to functions. Just
functions after function entry and just before function exit, the following

profiling functions are called with the address of the current
function and its call site.

void _ cyg_profile_func_enter
(void *this_fn, void *call_site);
void _ cyg_profile_func_exit

(void *this fn, void *call site);
The first argument is the address of the start of the current
function, which may be looked up exactly in the symbol table.
The profiling functions should be provided by the user.
Function instrumentation requires the use of a Frame Pointer.
Some optimization levels disable the use of the Frame Pointer.
Using -fno-omit-frame-pointer prevents this.
This instrumentation is also done for functions expanded inline in
other functions. The profiling calls indicates where, conceptually,
the inline function is entered and exited. This means that
addressable versions of such functions must be available. If all
your uses of a function are expanded inline, this may mean an
additional expansion of code size. If you use extern inline in
your C code, an addressable version of such functions must be
provided.
A function may be given the attribute
no_instrument function, in which case this instrumentation
is not done.

-fno-ident

Ignore the #ident directive.

-fpack-struct

Pack all structure members together without holes. Usually you
would not want to use this option, since it makes the code
sub-optimal, and the offsets of structure members won’t agree with
system libraries.

-fpcc-struct-
return

Return short struct and union values in memory like longer
ones, rather than in registers. This convention is less efficient, but
it has the advantage of allowing capability between MPLAB C32
compiled files and files compiled with other compilers.

Short structures and unions are those whose size and alignment
match that of an integer type.

-fno-short-double

By default, the compiler uses a double type equivalent to float.
This option makes double equivalent to long double. Mixing
this option across modules can have unexpected results if
modules share double data either directly through argument
passage or indirectly through shared buffer space. Libraries
provided with the product function with either switch setting.

-fshort-enums

Allocate to an enum type only as many bytes as it needs for the
declared range of possible values. Specifically, the enum type is
equivalent to the smallest integer type which has enough room.

-fverbose-asm
-fno-verbose-asm

Put extra commentary information in the generated assembly code
to make it more readable.

-fno-verbose-asm, the default, causes the extra information to
be omitted and is useful when comparing two assembiler files.

-fvolatile

Consider all memory references through pointers to be volatile.

-fvolatile-global

Consider all memory references to external and global data items
to be volatile. The use of this switch has no effect on static data.

-fvolatile-static

Consider all memory references to static data to be volatile.

© 2007 Microchip Technology Inc.

DS51686A-page 39

MPLAB® C32 C Compiler User’s Guide

1.9 COMPILING A SINGLE FILE ON THE COMMAND LINE

This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler is installed on your c : drive in a directory called
Program Files\Microchip\MPLAB C32. Therefore the following applies:

* ¢:\Program Files\Microchip\MPLAB C32\pic32mx\include - Include
directory for standard C header files.

* c:\Program Files\Microchip\MPLAB C32\pic32mx\include\proc -
Include directory for PIC32MX device-specific header files.

* c:\Program Files\Microchip\MPLAB C32\pic32mx\1lib - Library
directory structure for standard libraries and startup files.

* c:\Program Files\Microchip\MPLAB
Cc32\pic32mx\include\peripheral - Include directory for PIC32MX
peripheral library include files.

* c:\Program Files\Microchip\MPLAB C32\pic32mx\lib\proc -
Directory for device-specific linker script fragments, register definition files and
configuration data may be found.

* c:\Program Files\Microchip\MPLAB C32\bin - Directory where the top
level tools executables are located. The PATH environment variable may include
this directory.

The following is a simple C program that adds two numbers.

Create the following program with any text editor and save it as ex1.c.

#include <p32xxxx.h>
unsigned int x, y, z;

unsigned int
add (unsigned int a, unsigned int b)

{
}

return (a+b) ;

int
main (void)

{

X = 2;

y = 5;

z = add(x,Vy) ;
return 0O;

}

The first line of the program includes the header file p32xxxx.h, which provides
definitions for all special function registers on that part. For more information on
processor header files, see Chapter 4. “Low Level Processor Control”.

Compile the program by typing the following at a DOS prompt:
C:\> pic32-gcc -o exl.out exl.c

The command line option -o ex1.out names the output executable file (if the -o
option is not specified, then the output file is named a . out). The executable file may
be loaded into the MPLAB IDE.

If a hex file is required, for example to load into a device programmer, then use the
following command:

C:\> pic32-bin2hex exl.out
This creates an Intel hex file named ex1 . hex.

DS51686A-page 40

© 2007 Microchip Technology Inc.

Language Specifics

1.10 COMPILING MULTIPLE FILES ON THE COMMAND LINE

Move the Add () function into a file called add. c to demonstrate the use of multiple
files in an application. That is:

File 1
/* exl.c */
#include <p32xxxx.h>
int main (void) ;
unsigned int add(unsigned int a, unsigned int Db);
unsigned int x, y, z;
int main (void)
{
X = 2;
Yy = 5;
z = Add(x,Y) ;
return 0O;
}
File 2
/* add.c */
#include <p32xxxx.h>
unsigned int
add (unsigned int a, unsigned int b)

{

return (a+b) ;
}
Compile both files by typing the following at a DOS prompt:

C:\> pic32-gcc -o exl.out exl.c add.c

This command compiles the modules ex1.c and add.c. The compiled modules are
linked with the compiler libraries and the executable file ex1 . out is created.

© 2007 Microchip Technology Inc. DS51686A-page 41

MPLAB® C32 C Compiler User’s Guide

NOTES:

DS51686A-page 42 © 2007 Microchip Technology Inc.

MPLAB® C32 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 2. Library Environment

21 INTRODUCTION
This chapter discusses using the MPLAB C32 C libraries.

2.2 HIGHLIGHTS

Iltems discussed in this chapter are:

+ Standard 1/0

* Weak Functions

» “Helper” Header Files
» Multilibs

2.3 STANDARD I/O

The standard input/output library functions support two modes of operation, simple and
full. The simple mode supports I/O via a two function interface on a single character
device used for stdout, stdin and stderr. The full mode supports the complete set
of standard 1/O functions. The library will use full mode if the application calls fopen,
otherwise simple mode is used.

Simple mode performs I/O using four functions, mon_puts, mon write,
_mon_getcand mon putc, to perform the raw device I/O. The default
implementation of _mon_getc always returns failure (i.e., by default, character input is
not available). The defaultimplementation of _mon_putc writes a character to UART2.
It is assumed that the application has performed any necessary initialization of the
UART. The default implementations of _mon_puts and _mon_write both simply call
_mon_putc iteratively. All four functions are defined as weak functions, and so may be
overridden by the user application if different functionality is desired. See the MPLAB
C32 C Compiler Libraries for detailed information on these functions.

An application using full mode must supply the standard low-level POSIX I/O functions
open, read, write, 1seek and close. No defaultimplementations are provided. See
the “MPLAB C32 C Compiler Libraries” (DS51685) for detailed information on these
functions.

2.4 WEAK FUNCTIONS

The standard library provides a number of weak function implementations of low level
interfaces. User applications which use this functionality will often implement more full
featured versions of these functions. For details of the specific functions, see the
“MPLAB C32 C Compiler Libraries” (DS51685).

As described above, the standard I/O library functions utilize a set of weak functions for
simple output: _mon_write, mon_putc, mon puts,and _mon getc.

The standard startup code (See Section 5.7 “Startup and Initialization”) invokes a
number of weak functions directly and provides weak handlers for bootstrap exceptions
and general exceptions: _on_reset, nmi handler,

_bootstrap exception handler, general exception handler, and
_on_bootstrap.

© 2007 Microchip Technology Inc. DS51686A-page 43

MPLAB® C32 C Compiler User’s Guide

The standard library function exit calls the weak function _exit prior to returning.

The standard library functions for signals, signal and raise, are implemented as
weak functions which always fail.

The standard library functions for locales, setlocale and localeconv, are
implemented as weak functions which do nothing.

The standard library function for accessing environment variables, getenv, is
implemented as a weak function which always returns NULL.

2.5 “HELPER” HEADER FILES

251 sys/attribs.h

Macros are provided for many commonly used attributes in order to enhance user code
readability.

__section_ (s) Apply the section attribute with section name s.

__unique section Apply the unique section attribute.

__ramfunc__ Locate the attributed function in the RAM function code
section.

__longramfunc_ Locate the attributed function in the RAM function code
section and apply the longcall attribute.

__longcall Apply the longcall attribute.

__ISR(v,ipl) Apply the interrupt attribute with priority level ip1
and the vector attribute with vector number v.

ISR AT VECTOR(v,ipl) Apply the interrupt attribute with priority level ipl

and the at_vector attribute with vector number v.

2.5.2 sys/lkmem.h

System code may need to translate between virtual and physical addresses, as well as
between kernel segment addresses. Macros are provided to make these translations
easier and to determine the segment an address is in.

KVA_TO_PA (v) Translate a kernel virtual address to a physical address.

PA_TO_KVAO (pa) Translate a physical address to a KSEGO virtual address.

PA TO_KVAl (pa) Translate a physical address to a KSEG1 virtual address.

KVAQ_TO_KVA1 (v) Translate a KSEGO virtual address to a KSEG1 virtual address.

KVA1_TO_KVAO (v) Translate a KSEG1 virtual address to a KSEGO virtual address.

IS _KVA(v) Evaluates to 1 if the address is a kernel segment virtual address,
zero otherwise.

IS _KVAO (v) Evaluate to 1 if the address is a KSEGO virtual address, zero
otherwise.

IS_KVAL (v) Evaluate to 1 if the address is a KSEG1 virtual address, zero
otherwise.

IS_KVA01 (v) Evaluate to 1 if the address is either a KSEGO or a KSEG1 virtual
address, zero otherwise.

2.6 MULTILIBS

2.6.1 What are Multilibs?

With multilibs, target libraries are built multiple times with a permutated set of options.
Multilibs are the resulting set of target libraries that are built with these options. When
the compiler shell is called to compile and link an application, the shell chooses the
version of the target library that has been built with the same options.

DS51686A-page 44

© 2007 Microchip Technology Inc.

Library Environment

26.2 What Multilibs are Available for MPLAB C32 Language Tools?

The target libraries that are distributed with the MPLAB C32 C Compiler are built for the

following options:

+ Size versus speed (-Os vs. -03)

 16-bit versus 32-bit (-mips16 vs. -mno-mips16)

+ Software floating-point versus no floating-point support (-msoft-float vs.
-mno-float)

By default the MPLAB C32 language tools compile for -00, -mno-mips16, and
-msoft-float. Therefore, the options that we are concerned about are -0s or -03,
-mips16, and -mno-float. Libraries built with the following command line options
are made available:

1. Default command line options
2. -0Os

3. -03

4. -mipslsé

5. -mno-float

6. -mipsl6 -mno-float

7. -Os -mipslé

8. -0s -mno-float

9. -0s -mipslé -mno-float
10. -03 -mipsleé

11. -03 -mno-float

12. -03 -mipslé -mno-float

2.6.3 Where are the Multilibs Directories?

By default, the MPLAB C32 language tools use the directory
<install-directory>/1ib/gcc/ to store the specific libraries and the directory
<install-directory>/<pic32mx>/1ib to store the target-specific libraries. Both
of these directory structures contain subdirectories for each of the multilib combinations
specified above. These subdirectories, respectively, are as follows:

./size

. /speed

./mipsil6
./no-float
./mipsl6/no-float
./size/mipslé

© NN =

./size/no-float

9. ./size/mipslé6/no-float
10. ./speed/mipslé6

11. ./speed/no-float

12. ./speed/mipsl6/no-float

© 2007 Microchip Technology Inc. DS51686A-page 45

MPLAB® C32 C Compiler User’s Guide

26.4 Which Multilib Directory Are Selected?

This section looks at examples and provide details on which of the multilibs
subdirectories are chosen.

1. pic32-gcc foo.c

For this example, no command line options have been specified (i.e., the default
command line options are being used). In this case, the . subdirectories are
used.

2. pic32-gcc -0s foo.c

For this example, the command line option for optimizing for size has been
specified (i.e., -Os is being used). In this case, the . /size subdirectories are
used.

3. pic32-gcc -02 foo.c

For this example, the command line option for optimizing has been specified,
however, this command line option optimizes for neither size nor space (i.e., -02
is being used). In this case, the . subdirectories are used.

4. pic32-gcc -0Os -mipslé foo.c

For this example, the command line options for optimizing for size and for
MIPS16 code have been specified (i.e., -0s and -mips16 are being used). In
this case, the . /size/mips16 subdirectories are used.

DS51686A-page 46

© 2007 Microchip Technology Inc.

MPLAB® C32 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 3. Interrupts

3.1 INTRODUCTION

Interrupt processing is an important aspect of most microcontroller applications.
Interrupts may be used to synchronize software operations with events that occur in
real time. When interrupts occur, the normal flow of software execution is suspended
and special functions are invoked to process the event. At the completion of interrupt
processing, previous context information is restored and normal execution resumes.

PIC32MX devices support multiple interrupts, from both internal and external sources.
The devices allow high-priority interrupts to override any lower priority interrupts that
may be in progress.

The MPLAB C32 C compiler provides full support for interrupt processing in C or inline
assembly code. This chapter presents an overview of interrupt processing.

3.2 HIGHLIGHTS

Iltems discussed in this chapter are:

» Specifying an Interrupt Handler Function
» Associating a Handler Function with an Exception Vector
* Exception Handlers

3.3 SPECIFYING AN INTERRUPT HANDLER FUNCTION

An interrupt handler function handles the context save and restore to ensure that upon
return from interrupt, the program context is maintained.

3.31 Handler Function Context Saving

The standard calling convention for C functions will already preserve zero, s0-s7, gp,
sp, and fp. k0 and k1 are used by the compiler to access and preserve non-GPR

context, but are always accessed atomically (i.e., in sequences with global interrupts
disabled), so they need not be preserved actively. In addition to the standard registers,
a handler function will actively preserve the a0-a3, t0-t9, v0, vl and ra registers.

An interrupt handler function will also actively save and restore processor status
registers that are utilized by the handler function. Specifically, the EpC, SR, hi and 1o
registers are preserved as context.

Handler functions specified as priority level 7 (highest priority) will use a shadow
register set to preserve the general purpose registers, enabling lower latency entry into
the application code of the handler function.

3.3.2 Marking a Function as an Interrupt Handler

A function is marked as a handler function via either the interrupt attribute or the
interrupt pragma1. Each method is functionally equivalent to the other. The interrupt is
specified as handling interrupts of a specific priority level or for operating in single
vector mode.

1. Note that pre-processor macros are not expanded in pragma directives.

© 2007 Microchip Technology Inc. DS51686A-page 47

MPLAB® C32 C Compiler User’s Guide

pragma interrupt function-name ipln [vector [@]vector-number [,
vector-number-1ist]]
pragma interrupt function-name single [vector [@] 0

Where n is in the range of 0..7, inclusive. The ip1lx specifier may be all uppercase or
all lowercase.

The function definition for a handler function indicated by an interrupt pragma must
follow in the same translation unit as the pragma itself.

The interrupt attribute will also indicate that a function definition is an interrupt
handler. It is functionally equivalent to the interrupt pragma.

For example, the definitions of foo below both indicate that it is an interrupt handler
function for an interrupt of priority 4.

#pragma interrupt foo ipl4
void foo (void)

is functionally equivalent to

void _ attribute ((interrupt(ipl4))) foo (void)

3.4 ASSOCIATING A HANDLER FUNCTION WITH AN EXCEPTION VECTOR

There are 64 exception vectors, numbered 0..63 inclusive. Each interrupt source is
mapped to an exception vector as specified in the device data sheet. By default, four
words of space are reserved at each vector address for a dispatch to the handler
function for that exception source.

An interrupt handler function can be associated with an interrupt vector either as the
target of a dispatch function located at the exception vector address, or as being
located directly at the exception vector address. A single handler function can be the
target of multiple dispatch functions.

The association of a handler function to one or more exception vector addresses is
specified via a clause of the interrupt pragma, a separate vector pragma, or a vector
attribute on the function declaration.

3.41 Interrupt Pragma Clause

The interrupt pragma has an optional vector clause following the priority specifier.

pragma interrupt function-name ipl-specifier [vector
[@] vector-number [, vector-number-1ist]]

A dispatch function targeting the specified handler function will be created at the
exception vector address for the specified vector numbers. If the first vector number is
specified with a preceding “@” symbol, the handler function itself will be located there
directly.

For example, the following pragma specifies that function £oo will be created as an
interrupt handler function of priority four. £oo will be located at the address of exception
vector 54. A dispatch function targeting £ oo will be created at exception vector address
34.

#pragma interrupt foo ipl4 vector @54, 34

The following pragma specifies that function bar will be created as an interrupt handler
function of priority five. bar will be located in general purpose program memory (.text
section). A dispatch function targeting bar will be created at exception vector address
23.

#pragma interrupt bar ipl5 vector 23

DS51686A-page 48

© 2007 Microchip Technology Inc.

Interrupts

342 Vector Pragma

The vector pragma creates one or more dispatch functions targeting the indicated
function. For target functions specified with the interrupt pragma, this functions as
if the vector clause had been used. The target function of a vector pragma can be
any function, including external functions implemented in assembly or by other means.

pragma vector function-name vector vector-number [,
vector-number-1ist]

The following pragma defines a dispatch function targeting foo at exception vector
address 54.

#pragma vector foo 54

3.43 Vector Attribute

A handler function can be associated with one or more exception vector addresses via
an attribute. The at_vector attribute indicates that the handler function should itself
be placed at the exception vector address. The vector attribute indicates that a
dispatch function should be created at the exception vector address(es).

For example, the following declaration specifies that function £oo will be created as an
interrupt handler function of priority four. £oo will be located at the address of exception
vector 54.

void _ attribute ((interrupt (ipl4))) _ attribute ((at_vector(54)))
foo (void)

The following declaration specifies that function £oo will be created as an interrupt
handler function of priority four. Define dispatch functions targeting foo at exception
vector addresses 52 and 53.

void _ attribute ((interrupt(ipl4))) _ attribute ((vector (53,
52))) foo (void)

3.5 EXCEPTION HANDLERS

The PIC32MX devices also have two exception vectors for non-interrupt exceptions.
These exceptions are grouped into bootstrap exceptions and general exceptions.

3.51 Bootstrap Exception

A reset exception is any exception which occurs while bootstrap code is running
(Statusggy=1). All reset exceptions are vectored to 0xBFC00380.

At this location the MPLAB C32 toolchain places a branch instruction targeting a
function named bootstrap exception handler (). In the standard library, a
default weak version of this function is provided which merely goes into an infinite loop.
If the user application provides an implementation of

_bootstrap exception handler (), that implementation will be used instead.

3.5.2 General Exception

A general exception is any non-interrupt exception which occurs during program
execution outside of bootstrap code (Statusggy=0). General exceptions are vectored
to offset 0x180 from EBase.

At this location the MPLAB C32 toolchain places a branch instruction targeting a
function named general exception context (). The provided implementation
of this function saves context, calls an application handler function, restores context
and performs a return from exception instruction. The context saved is the hi and 1o
registers and all general purpose registers except s0-s8, which are defined to be
preserved by all called functions and so are not necessary to actively save again here.

© 2007 Microchip Technology Inc. DS51686A-page 49

MPLAB® C32 C Compiler User’s Guide

The values of the Cause and Status registers are passed to the application handler
function (_general exception_handler ()). If the user application provides an
implementation of general exception context (), that implementation will be
used instead.

void _general exception handler (unsigned cause, unsigned status);

A weak default implementation of general exception handler () is providedin
the standard library which merely goes into an infinite loop. If the user application
provides an implementation of general exception handler (), that
implementation will be used instead.

DS51686A-page 50

© 2007 Microchip Technology Inc.

MPLAB® C32 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 4. Low Level Processor Control

41 INTRODUCTION

This chapter discusses access to the low level registers and configuration of the
PIC32MX devices.

4.2 HIGHLIGHTS

Iltems discussed in this chapter are:

» Generic Processor Header File

* Processor Support Header Files
* Peripheral Library Functions

» Special Function Register Access
» CPO Register Access

» Configuration Bit Access

4.3 GENERIC PROCESSOR HEADER FILE

The generic processor header file is a C file that includes the correct processor-specific
header file based on the processor specified with the -mprocessor command line
option. The generic processor header file is located in

c¢:\Program Files\Microchip\MPLAB C32\pic32mx\include, where
c:\Program Files\Microchip\MPLAB C32 is the directory in which the MPLAB
C32 toolchain was installed. Besides including the correct processor-specific header
file, the generic processor header file also provides #def ines which allow the use of
conventional register names from within assembly language files.

To include the generic processor header file, use the following from within your source
code:

#include <p32xxxx.h>

Inclusion of the generic processor header file allows your source code to be compiled
for any of the processors supported by the MPLAB C32 toolchain without having to
change the file which is being included.

44 PROCESSOR SUPPORT HEADER FILES

The processor-specific header files are files that contain external declarations for the
Special Function Registers (SFRs) for use in either C or assembly. By convention, each
SFR is named using the same name that appears in the data sheet — for example,
WDTCON for the watchdog timer control register. If the register has individual bits that
may be of interest, there is also be a structure typedef defined for that SFR, where
the name of the structure typedef is the name of the register with bits t appended
— for example, _ WDTCONbits t. The individual bits (or bit fields) are named in the
structure using the names in the data sheet. For example in the PIC32MX360F512L
processor-specific header file, the WDTCON register for use with C is declared as:

© 2007 Microchip Technology Inc. DS51686A-page 51

MPLAB® C32 C Compiler User’s Guide

extern volatile unsigned int WDTCON _ attribute ((section("sfrs")));
typedef union {

struct {
unsigned WDTCLR:1;
unsigned :1;
unsigned SWDTPSO:
unsigned SWDTPS1:
unsigned SWDTPS2:
unsigned SWDTPS3:
unsigned SWDTPS4:
unsigned :8;
unsigned ON:1;

}i

struct {
unsigned :2;
unsigned WDTPSTA:5;
unsigned :1;
unsigned PWRTPSTA:3;

}i

struct {
unsigned w:32;

}i

} _ WDTCONbits t;
extern volatile _ WDTCONbits_t WDTCONbits asm ("WDTCON") _ attribute_ ((section("sfrs")));

PR R R

Note: The symbols WDTCON and WDTCONbits refer to the same register and
resolve to the same address as can be seen by the declaration for
WDTCONbits.

For use with assembly, the WDTCON register is declared as: .extern WDTCON.

The processor-specific header files are located in

c:\Program Files\Microchip\MPLAB C32\pic32mx\include\proc, where
c:\Program Files\Microchip\MPLAB C32 is the directory in which the MPLAB
C32 toolchain was installed. To include a processor-specific header file, it is
recommended that you include the generic processor header file (see

Section 4.3 “Generic Processor Header File”), however, if you would like to
specifically call out the processor-specific header file, use the following from your
source file (example assumes inclusion of the processor-specific header file for the
PIC32MX360F512L):

#include <proc/p32mx360£5121.h>

4.5 PERIPHERAL LIBRARY FUNCTIONS

Many of he peripherals of the PIC32MX devices are supported by the peripheral library
functions provided with the compiler tools. See the “MPLAB C32 C Compiler Libraries”
(DS51685) for details on the functions provided.

DS51686A-page 52 © 2007 Microchip Technology Inc.

Low Level Processor Control

4.6 SPECIAL FUNCTION REGISTER ACCESS

There are three steps to follow when using SFRs in an application.

1. Include either the generic processor header file (i.e., p32xxxx.h) or the
processor-specific header file for the appropriate device (e.g.,
proc/p32mx360£5121.h).

#include <p32xxxx.h>

2. Access SFRs like any other C variables. The source code can write to and/or
read from the SFRs. For example, the following statement clears all the bits to
zero in the special function register for Timer 1:

TMR1 = 0;

The next statement enables the Watchdog Timer:
WDTCONbits.ON = 1;

3. Link with the default linker script or include the processor. o file for the
appropriate processor in your project.

4.7 CPO REGISTER ACCESS
4.71 CPO Register Definitions Header File

The CPO register definitions header file (cpodefs . h) is a file that contains definitions
for the CPO registers and their fields. In addition, it contains macros for accessing the
CPO registers. The CPO register definitions header file is located in

c:\Program Files\Microchip\MPLAB C32\pic32mx\include, where
c:\Program Files\Microchip\MPLAB C32 is the directory in which the MPLAB
C32 toolchain was installed. The CPO register definitions header file was designed to
work with either Assembly or C files.

The CPO register definitions header file is dependent on macros defined within the
processor generic header file (See Section 4.3 “Generic Processor Header File”).
To include the CPO register definitions header file, use the following from within your
source code:

#include <p32xxxx.h>

4.7.2 CPO0 Register Definitions
When the CPO register definitions header file is included from an Assembly file, the
CPO registers are defined as:
#define CP0_REGISTER NAME $register number, select number
For example, the IntCt1 register is defined as:
#define CPO_INTCTL $12, 1

When the CPO register definitions header file is included from a C file, the CPO registers
and selects are defined as:

#define CPO_REGISTER NAME register number
#define _CPO_REGISTER NAME SELECT select_number

For example, the IntCt1 register is defined as:
#define CPO_INTCTL 12
#define CPO_INTCTL SELECT 1

4.7.3 CPO Register Field Definitions

When the CPO register definitions header file is included from either an Assembly or a
C file, three #defines exist for each of the CPO register fields.

_CPO_REGISTER NAME FIELD NAME POSITION — the starting bit location

© 2007 Microchip Technology Inc. DS51686A-page 53

MPLAB® C32 C Compiler User’s Guide

_CPO_REGISTER NAME FIELD NAME MASK — the bits that are part of this field are set
_CPO_REGISTER NAME FIELD NAME LENGTH —the number of bits that this field occupies
For example the vector spacing field of the IntCt1 register has the following defines:

#define CPO_INTCTL VS POSITION 0x00000005
#define CPO_INTCTL_ VS MASK 0x000003E0
#define CPO_INTCTI_VS LENGTH 0x00000005

4.7.4 CPO Access Macros

When the CPO register definitions header file is included from a C file, CP0 access
macros are defined. Each CPO register may have up to six different access macros

defined:

_CPO_GET_REGISTER NAME () Returns the value for register, rEcIsTER NAME.

_CPO_SET_ REGISTER NAME (val) Sets the register, recrsTER NamE, to val, and
returns void. Only defined for registers that
contain a writable field.

_CPO_XCH_REGISTER NAME (val) Sets the register, recrsTER NamE, to val, and
returns the previous register value. Only
defined for registers that contain a writable
field.

_CPO_BIS REGISTER NAME (set) Sets the register, rEcIsTER NaAME, tO

(reg |= set), and returns the previous register
value. Only defined for registers that contain
writable bit fields.

_CPO_BIC_REGISTER NAME (clr) Sets the register, rREGIsTER NAME, tO

(reg &= ~clr), and returns the previous
register value. Only defined for registers that
contain writable bit fields.

_CPO_BCS_REGISTER_NAME (clr, set) Sets the register, rREGIsTER NAME, tO

(reg = (reg & ~clr) | set), and returns the
previous register value. Only defined for
registers that contain writable bit fields.

4.8 CONFIGURATION BIT ACCESS

4.8.1 #pragma config

The #pragma configdirective specifies the processor-specific configuration settings
(i.e., configuration bits) to be used by the application. Refer to the “PIC32MX
Configuration Settings” on-line help for more information.

Configuration settings may be specified with multiple #pragma config directives.
MPLAB C32 C compiler verifies that the configuration settings specified are valid for
the processor for which it is compiling. If a given setting in the configuration word has
not been specified in any #pragma config directive, the bits associated with that
setting default to the unprogrammed value.

For each configuration word for which a setting is specified with the #pragma config
directive, the compiler generates a read-only data section named . config address,
where address is the hexadecimal representation of the address of the configuration
word. For example, if a configuration setting was specified for the configuration word
located at address 0xBFCO2FFC, a read-only data section named

.config BFCO2FFC would be created.

DS51686A-page 54 © 2007 Microchip Technology Inc.

Low Level Processor Control

4.8.1.1 SYNTAX
pragma-config-directive:
pragma config setting-list

setting-list:

setting

| setting-list, setting

setting:

setting-name = value-name

The setting-name and value-name are device specific and can be determined by
utilizing the PIC32MX Configuration Settings document.

48.1.2 EXAMPLE

The following example shows how the #pragma config directive might be utilized.
The example does the following:

* Enables the Watchdog Timer,

» Sets the Watchdog Postscaler to 1:128, and

+ Selects the HS Oscillator for the Primary Oscillator

#pragma config FWDTEN = ON, WDTPS = PS128
#pragma config POSCMOD = HS

void main (void)

{

© 2007 Microchip Technology Inc. DS51686A-page 55

MPLAB® C32 C Compiler User’s Guide

NOTES:

DS51686A-page 56 © 2007 Microchip Technology Inc.

MPLAB® C32 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 5. Compiler Runtime Environment

5.1 INTRODUCTION

This chapter discusses the MPLAB C32 C compiler runtime environment.

5.2 HIGHLIGHTS

Iltems discussed in this chapter are:

* Register Conventions

» Stack Usage

* Heap Usage

* Function Calling Convention

+ Startup and Initialization

» Contents of the Default Linker Script
* RAM Functions

5.3 REGISTER CONVENTIONS

TABLE 5-1: REGISTER CONVENTIONS

Register Name | Software Name Use

$0 zero Always 0 when read.

$1 at Assembler temporary variable.

$2-$3 v0-v1 Return value from functions.

$4-$7 a0-a3 Used for passing arguments to functions.

$8-$15 to-t7 Temporary registers used by compiler for expression
evaluation. Values not saved across function calls.

$16-$23 s0-s7 Temporary registers whose values are saved across
function calls.

$24-%$25 t8-t9 Temporary registers used by compiler for expression
evaluation. Values not saved across function calls.

$26-$27 k0-k1 Reserved for interrupt/trap handler.

$28 gp Global pointer.

$29 sp Stack Pointer.

$30 fp or s8 Frame Pointer if needed. Additional temporary saved

register if not.

$31 ra Return address for functions.

© 2007 Microchip Technology Inc. DS51686A-page 57

MPLAB® C32 C Compiler User’s Guide

5.4 STACK USAGE

The MPLAB C32 C compiler dedicates general purpose register 29 as the software
Stack Pointer. All processor stack operations, including function call, interrupts and
exceptions use the software stack. The stack grows downward from high addresses to
low addresses.

By default, the size of the stack is 1024 bytes. The size of the stack may be changed
by specifying the size on the linker command line using the

--defsym min_stack_size linker command line option. An example of allocating
a stack of 2048 bytes using the command line is:

pic32-gcc foo.c -Wl,--defsym, min_stack size=2048

The runtime stack grows downward from higher addresses to lower addresses (see
Figure 5-1). The compiler uses two working registers to manage the stack:

» Register 29 (sp) — This is the Stack Pointer. It points to the next free location on
the stack.

» Register 30 (fp) — This is the Frame Pointer. It points to the current function’s
frame. Each function, if required, creates a new frame from which automatic and
temporary variables are allocated. Compiler optimization may eliminate Stack
Pointer references via the Frame Pointer to equivalent references via the Stack
Pointer. This optimization allows the Frame Pointer to be used as a general
purpose register.

FIGURE 5-1: STACK FRAME
C Stack grows
| Space for more | toward
ot ower
! ! addresses
Caller Space for argument 4
Space for argument 3
Space for argument 2
Space for argument 1
FP—»
Local variables and v

temporary values

Callee Register save area

Space for arguments
used in function calls

SP—»

DS51686A-page 58

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

5.5 HEAP USAGE

The C runtime heap is an uninitialized area of data memory that is used for dynamic
memory allocation using the standard C library dynamic memory management
functions, calloc, malloc and realloc. If you do not use any of these functions,
then you do not need to allocate a heap. By default, a heap is not created.

If you do want to use dynamic memory allocation, either directly, by calling one of the
memory allocation functions, or indirectly, by using a standard C library function that
uses one of these functions, then a heap must be created. A heap is created by
specifying its size on the linker command line using the - -defsym min heap size
linker command line option. An example of allocating a heap of 512 bytes using the
command line is:

pic32-gcc foo.c -Wl,--defsym, min heap size=512

The linker allocates the heap immediately before the stack.

5.6 FUNCTION CALLING CONVENTION

The Stack Pointer is always aligned on a 4-byte boundary.

+ All integer types smaller than a 32-bit integer are first converted to a 32-bit value.
The first four 32 bits of arguments are passed via registers a0-a3 (see Table 5-2
for how many registers are required for each data type).

» Although some arguments may be passed in registers, space is still allocated on
the stack for all arguments to be passed to a function (see Figure 5-2).

* When calling a function:

- Registers a0-a3 are used for passing arguments to functions. Values in these
registers are not preserved across function calls.

- Registers t0-t7 and t8-t9 are caller saved registers. The calling function
must push these values onto the stack for the registers’ values to be saved.

- Registers s0-s7 are called saved registers. The function being called must
save any of these registers it modifies.

- Register s8 is a saved register if the optimizer eliminates its use as the Frame
Pointer. s8 is a reserved register otherwise.

- Register ra contains the return address of a function call.

TABLE 5-2: REGISTERS REQUIRED
Data Type Number of Registers Required

char

short

int

long

long long
float
double

NINI=2INN

long double

Structure Up to 4, depending on the size of the struct.

© 2007 Microchip Technology Inc. DS51686A-page 59

MPLAB® C32 C Compiler User’s Guide

FIGURE 5-2: PASSING ARGUMENTS
Example 1:
int add (int, int)
a= add (5, 10);
SP+4 undefined a0 5
SP undefined al 10
Example 2:
void foo (double, double)
call= foo (10.5, 20.1)
SP+12 1 ndefined a0 10.5
SP+8 al
SP+4 a2
undefined 20.1
SP a3
Example 3:
void calculate (double, double, int)
calculate (50.3, 100.0, .10);
.10
SP + 16
SP +12
undefined a0 50.3
SP+8 a1
SP+4 a2
undefined 100.0
SP a3

DS51686A-page 60

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

5.7 STARTUP AND INITIALIZATION

5.71 Provisions

The following provisions are made regarding the runtime model:
» Kernel mode only
+ KSEG1 only

* RAM functions are attributed with _ ramfunc _ or _ longramfunc
meaning that all RAM functions end up in the . ramfunc section

5.7.2 PIC32MX Startup Code

The PIC32MX startup code must perform the following:

Jump to NMI Handler If an NMI Occurred

Initialize Stack Pointer and Heap

Initialize Global Pointer

Call “On Reset” Procedure

Clear Uninitialized Data Sections

Copy Initialized Data from Program Flash to Data Memory
Copy RAM Functions from Program Flash to Data Memory
Initialize Bus Matrix Registers

9. Initialize CPO Registers

10. Trace Control 2 Register (TraceControl2 — CPO Register 23, Select 2)
11. Call “On Bootstrap” Procedure

12. Change Location of Exception Vectors

13. Call Main

©ON>ahr N =

5.7.21 JUMP TO NMI HANDLER IF AN NMI OCCURRED

If an NMI caused entry to the reset vector, a jump to an NMI handler procedure
(_nmi_ handler) occurs. A weak version of the NMI handler procedure is provided
that performs an ERET. The nmi_handler function must be attributed with
nomipslé6 [e.g., attribute ((nomipslé))]since the startup code jumps to
this function.

5.7.2.2 INITIALIZE STACK POINTER AND HEAP

The Stack Pointer (sp) register must be initialized in the startup code. To enable the
startup code to initialize the sp register, the linker script must initialize a variable which
points to the end of KSEG1 data memory'. This variable is named _stack. The user
can change the minimum amount of stack space allocated by providing the command
line option --defsym min stack_size=Ntothelinker. min stack sizeis
provided by the linker script with a default value of 1024.

On a similar note, the user may wish to utilize a heap with their application. While the
startup code does not need to initialize the heap, the standard C libraries (sbrk) must
be made aware of the heap location and its size. The linker script creates a variable to
identify the beginning of the heap. The location of the heap is the end of the utilized
KSEG1 data memory. This variable is named heap. The user can change the
minimum amount of heap space allocated by providing the command line option
--defsym min heap size=Mtothelinker. min heap size is provided by the

1. The end of data memory are different based on whether RAM functions exist. If RAM functions exist, then
part of the DRM must be configured for kernel program to contain the RAM functions, and the Stack
Pointer is located one word prior to the beginning of the DRM kernel program boundary address. If RAM
functions do not exist, then the Stack Pointer is located at the true end of DRM.

© 2007 Microchip Technology Inc. DS51686A-page 61

MPLAB® C32 C Compiler User’s Guide

linker script with a default value of 0. If the heap is used when the heap size is set to
zero, the behavior is the same as when the heap usage exceeds the minimum heap
size. Namely, it overflows into the space allocated for the stack.

The heap and the stack use the unallocated KSEG1 data memory, with the heap
starting from the end of allocated KSEG1 data memory and growing upwards towards
the stack while the stack starts at the end of KSEG1 data memory and grows
downwards towards the heap. If enough space is not available based on the minimum
amount of heap size and stack size requested, the linker issues an error.

FIGURE 5-3: STACK AND HEAP LAYOUT

.data

.got
.sdata
dit8
Jlit4
.sbss

.bss

.heap
_min_heap_size

.app_excpt
text

.rodata
.sdata2
.sbss2

.data (image)
.got (image)
.sdata (image)
1it8 (image)

lit4 (image)
.ramfunc (image) PFM

l
N

.reset
.boot_excpt BEM
_stack -stack
_—

Data RAM Memory

_heap
_

_min_stack_size

Program Flash Memory

FIGURE 5-4: STACK AND HEAP LAYOUT WITH RAM FUNCTIONS
) .data
.app_excpt ‘\ -got
text [.sdata
.rodata ‘ lit8
.sdata2 lit4
sbss2 ‘ -sbss
.data (image) heap bss
.got (image) [E—— .heap
.sdata (image) (
lit8 (image) (_min_heap_size
Jlit4 (image) \
.ramfunc (image) ‘> PERM
i
|
I ol Sl
\ _min_stack_size
[_stack .stack
|
|
| .ramfunc
.reset |
.boot_excpt \ BEM Potentially unused
Program Flash Memory Data RAM Memory

5.7.2.3 INITIALIZE GLOBAL POINTER

The compiler toolchain supports global pointer (gp) relative addressing. Loads and
stores to data lying within 32KB of either side of the address stored in the gp register
can be performed in a single instruction using the gp register as the base register.

DS51686A-page 62

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

Without the global pointer, loading data from a static memory area takes two
instructions — one to load the most significant bits of the 32-bit constant address
computed by the compiler/linker and one to do the data load.

To utilize gp-relative addressing, the compiler and assembler must group all of the
“small” variables and constants into one of the following sections:

e .lit4. » 1its8

¢ .sdata. * sbss

* .sdata.* * sbss.*

* .gnu.linkonce.s.* * .gnu.linkonce.sb.*

The linker must then group all of the above input sections together. The run-time startup
code must initialize the gp register to point to the “middle” of this output section. To
enable the startup code to initialize the gp register, the linker script must initialize a
variable which is 32 KB from the start of the output section containing the “small”
variables and constants. This variable is named _gp (to match core linker scripts).
Besides being initialized in the standard GPR set, the global pointer must also be
initialized in the register shadow set.

FIGURE 5-5: GLOBAL POINTER LOCATION

_______ got ~ T T T T T 7
0x8000 .sdata
lit8
—_—

-9p

Data RAM Memory

5.7.24 CALL “ON RESET” PROCEDURE

A procedure is called after initializing a minimum ‘C’ context. This procedure allows
users to perform actions almost immediately on reset of the device. An empty weak
version of this procedure (_on_reset) is provided with the startup code. Special
considerations needs to be taken by the user if this procedure is written in 'C'. Most
importantly, statically allocated variables are not initialized (with either the specified
initializer or a zero as required for uninitialized variables).

5.7.2.5 CLEAR UNINITIALIZED DATA SECTIONS

There are two uninitialized data sections—. sbss and .bss. The . sbss section is a
data segment containing uninitialized variables less than or equal to n bytes where n
is determined by the -Gn command line option. The .bss section is a data segment
containing uninitialized variables not included in . sbss.

© 2007 Microchip Technology Inc. DS51686A-page 63

MPLAB® C32 C Compiler User’s Guide

The C standard requires that the uninitialized data sections be initialized to 0 on startup.
In order to initialize these sections, the linker script must allocate these sections
contiguously and initialize two variables — one for the start address of the uninitialized
data section and one for the end address of the uninitialized data section. The startup
code clears all data memory locations between these two addresses. These variables
are named bss beginand Dbss_end, respectively.

FIGURE 5-6: UNINITIALIZED DATA

_bss_begin
— >

_bss_end

Data RAM Memory

5.7.26 COPY INITIALIZED DATA FROM PROGRAM FLASH TO DATA MEMORY

Similar to uninitialized data sections, four initialized data sections exist:. sdata,
.data, .1lit4,and .1it8. The . sdata section is a data segment containing
initialized variables less than or equal to n bytes where n is determined by the -Gn
command line option. The .data section is a data segment containing initialized
variables not included in . sdata. The .1it4 and .1it8 sections contain constants
(usually floating-point) which the assembler decides to store in memory rather than in
the instruction stream.

On startup, a copy of the initialized data exists in the program flash. This data must be
copied to data memory. To facilitate this, the linker script must initialize three
variables—one for the start address of the image in program flash, one for the start
address of the section in data memory, and one for the end address of the section in
data memory. The startup code copies all data memory locations from program flash
image to data memory using these variables. These variables are named
_data_image begin, data begin, and data_end, respectively.

DS51686A-page 64 © 2007 Microchip Technology Inc.

Compiler Runtime Environment

FIGURE 5-7: INITIALIZED DATA

_data_begin

_data_end lit4
—_—

_data_image_begin
I .data (image) ~— ~ ~
.got (image)
.sdata (image)
.lit8 (image)
.lit4 (image)

Program Flash Memory Data RAM Memory

5.7.2.7 COPY RAM FUNCTIONS FROM PROGRAM FLASH TO DATA MEMORY

RAM functions are similar to initialized data, except that the data that exists in the
program flash represents functions instead of initial values for symbols. Similar to the
way that initialized data is copied from program flash to data memory, the linker script
must initialize three variables—one for the start address of the image in program flash,
one for the start address of the section in data memory and one for the end address of
the section in data memory. The startup code copies the memory locations from the
program flash image to the data memory using these variables. These variables are
named ramfunc image begin, ramfunc begin,and ramfunc_ end,
respectively.

FIGURE 5-8: RAM FUNCTIONS

_ramfunc_image_begin
S ==\ — iy S SS

.ramfunc (image)

_ramfunc_begin

ramfunc_end .ramfunc },ramfunc,length

e [e

Potentially unused

Program Flash Memory Data RAM Memory

5.7.2.8 INITIALIZE BUS MATRIX REGISTERS

The bus matrix registers (BMXDKPBA, BMXDUDBA, BMXDUPBA) should be initialized by
the startup code if any RAM functions exist, otherwise, these registers should not be
modified. To determine whether any RAM functions exist in the application, the linker
script provides a variable that contains the length of the . ramfunc section’. This

1. All functions attributed with __ ramfunc__ or _ longramfunc__ are placed in the . ramfunc section.

© 2007 Microchip Technology Inc. DS51686A-page 65

MPLAB® C32 C Compiler User’s Guide

variable are named _ramfunc_length. In addition, the linker script provides three
variables that contain the address of the bus matrix registers. These variables are
named bmxdkpba address, bmxdudba_ address, and bmxdupba_address.
The following calculations are used to calculate these addresses:

_bmxdkpba_address = _ramfunc begin -

ORIGIN (${DATA MEMORY LOCATION}) ;
_bmxdudba_address = LENGTH (${DATA MEMORY LOCATION}) ;
_bmxdupba_address = LENGTH (${DATA MEMORY LOCATION}) ;

The linker script ensures that RAM functions are aligned to a 2K alignment boundary
as is required by the BMXDKPBA register.

FIGURE 5-9: BUS MATRIX INITIALIZATION

_ramfunc_begin

.ramfunc }_ramfunc_length

Potentially unused

Data RAM Memory

5.7.29 INITIALIZE CPO REGISTERS

The cPo registers are initialized in the following order:
Count register

Compare register

EBase register

IntCtl register

Cause register

6. Status register

arowbd =

5.7.2.9.1 Hardware Enable Register (HWREna — CPO Register 7, Select 0)

This register contains a bit mask that determines which hardware registers are
accessible via the RDHWR instruction. Privileged software may determine which of the
hardware registers are accessible by the RDHWR instruction. In doing so, a register may
be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to
provide direct access to the Count register, access to the register may be individually
disabled and the return value can be virtualized by the operating system.

No initialization is performed on this register in the PIC32MX startup code.

DS51686A-page 66

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

5.7.2.9.2 Bad Virtual Address Register (Badvaddr — CP0O Register 8, Select 0)

This register is a read-only register that captures the most recent virtual address that
caused an Address Error exception (AJdEL or AJES).

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.9.3 Count Register (Count — CPO Register 9, Select 0)

This register acts as a timer, incrementing at a constant rate, whether or not an
instruction is executed, retired, or any forward progress is made through the pipeline.
The counter increments every other clock, if the DC bit in the Cause register is 0. The
Count register can be written for functional or diagnostic purposes, including at reset
or to synchronize processors. By writing the Countpy bit in the Debug register, it is
possible to control whether the Count register continues incrementing while the
processor is in debug mode.

This register is cleared in the PIC32MX startup code.

5.7.2.9.4 Compare Register (Compare — CPO Register 11, Select 0)

This register acts in conjunction with the Count register to implement a timer and timer
interrupt function. The timer interrupt is an output of the core. The Compare register
maintains a stable value and does not change on its own. When the value of the Count
register equals the value of the Compare register, the SI TimerInt pin is asserted.
This pin remains asserted until the Compare register is written. The SI_TimerInt pin
can be fed back into the core on one of the interrupt pins to generate an interrupt. For
diagnostic purposes, the Compare register is a read/write register. In normal use,
however, the Compare register is write-only. Writing a value to the Compare register,
as a side effect, clears the timer interrupt.

This register is set to 0OxFFFFFFFF in the PIC32MX startup code.

5.7.2.9.5 Status Register (Status — CP0 Register 12, Select 0)

This register is a read/write register that contains the operating mode, interrupt
enabling, and the diagnostic states of the processor. Fields of this register combine to
create operating modes for the processor.

The following settings are initialized by the PIC32MX startup code

(0b000000000x0xx0200000000000000000):

» Access to Coprocessor 0 not allowed in user mode (CUO = 0)

» User mode uses configured endianess (RE = 0)

* No change to exception vectors location (BEV = no change)

* No change to flag bits that indicate reason for entry to the reset exception vector
(SR, NMI = no change)

* If CorExtend User Defined Instructions have been implemented
(Configypy == 1), CorExtend is enabled (CEE = 1), otherwise, CorExtend is
disabled (CEE = 0).

* Interrupt masks are cleared to disable any pending interrupt requests (IM7. . IM2
= 0, IM1..IMO = 0)

* Interrupt priority level is 0 (IPL = 0)

» Base mode is Kernel mode (UM = 0)

 Error level is normal (ERL = 0)

» Exception level is normal (EXL = 0)

* Interrupts are disabled (IE = 0)

© 2007 Microchip Technology Inc. DS51686A-page 67

MPLAB® C32 C Compiler User’s Guide

5.7.2.9.6 Interrupt Control Register (IntCt1l — CPO Register 12, Select 1)

This register controls the expanded interrupt capability added in Release 2 of the
Architecture, including vectored interrupts and support for an external interrupt
controller.

This register contains the vector spacing for interrupt handling. The vector spacing
portion of this register (bits 9..5) is initialized with the value of the vector spacing
symbol by the PIC32MX startup code. All other bits are set to 1.

5.7.2.9.7 Shadow Register Control Register (SRsCt1 — CPO Register 12, Select 2)
This register controls the operation of the GPR shadow sets in the processor.
No initialization is performed on this register in the PIC32MX startup code.

5.7.2.9.8 Shadow Register Map Register (SRSMap — CPO Register 12, Select 3)

This register contains eight 4-bit fields that provide the mapping from a vector number
to the shadow set number to use when servicing such an interrupt. The values from this
register are not used for a non-interrupt exception, or a non-vectored interrupt
(Causery = 0OorIntCtlyg = 0).Insuch cases, the shadow set number comes from
SRSCtlggs. If SRSCt1ygg is Zero, the results of a software read or write of this register
are UNPREDICTABLE. The operation of the processor is UNDEFINED if a value is
written to any field in this register that is greater than the value of SRSCt1y45. The
SRSMap register contains the shadow register set numbers for vector numbers 7..0.
The same shadow set number can be established for multiple interrupt vectors,
creating a many-to-one mapping from a vector to a single shadow register set number.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.9.9 Cause Register (Cause — CP0 Register 13, Select 0)

This register primarily describes the cause of the most recent exception. In addition,
fields also control software interrupt requests and the vector through which interrupts
are dispatched. With the exception of the DC, 1V, and IP1. . IPO0 fields, all fields in the
Cause register are read-only. Release 2 of the Architecture added optional support for
an External Interrupt Controller (EIC) interrupt mode, in which Ip7. .1IP2 are
interpreted as the Requested Interrupt Priority Level (RIPL).

The following settings are initialized by the PIC32MX startup code:

» Enable counting of Count register (DC = no change)
» Use the special exception vector (16#200) (IV = 1)
» Disable software interrupt requests (IP1..IP0 = 0)

5.7.2.9.10 Exception Program Counter (EPC — CPO Register 14, Select 0)

This register is a read/write register that contains the address at which processing
resumes after an exception has been serviced. All bits of the EPC register are
significant and must be writable. For synchronous (precise) exceptions, the EpPC
contains one of the following:

» The virtual address of the instruction that was the direct cause of the exception

» The virtual address of the immediately preceding branch or jump instruction, when
the exception causing instruction is a branch delay slot and the Branch Delay
bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit
in the Status register is set, however, the register can still be written via the MTC0
instruction.

No initialization is performed on this register in the PIC32MX startup code.

DS51686A-page 68

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

5.7.2.9.11 Processor Identification Register (PRid — CP0O Register 15, Select 0)

This register is a 32-bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the
processor.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.9.12 Exception Base Register (EBase — CP0 Register 15, Select 1)

This register is a read/write register containing the base address of the exception
vectors used when Statusggy €quals 0, and a read-only CPU number value that may
be used by software to distinguish different processors in a multi-processor system.
The EBase register provides the ability for software to identify the specific processor
within a multi-processor system, and allows the exception vectors for each processor
to be different, especially in systems composed of heterogeneous processors. Bits
31..12 of the EBase register are concatenated with zeros to form the base of the
exception vectors when Statusggy is 0. The exception vector base address comes
from fixed defaults when Statusggyis 1, or for any EJTAG Debug exception. The reset
state of bits 31..12 of the EBase register initialize the exception base register to
16#80000000, providing backward compatibility with Release 1 implementations. Bits
31..30 of the EBase register are fixed with the value 2#10 to force the exception base
address to be in KSEGO0 or KSEG1 unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with
Statusggy equal 1. The operation of the processor is UNDEFINED if the Exception
Base field is written with a different value when Statusggy is 0.

Combining bits 31..30 with the Exception Base field allows the base address of the
exception vectors to be placed at any 4K byte page boundary. If vectored interrupts are
used, a vector offset greater than 4K byte can be generated. In this case, bit 12 of the
Exception Base field must be zero. The operation of the processor is UNDEFINED if
software writes bit 12 of the Exception Base field with a 1 and enables the use of a
vectored interrupt whose offset is greater than 4K bytes from the exception base
address.

This register us initialized with the value of the ebase address symbol by the
PIC32MX startup code. ebase address is provided by the linker script with a
default value of the start of KSEG1 program memory. The user can change this value
by providing the command line option --defsym _ebase address=A to the linker.

5.7.2.9.13 Config Register (Config — CP0 Register 16, Select 0)

This register specifies various configuration and capabilities information. Most of the
fields in the Config register are initialized by hardware during the Reset exception
process, or are constant.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.9.14 Config1 Register (Configl — CPO Register 16, Select 1)

This register is an adjunct to the Config register and encodes additional information
about the capabilities present on the core. All fields in the Configil register are
read-only.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.9.15 Config2 Register (Config2 — CP0O Register 16, Select 2)

This register is an adjunct to the Conf ig register and is reserved to encode additional
capabilities information. Config?2 is allocated for showing the configuration of level 2/3
caches. These fields are reset to 0 because L2/L3 caches are not supported on the
core. All fields in the Config2 register are read-only.

No initialization is performed on this register in the PIC32MX startup code.

© 2007 Microchip Technology Inc. DS51686A-page 69

MPLAB® C32 C Compiler User’s Guide

5.7.2.9.16 Config3 Register (Config3 — CP0 Register 16, Select 3)

This register encodes additional capabilities. All fields in the config3 register are
read-only.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.9.17 Debug Register (Debug — CP0 Register 23, Select 0)

This register is used to control the debug exception and provide information about the
cause of the debug exception and when re-entering at the debug exception vector due
to a normal exception in debug mode. The read-only information bits are updated every
time the debug exception is taken or when a normal exception is taken when already
in debug mode. Only the DM bit and the EJTAG,,.,. field are valid when read from
non-debug mode. The values of all other bits and fields are UNPREDICTABLE.
Operation of the processor is UNDEFINED if the Debug register is written from
non-debug mode.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.9.18 Trace Control Register (TraceControl — CPO Register 23, Select 1)

This register provides control and status information. The TraceControl register is
only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.10 TRACE CONTROL 2 REGISTER (TraceControl2 — CPO REGISTER 23,
SELECT 2)

This register provides additional control and status information. The TraceControl2
register is only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.10.1 User Trace Data Register (UserTraceData — CP0 Register 23, Select 3)

When this register is written to, a trace record is written indicating a type 1 or type 2
user format. This type is based on the UT bit in the TraceControl register. This
register cannot be written in consecutive cycles. The trace output data is
UNPREDICTABLE if this register is written in consecutive cycles. The
UserTraceData register is only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.10.2 TraceBPC Register (TraceBPC — CPO Register 23, Select 4)

This register is used to control start and stop of tracing using an EJTAG hardware
breakpoint. The hardware breakpoint would then be set as a triggered source and
optionally also as a Debug exception breakpoint. The TraceBPC register is only
implemented if both the hardware breakpoints and the EJTAG Trace cap are present.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.10.3 Debug?2 Register (Debug2 — CPO Register 23, Select 5)

This register holds additional information about Complex Breakpoint exceptions. The
Debug? register is only implemented if complex hardware breakpoints are present.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.10.4 Debug Exception Program Counter (DEPC — CPO Register 24, Select 0)

This register is a read/write register that contains the address at which processing
resumes after a debug exception or debug mode exception has been serviced. For
synchronous (precise) debug and debug mode exceptions, the DEPC contains either:

DS51686A-page 70

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

» The virtual address of the instruction that was the direct cause of the debug
exception, or

» The virtual address of the immediately preceding branch or jump instruction, when
the debug exception causing instruction is in a branch delay slot, and the Debug
Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt, complex break), the DEPC
contains the virtual address of the instruction where execution should resume after the
debug handler code is executed.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.10.5 Error Exception Program Counter (ErrorEPC — CPO Register 30,
Select 0)

This register is a read/write register, similar to the EPC register, except that it is used on
error exceptions. All bits of the ErrorEPC are significant and must be writable. It is also
used to store the program counter on Reset, Soft Reset, and non-maskable interrupt
(NMI) exceptions. The ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address can be:

» The virtual address of the instruction that caused the exception, or

» The virtual address of the immediately preceding branch or jump instruction when
the error causing instruction is a branch delay slot.

Unlike the EPC register, there is no corresponding branch delay slot indication for the
ErrorEPC register.

No initialization is performed on this register in the PIC32MX startup code.

5.7.2.10.6 Debug Exception Save Register (Desave — CPO Register 31, Select 0)

This register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save on of the GPRs that is then
used to save the rest of the context to a pre-determined memory area (such as in the
EJTAG Probe). This register allows the safe debugging of exception handlers and other
types of code where the existence of a valid stack for context saving cannot be
assumed.

No initialization is performed on this register in the PIC32MX startup code.

5.7.211 CALL “ON BOOTSTRAP” PROCEDURE

A procedure is called after initializing the CPO registers. This procedure allows users to
perform actions during bootstrap (i.e., while Statusggy is set) and before entering into
the main routine. An empty weak version of this procedure (_on bootstrap) is
provided with the startup code. This procedure may be used for performing hardware
initialization and/or for initializing the environment required by an RTOS.

5.7.2.12 CHANGE LOCATION OF EXCEPTION VECTORS

Immediately before calling the applications main routine, the Statusggy is cleared to
change the location of the exception vectors from the bootstrap location to the normal
location.

5.7.2.13 CALL MAIN

The last thing that the startup code performs is a call to the main routine. If the user
returns from main, the startup code goes into an infinite loop.

© 2007 Microchip Technology Inc. DS51686A-page 71

MPLAB® C32 C Compiler User’s Guide

5.7.3 Exceptions

In addition, two weak general exception handlers are provided that can be overridden
by the application—one to handle exceptions when Statusggy is 1

(_bootstrap exception handler) and one to handle exceptions when
Statuspgy is 0 (_general exception handler). Both the weak reset exception
handler and the weak general exception handler provided with the startup code enters
an infinite loop. The startup code arranges for a jump to the reset exception handler to
be located at 0xBFC00380 and a jump to the general exception handler to be located
at EBASE + 0x180.

Both handlers must be attributed with the nomips16 [e.g., attribute
((nomips1e6))] since the startup code jumps to these functions.

FIGURE 5-10: EXCEPTIONS

_ebase_address

omso{

.app_excpt

0xBFC00380
e e g
.boot_excpt

Program Flash Memory

DS51686A-page 72 © 2007 Microchip Technology Inc.

Compiler Runtime Environment

5.7.4 Symbols Required by Startup Code and C Library

This section details the symbols that are required by the startup code and C library.
Currently the default linker script defines these symbols. If an application provides a
custom linker script, the user must ensure that all of the following symbols are provided
in order for the startup code and C library to function:

Symbol Name

Description

_bmxdkpba address

The address to place into the BMXDKPBA register if
ramfunc_length is greater than 0.

_bmxdudba_address

The address to place into the BMXDUDBA register if
_ramfunc_length is greater than 0.

bmxdupba address

The address to place into the BMXDUPBA register if
_ramfunc_length is greater than 0.

_bss _begin

The starting location of the uninitialized data.
Uninitialized data includes both .sbss and .bss.

_bss _end

The end location of the uninitialized data.
Uninitialized data includes both . sbss and .bss.

_data begin

The starting location of the initialized data.
Initialized data includes .data, .got, .sdata,
.litg8,and .lit4.

_data_end

The end location of the initialized data. Initialized
data includes .data, .got, .sdata, .1it8, and
.lit4.

_data image begin

The starting location in program memory of the
image of initialized data. Initialized data includes
.data, .got, .sdata, .1it8,and .1it4.

ebase address

The location of EBASE.

_end The end of data allocation. Should be identical to
__heap.

_gp Points to the “middle” of the small variables region.
By convention this is 0x8000 bytes from the first
location used for small variables.

_heap The starting location of the heap in DRM.

_ramfunc_begin

The starting location of the RAM functions. This
should be located at a 2K boundary as it is used to
initialize the BMXDKPBA register.

_ramfunc_end

The end location of the RAM functions.

_ramfunc_image begin

The starting location in program memory of the
image of RAM functions.

_ramfunc_length

The length of the . ramfunc section.

_stack

The starting location of the stack in DRM.
Remember that the stack grows from the bottom of
data memory so this symbol should point to the
bottom of the section allocated for the stack.

_Vvector_spacing

The initialization value for the vector spacing field in
the IntCt1 register.

5.8 CONTENTS OF THE DEFAULT LINKER SCRIPT

The default linker script contains the following categories of information:

» Output Format and Entry Points

 Default Values for Minimum Stack and Heap Sizes

» Processor Definitions Include File

© 2007 Microchip Technology Inc.

DS51686A-page 73

MPLAB® C32 C Compiler User’s Guide

Inclusion of Processor-Specific Object File(s)

Base Exception Vector Address and Vector Spacing Symbols
Memory Address Equates

Memory Regions

Configuration Words Input/Output Section Map

* Input/Output Section Map

Note: Alladdresses specified in the linker scripts should be specified as virtual not
physical addresses.

5.8.1 Output Format and Entry Points

The first several lines of the default linker script define the output format and the entry
point for the application. Copies of the default linker scripts are provided in C:\program
files\...\MPLAB C32\pic32mx\lib\ldscripts.

OUTPUT_ FORMAT ("elf32-tradlittlemips")
OUTPUT_ARCH (pic32mx)
ENTRY (_reset)

The OUTPUT_ FORMAT line selects the object file format for the output file. The output
object file format generated by the MPLAB C32 language tools is a traditional,
little-endian, MIPS, ELF32 format.

The OUTPUT_ARCH line selects the specific machine architecture for the output file.
The output files generated by the MPLAB C32 language tools contains information that
identifies the file was generated for the PIC32MX architecture.

The ENTRY line selects the entry point of the application. This is the symbol identifying
the location of the first instruction to execute. The MPLAB C32 language tools begins
execution at the instruction identified by the _reset label.

5.8.2 Default Values for Minimum Stack and Heap Sizes

The next section of the default linker script provides default values for the minimum

stack and heap sizes.

/*

* Provide for a minimum stack and heap size

- _min_stack_size - represents the minimum space that must
be made available for the stack. Can
be overridden from the command line
using the linker's --defsym option.

- min heap size - represents the minimum space that must
be made available for the heap. Can
be overridden from the command line
using the linker's --defsym option.

* % ok X X X X X

*/
EXTERN (min stack size min heap size)
PROVIDE (min stack size = 0x400) ;
PROVIDE(:min:heap_gize = 0) ;
The EXTERN line ensures that the rest of the linker script has access to the default
valuesof min stack sizeand min heap size assuming thatthe userdoes not
override these values using the linker's - -defsym command line option.

The two PROVIDE lines ensure that a default value is provided for both
_min stack_sizeand min heap size. The default value for the minimum stack
size is 1024 bytes (0x400). The default value for the minimum heap size is 0 bytes.

DS51686A-page 74

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

5.8.3 Processor Definitions Include File

The next line in the default linker script pulls in information specific to the processor.
INCLUDE procdefs.1ld

The file procdefs.1d is included in the linker script at this point. The file is searched
for in the current directory and in any directory specified with the -1, command line
option. The compiler shell ensures that the correct directory is passed to the linker with
the - command line option based on the processor selected with the -mprocessor
command line option.

The processor definitions linker script contains the following pieces of information:

* Inclusion of Processor-Specific Object File(s)

» Base Exception Vector Address and Vector Spacing Symbols
* Memory Address Equates

* Memory Regions

» Configuration Words Input/Output Section Map

5.8.3.1 INCLUSION OF PROCESSOR-SPECIFIC OBJECT FILE(S)

This section of the processor definitions linker script ensures that the
processor-specific object file(s) get included in the link.

/**

* Processor-specific object file. Contains SFR definitions.
**/

INPUT (“processor.o”)

The INPUT line specifies that processor. o should be included in the link as if this file
were named on the command line. The linker attempts to find this file in the current
directory. If it is not found, the linker searches through the library search paths (i.e., the
paths specified with the -1, command line option).

5.8.3.2 BASE EXCEPTION VECTOR ADDRESS AND VECTOR SPACING
SYMBOLS

This section of the processor definitions linker script defines values for the base
exception vector address and vector spacing.

/**

* For interrupt vector handling
**/

vector spacing= 0x00000001;
_ebase address= 0x9FC01000;

The first line defines a value of 1 for _vector spacing. The available memory for
exceptions only supports a vector spacing of 1. The second line defines the location of
the base exception vector address (EBASE). This address is located in the KSEGO boot
segment.

5.8.3.3 MEMORY ADDRESS EQUATES

This section of the processor definitions linker script provides information about certain
memory addresses required by the default linker script.

/**

* Memory Address Equates
**/
_RESET ADDR= O0xBFC00000;
_BEV_EXCPT ADDR= 0xBFC00380;
_DBG_EXCPT ADDR= 0xBFC00480;
_DBG_CODE_ADDR= 0xBFC02000;
_GEN_EXCPT ADDR= _ebase address + 0x180;

© 2007 Microchip Technology Inc. DS51686A-page 75

MPLAB® C32 C Compiler User’s Guide

The RESET ADDR defines the processor's reset address. This is the virtual begin
address of the IFM Boot section in Kernel mode.

The _BEV_EXCPT_ADDR defines the address that the processor jumps to when an
exception is encountered and Statusggy = 1.

The DBG EXCPT ADDR defines the address that the processor jumps to when a
debug exception is encountered.

The _DBG_CODE_ADDR defines the address that the start address of the debug
executive.

The GEN_EXCPT ADDR defines the address that the processor jumps to when an
exception is encountered and Statusggy = 0.

5.8.34 MEMORY REGIONS

This section of the processor definitions linker script provides information about the
memory regions that are available on the device.

/**

* Memory Regions

* Memory regions without attributes cannot be used for

* orphaned sections. Only sections specifically assigned to

* these regions can be allocated into these regions.
**/

MEMORY

{

kseg0_program mem (rx) ORIGIN 0x9D000000, LENGTH 0x8000
kseg0_boot_mem ORIGIN 0x9FC00490, LENGTH 0x970
exception mem ORIGIN 0x9FC01000, LENGTH 0x1000
ksegl_boot_mem ORIGIN 0xBFC00000, LENGTH 0x490
debug exec_mem ORIGIN 0xBFC02000, LENGTH 0xFFO
config3 ORIGIN 0xBFCO2FF0, LENGTH 0x4
config2 ORIGIN 0xBFCO2FF4, LENGTH 0x4
configl ORIGIN 0xBFCO02FF8, LENGTH 0x4
config0 ORIGIN O0xBFCO2FFC, LENGTH 0x4
ksegl_data mem (w!x) ORIGIN 0xA0000000, LENGTH 0x2000
sfrs ORIGIN 0xBF800000, LENGTH 0x10000

}

Eleven memory regions are defined with an associated start address and length:

Program memory region (kseg0_program_mem) for application code

Boot memory regions (kseg0_boot_mem and ksegl boot mem)

Exception memory region (exception mem)

Debug executive memory region (debug_exec_mem)

Configuration memory regions (config3, config2, configl, and config0)
Data memory region (ksegl data_ mem)

7. SFR memory region (sfrs)

ook wh =

The default linker script uses these names to locate sections into the correct regions.
Sections which are non-standard become orphaned sections. The attributes of the
memory regions are used to locate these orphaned sections. The attributes (rx)
specify that read-only sections or executable sections can be located into the program
memory regions. Similarly, the attributes (w ! x) specify that sections that are not
read-only and not executable can be located in the data memory region. Since no
attributes are specified for the boot memory region, the configuration memory regions,
or the SFR memory region, only specified sections may be located in these regions

DS51686A-page 76

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

(i.e., orphaned sections may not be located in the boot memory regions, the exception
memory region, the configuration memory regions, the debug executive memory
region, or the SFR memory region).

5.8.3.5 CONFIGURATION WORDS INPUT/OUTPUT SECTION MAP

The last section in the processor definitions linker script is the input/output section map
for configuration words. This section map is additive to the Input/Output Section Map
found in the default linker script (see Section 5.8.4 “Input/Output Section Map”). It
defines how input sections for configuration words are mapped to output sections for
configuration words. Note that input sections are portions of an application that are
defined in source code, while output sections are created by the linker. Generally,
several input sections may be combined into a single output section. All output sections
are specified within a SECTIONS command in the linker script.

For each configuration word that exists on the specific processor, a distinct output
section named .config address exists where address is the location of the
configuration word in memory. Each of these sections contains the data created by the
#pragma config directive (see Section 4.8.1 “#pragma config”) for that
configuration word. Each section is assigned to their respective memory region
(confign).

SECTIONS

{

.config BFCO2FF0 : ({
* (.config BFCO2FFO0)

} > config3

.config BFCO2FF4 : ({
* (.config BFCO02FF4)

} > config2

.config BFCO2FF8 : ({
* (.config BFCO2FF8)

} > configl

.config BFCO2FFC : ({
* (.config BFCO2FFC)

} > config0

}
5.8.4 Input/Output Section Map

The last section in the default linker script is the input/output section map. The section
map is the heart of the linker script. It defines how input sections are mapped to output
sections. Note that input sections are portions of an application that are defined in
source code, while output sections are created by the linker. Generally, several input
sections may be combined into a single output section. All output sections are specified
within a SECTIONS command in the linker script.

The following output sections may be created by the linker:

* .reset Section

» .bev_excpt Section

» .dbg_excpt Section

+ .dbg_code Section
 .app_excpt Section
 .vector_0 .. .vector_63 Sections
+ .startup Section

+ .text Section

+ .rodata Sectionn

© 2007 Microchip Technology Inc. DS51686A-page 77

MPLAB® C32 C Compiler User’s Guide

+ .sdata2 Section
 .sbss2 Section

+ .dbg_data Section
+ .data Section

+ .got Section

+ .sdata Section

+ lit8 Section

+ .lit4 Section

+ .sbss Section

+ .bss Section

+ .heap Section

+ .stack Section

» .ramfunc Section
+ Stack Location

» Debug Sections

5.8.41 .RESET SECTION

This section contains the code that is executed when the processor performs a reset.
This section is located at the reset address (RESET ADDR) as specified in the
processor definitions linker script and is assigned to the boot memory region

(ksegl boot mem).

.reset RESET ADDR :

{

* (.reset)
} > ksegl boot mem

5.8.4.2 .BEV_EXCPT SECTION

This section contains the handler for exceptions that occur when Statusggy = 1. This
section is located at the BEV exception address (_ BEV_EXCPT ADDR) as specified in
the processor definitions linker script and is assigned to the boot memory region
(ksegl boot_ mem).

.bev_excpt BEV_EXCPT ADDR :

{

* (.bev_handler)
} > ksegl boot mem

5.8.43 .DBG_EXCPT SECTION

This section reserves space for the debug exception vector. This section is only
allocated if the symbol DEBUGGER has been defined. (This symbol is defined if the
-mdebugger command line option is specified to the shell.) This section is located at
the debug exception address (DBG_EXCPT ADDR) as specified in the processor
definitions linker script and is assigned to the boot memory region

(ksegl boot mem). The section is marked as NOLOAD as it is only intended to ensure
that application code cannot be placed at locations reserved for the debug executive.

.dbg_excpt DBG_EXCPT ADDR (NOLOAD)

{

. += (DEFINED (_DEBUGGER) ? 0x8 :
} > ksegl boot mem

0x0) ;

DS51686A-page 78

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

5844 .DBG_CODE SECTION

This section reserves space for the debug exception handler. This section is only
allocated if the symbol DEBUGGER has been defined. (This symbol is defined if the
-mdebugger command line option is specified to the shell.) This section is located at
the debug code address (_ DBG_CODE_ADDR) as specified in the processor definitions
linker script and is assigned to the debug executive memory region

(debug exec_mem). The section is marked as NOLOAD as it is only intended to ensure
that application code cannot be placed at locations reserved for the debug executive.

.dbg code _DBG CODE ADDR (NOLOAD)

{

. += (DEFINED (_DEBUGGER) ? OXFFO0 : 0x0);
} > debug exec mem

5.8.45 .APP_EXCPT SECTION

This section contains the handler for exceptions that occur when Statusggy = 0. This
section is located at the general exception address (_ GEN_EXCPT_ ADDR) as specified
in the processor definitions linker script and is assigned to the exception memory
region (exception mem).

.app_excpt GEN_EXCPT ADDR :

{
* (.gen_handler)
} > exception_mem

5846 .VECTOR_0...VECTOR_63 SECTIONS

These sections contain the handler for each of the interrupt vectors. These sections are
located at the correct vectored addresses using the formula:

_ebase _address + 0x200 + (_vector spacing << 5) * n
where n is the respective vector number.

Each of the sections is followed by an assert that ensures the code located at the vector
does not exceed the vector spacing specified.

.vector n _ebase address + 0x200 + (_vector spacing << 5) * n :

{

* (.vector n)
} > exception mem
ASSERT (SIZEOF (.vector n) < (vector spacing << 5), "function at
exception vector n too large")

5.8.4.7 .STARTUP SECTION

This section contains the C startup code. This section is assigned to the KSEGO0 boot
memory region (kseg0_boot_mem).

.startup ORIGIN (kseg0_boot_mem)

{
* (.startup)
} > kseg0_boot mem

5.8.4.8 .TEXT SECTION

This section collects executable code from all of the application's input files. This
section is assigned to the program memory region (kseg0_program_mem) and has a
fill value of NOP (0). Symbols are defined to represent the begin (_text begin)and
end (_text_ end) addresses of this section.

.text ORIGIN (kseg0 program mem)

{

_text begin = . ;

© 2007 Microchip Technology Inc. DS51686A-page 79

MPLAB® C32 C Compiler User’s Guide

* (.text .stub .text.* .gnu.linkonce.t.¥*)
KEEP (*(.text.*personality*))
* (.gnu.warning)
* (.mipsl6.fn.*)
* (.mipslé6.call.*)
_text end = . ;
} > kseg0 program mem =0

5.8.49 .RODATA SECTION

This section collects the read-only sections from all of the application's input files. This
section is assigned to the program memory region (kseg0_program_mem).

.rodata

{

* (.rodata .rodata.* .gnu.linkonce.r.¥*)
* (.rodatal)
} > kseg0_program_mem

5.8.4.10 .SDATA2 SECTION

This section collects the small initialized constant global and static data from all of the
application's input files. Because of the constant nature of the data, this section is also
a read-only section. This section is assigned to the program memory region
(kseg0_program_mem).
/*

* Small initialized constant global and static data can be

* placed in the .sdata2 section. This is different from

* .sdata, which contains small initialized non-constant

* global and static data.

*/

.sdataz2

{

* (.sdata2 .sdata2.* .gnu.linkonce.s2.*)
} > kseg0_program mem

5.8.4.11 .SBSS2 SECTION

This section collects the small uninitialized constant global and static data from all of
the application's input files. Because of the constant nature of the data, this section is
also a read-only section. This section is assigned to the program memory region
(kseg0_program_ mem).

/*
* Uninitialized constant global and static data (i.e.,
* variables which will always be zero). Again, this is
* different from .sbss, which contains small non-initialized,
* non-constant global and static data.
*/
.sbss2

{

* (.sbss2 .sbss2.* .gnu.linkonce.sb2.*)
} > kseg0_program_mem

5.8.4.12 .DBG_DATA SECTION

This section reserves space for the data required by the debug exception handler. This
section is only allocated if the symbol DEBUGGER has been defined. (This symbol is
defined if the -mdebugger command line option is specified to the shell.) This section
is assigned to the data memory region (ksegl data_mem). The section is marked as
NOLOAD as it is only intended to ensure that application data cannot be placed at
locations reserved for the debug executive.

DS51686A-page 80

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

.dbg_data (NOLOAD)

{

+= (DEFINED (_DEBUGGER) ? 0x200 : 0x0);
} > ksegl data mem

5.8.4.13 .DATA SECTION

This section collects the initialized data from all of the application's input files. This
section is assigned to the data memory region (ksegl data_mem) with a load address
located in the program memory region (kseg0_program_mem). Symbols are defined
to represent the virtual begin (_data_ begin)and end (_data_end)addresses of this
section, as well as the physical begin address of the data in program memory
(_data_image begin).

.data

{
_data begin = . ;
* (.data .data.* .gnu.linkonce.d.?*)
KEEP (*(.gnu.linkonce.d.*personality*))
* (.datal)
} > ksegl_data mem AT> kseg0_program mem
_data image begin = LOADADDR (.data) ;

5.8.4.14 .GOT SECTION

This section collects the global offset table from all of the application's input files. This
section is assigned to the data memory region (ksegl data_mem) with a load address
located in the program memory region (kseg0_program_mem). A symbol is defined
to represent the location of the global pointer (_gp).

_gp = ALIGN(16) + Ox7FFO0 ;
.got
{
*(.got.plt) *(.got)
} > ksegl_data mem AT> kseg0_program mem

5.8.4.15 .SDATA SECTION

This section collects the small initialized data from all of the application's input files.
This section is assigned to the data memory region (ksegl data_ mem) with a load
address located in the program memory region (kseg0_program_mem). Symbols are
defined to represent the virtual begin (_sdata begin)and end (_sdata_end)
addresses of this section.
/*

* We want the small data sections together, so

* single-instruction offsets can access them all, and

* initialized data all before uninitialized, so

* we can shorten the on-disk segment size.

*/
.sdata
{

sdata begin = . ;

;(.sdaga .sdata.* .gnu.linkonce.s.*)

_sdata end = . ;
} > ksegl data mem AT> kseg0 program mem

© 2007 Microchip Technology Inc. DS51686A-page 81

MPLAB® C32 C Compiler User’s Guide

5.8.4.16 .LIT8 SECTION

This section collects the 8-byte constants (usually floating-point) which the assembler
decides to store in memory rather than in the instruction stream from all of the
application's input files. This section is assigned to the data memory region

(ksegl data_mem) with a load address located in the program memory region
(kseg0_program_mem).

.1its8

{
*(.1its8)
} > ksegl data mem AT> kseg0 program mem

5.8.4.17 .LIT4 SECTION

This section collects the 4-byte constants (usually floating-point) which the assembler
decides to store in memory rather than in the instruction stream from all of the
application's input files. This section is assigned to the data memory region

(ksegl data_mem) with a load address located in the program memory region
(kseg0_program_mem). A symbol is defined to represent the virtual end address of
the initialized data (_data_end).

.1lit4

{

*(.1it4)
} > ksegl_data mem AT> kseg0_program mem
_data_end = . ;

5.8.4.18 .SBSS SECTION

This section collects the small uninitialized data from all of the application's input files.
This section is assigned to the data memory region (ksegl data_ mem). A symbol is
defined to represent the virtual begin address of uninitialized data (_bss_begin).
Symbols are also defined to represent the virtual begin (_sbss_begin) and end
(_sbss_end) addresses of this section.

_bss_begin = . ;

.sbss

{
_sbss begin = . ;
* (.dynsbss)
(.sbss .sbss. .gnu.linkonce.sb.*)
* (. scommon)
_sbss end = . ;
} > ksegl data mem

5.8.4.19 .BSS SECTION

This section collects the uninitialized data from all of the application's input files. This
section is assigned to the data memory region (ksegl data_mem). A symbol is
defined to represent the virtual end address of uninitialized data (_bss_end). A symbol
is also defined to represent the virtual end address of data memory (_end).

.bss
{
* (.dynbss)
(.bss .bss. .gnu.linkonce.b.*)
* (COMMON)
/*
* Align here to ensure that the .bss section occupies
* gpace up to _end. Align after .bss to ensure correct
* alignment even if the .bss section disappears because
* there are no input sections.

DS51686A-page 82 © 2007 Microchip Technology Inc.

Compiler Runtime Environment

*/
= ALIGN(32 / 8) ;
} > ksegl data mem
= ALIGN (32 / 8) ;
_end = . ;
_bss_end .

5.8.4.20 .HEAP SECTION

This section reserves space for the heap, which is required for dynamic memory
allocation. A symbol is defined to represent the virtual address of the heap (_heap).
The minimum amount of space reserved for the heap is determined by the symbol
_min heap size

/* Heap allocating takes a chunk of memory following BSS */

.heap ALIGN (4)

{
_heap = . ;
+= _min_heap_size ;
} > ksegl data mem

5.8.4.21 .STACK SECTION

This section reserves space for the stack. The minimum amount of space reserved for
the stack is determined by the symbol _min stack_ size.

/* Stack allocation follows the heap */
.stack ALIGN (4)

+= min stack size ;
} > ksegl data mem

5.8.4.22 .RAMFUNC SECTION

This section collects the RAM functions from all of the application's input files. This
section is assigned to the data memory region (ksegl data_ mem)with aload address
located in the program memory region (kseg0_program_mem). Symbols are defined
to represent the virtual begin (_ramfunc_begin)and end (_ramfunc_end)
addresses of this section, as well as the physical begin address of the RAM functions
in program memory (_ramfunc_image begin) and a length of the RAM functions
(_ramfunc length). In addition, the addresses for the bus matrix registers are
calculated (_bmxdkpba address, bmxdudba address, and
_bmxdupba_address).
/*

* RAM functions go at the end of our stack and heap allocation.

* Alignment of 2K required by the boundary register (BMXDKPBA) .

*/
.ramfunc ALIGN (2K)

{
_ramfunc_begin = . ;
* (.ramfunc .ramfunc.*)
= ALIGN (4)
_ramfunc _end = . ;
} > ksegl data mem AT> kseg0 program mem
ramfunc image begin = LOADADDR (.ramfunc) ;
_ramfunc_length = SIZEOF(.ramfunc) ;
_bmxdkpba_address = _ramfunc _begin - ORIGIN (ksegl data_mem) ;
_bmxdudba_address LENGTH (ksegl data mem) ;
_bmxdupba_address LENGTH (ksegl data mem) ;

© 2007 Microchip Technology Inc. DS51686A-page 83

MPLAB® C32 C Compiler User’s Guide

5.8.4.23 STACK LOCATION

A symbol is defined to represent the location of the Stack Pointer (_stack). This
location is dependent on whether RAM functions exist in the application. If RAM
functions exist, then the location of the Stack Pointer should include the gap between
the stack section and the beginning of the . ramfunc section caused by the alignment
of the . ramfunc section minus one word. If RAM functions do not exist, then the
location of the Stack Pointer should be the end of the KSEG1 data memory.

/*

* The actual top of stack should include the gap between
* the stack section and the beginning of the .ramfunc
* section caused by the alignment of the .ramfunc section
* minus 1 word. If RAM functions do not exist, then the top
* of the stack should point to the end of the ksegl data
* memory.
*/
_stack = (_ramfunc_length > 0)

? _ramfunc _begin - 4
ORIGIN (ksegl data mem) + LENGTH (ksegl data mem) ;
ASSERT((min stack size + min heap size) <= (_stack - _heap),
"Not enough space to allocate both stack and heap. Reduce heap
and/or stack size.")

5.8.4.24 DEBUG SECTIONS

The debug sections contain debugging information. They are not loaded into program
flash.

/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 * (.stabstr) }
.stab.excl 0 *(.stab.excl) }
.stab.exclstr O * (.stab.exclstr) }
.stab.index 0 * (.stab.index) }
.stab.indexstr 0 * (.stab.indexstr) }
. comment : * (.comment) }
/* DWARF debug sections.

Symbols in the DWARF debugging sections are relative

e el e

o

to the beginning of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug srcinfo) }
.debug_sfnames 0 : { .debug_sfnames) }

.debug_aranges 0 : { .debug_aranges) }

(
/* DWARF 1.1 and DWARF 2 */
(
.debug_pubnames 0 : { *(.debug_pubnames) }

/* DWARF 2 */

.debug_info 0 { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 { *(.debug_abbrev) }

.debug_line 0 { *(.debug_line) }

.debug_frame 0 { *(.debug_frame) }

.debug_str 0 { *(.debug_str) }

.debug_loc 0 { *(.debug_loc) }

.debug macinfo 0 : { *(.debug _macinfo) }

/* SGI/MIPS DWARF 2 extensions */

.debug_weaknames 0 : { *(.debug weaknames) }
.debug_funcnames 0 : { *(.debug funcnames) }

DS51686A-page 84

© 2007 Microchip Technology Inc.

Compiler Runtime Environment

.debug_typenames 0 : { *(.debug typenames) }
.debug_varnames 0 : { *(.debug varnames) }
/DISCARD/ : { *(.note.GNU-stack) }

5.9 RAM FUNCTIONS

Functions may be located in RAM to improve performance. The ramfunc___ and
__longramfunc _ specifiers are used on a function declaration to specify that the
function will be executed out of RAM.

Functions specified as a RAM function will be copied to RAM by the startup code and
all calls to those functions will reference the RAM location. Functions located in RAM
will be in a different 512MB memory segment than functions located in program
memory, so the longcall attribute should be applied to any RAM function which will
be called from a function not in RAM. The _ longramfunc___ specifier will apply the
longcall attribute as well as place the function in RAM".

/* function ‘foo’ will be placed in RAM */
void _ ramfunc__ foo (void)

{
}

/* function ‘bar’ will be placed in RAM and will be invoked
using the full 32 bit address */
void _ longramfunc__ bar (void)

{
}

1. Specifying _ longramfunc__ is functionally equivalent to specifying both _ ramfunc and
_ _longcall_ .

© 2007 Microchip Technology Inc. DS51686A-page 85

MPLAB® C32 C Compiler User’s Guide

NOTES:

DS51686A-page 86 © 2007 Microchip Technology Inc.

MPLAB® C32 C COMPILER
MICROCHIP USER’S GUIDE

Appendix A. Implementation Defined Behavior

A.1 INTRODUCTION

This chapter discusses the choices for implementation defined behaviorin MPLAB C32
C compiler.

A.2 HIGHLIGHTS

Iltems discussed in this chapter are:

» Overview

* Translation

* Environment

* Identifiers

» Characters

* Integers

* Floating-Point

* Arrays and Pointers

* Hints

* Structures, Unions, Enumerations, and Bit-fields
* Qualifiers

* Declarators

+ Statements

» Pre-Processing Directives
* Library Functions

+ Architecture

A.3 OVERVIEW

ISO C requires a conforming implementation to document the choices for behaviors
defined in the standard as “implementation-defined.” The following sections list all such
areas, the choices made for MPLAB C32 C compiler, and the corresponding section
number from the ISO/IEC 9899:1999 standard.

A.4 TRANSLATION
ISO Standard: “How a diagnostic is identified (3.10, 5.1.1.3).”
Implementation: All output to stderr is a diagnostic.
ISO Standard: “Whether each nonempty sequence of white-space characters
other than new-line is retained or replaced by one space character

in translation phase 3 (5.1.1.2).”

Implementation: Each sequence of whitespace is replaced by a single character.

© 2007 Microchip Technology Inc. DS51686A-page 87

MPLAB® C32 C Compiler User’s Guide

A.5 ENVIRONMENT

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The name and type of the function called at program startup in a
freestanding environment (5.1.2.1).”

int main (void);

“The effect of program termination in a freestanding environment
(5.1.2.1).”

An infinite loop (branch to self) instruction will be execute.

“An alternative manner in which the main function may be defined
(5.1.2.2.1).”

int main (void);

“The values given to the strings pointed to by the argv argument
tomain (5.1.2.2.1).”

No arguments are passed to main. Reference to argc or argv is
undefined.

“What constitutes an interactive device (5.1.2.3).”
Application defined.

“Signals for which the equivalent of signal (sig, SIG IGN);
is executed at program startup (7.14.1.1).”

Signals are application defined.

“The form of the status returned to the host environment to
indicate unsuccessful termination when the SIGABRT signal is
raised and not caught (7.20.4.1).”

The host environment is application defined.

“The forms of the status returned to the host environment by the
exit function to report successful and unsuccessful termination
(7.20.4.3).”

The host environment is application defined.

“The status returned to the host environment by the exit function
if the value of its argument is other than zero, EXIT SUCCESS, or
EXIT FAILURE (7.20.4.3).”

The host environment is application defined.

“The set of environment names and the method for altering the
environment list used by the getenv function (7.20.4.4).”

The host environment is application defined.

DS51686A-page 88

© 2007 Microchip Technology Inc.

Implementation Defined Behavior

ISO Standard:

Implementation:

A.6 IDENTIFIERS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

A.7 CHARACTERS

ISO Standard:

Implementation:

ISO Standard:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The manner of execution of the string by the system function
(7.20.4.5).”

The host environment is application defined.

“Which additional multibyte characters may appear in identifiers
and their correspondence to universal character names (6.4.2).”

No.

“The number of significant initial characters in an identifier
(5.2.41,6.4.2)”

All characters are significant.

“The number of bits in a byte (C90 3.4, C99 3.6).”
8.

“The values of the members of the execution character set (C90
and C99 5.2.1).”

“The unique value of the member of the execution character set
produced for each of the standard alphabetic escape sequences
(C90 and C99 5.2.2).”

The execution character set is ASCII.

“The value of a char object into which has been stored any
character other than a member of the basic execution character
set (C90 6.1.2.5, C99 6.2.5).”

The value of the char object is the 8 bit binary representation of the
character in the source character set. That is, no translation is
done.

“Which of signed char or unsigned char has the same range,
representation, and behavior as “plain” char (C90 6.1.2.5, C90
6.2.1.1,C996.2.5,C996.3.1.1).”

By default, signed char is functionally equivalent to plain char. The
options -funsigned-char and -fsigned-char can be used
to change the default.

“The mapping of members of the source character set (in
character constants and string literals) to members of the
execution character set (C90 6.1.3.4, C99 6.4.4.4, C90 and C99
5.1.1.2)”

The binary representation of the source character set is preserved
to the execution character set.

© 2007 Microchip Technology Inc.

DS51686A-page 89

MPLAB® C32 C Compiler User’s Guide

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

A.8 INTEGERS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

“The value of an integer character constant containing more than
one character or containing a character or escape sequence that
does not map to a single-byte execution character (C90 6.1.3.4,
C996.4.4.4).”

The compiler determines the value for a multi-character character
constant one character at a time. The previous value is shifted left
by eight, and the bit pattern of the next character is masked in. The
final result is of type int. If the result is larger than can be
represented by an int, a warning diagnostic is issued and the value
truncated to int size.

“The value of a wide character constant containing more than one
multibyte character, or containing a multibyte character or escape
sequence not represented in the extended execution character set
(C906.1.3.4,C996.4.4.4).”

See previous.

“The current locale used to convert a wide character constant
consisting of a single multibyte character that maps to a member
of the extended execution character set into a corresponding wide
character code (C90 6.1.3.4, C996.4.4.4).”

LC_ALL

“The current locale used to convert a wide string literal into
corresponding wide character codes (C90 6.1.4, C99 6.4.5).”

LC_ALL

“The value of a string literal containing a multibyte character or
escape sequence not represented in the execution character set
(C90 6.1.4, C99 6.4.5).”

The binary representation of the characters is preserved from the
source character set.

“Any extended integer types that exist in the implementation (C99
6.2.5).”

There are no extended integer types.

“Whether signed integer types are represented using sign and
magnitude, two's complement, or one's complement, and whether
the extraordinary value is a trap representation or an ordinary
value (C99 6.2.6.2).”

All integer types are represented as two’s complement, and all bit
patterns are ordinary values.

“The rank of any extended integer type relative to another
extended integer type with the same precision (C99 6.3.1.1).”

DS51686A-page 90

© 2007 Microchip Technology Inc.

Implementation Defined Behavior

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

FLOATING-POINT

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

No extended integer types are supported.

“The result of, or the signal raised by, converting an integer to a
signed integer type when the value cannot be represented in an
object of that type (C90 6.2.1.2, C99 6.3.1.3).”

When converting value X to a type of width N, the value of the
result is the least significant N bits of the 2’s complement
representation of X. That is, X is truncated to N bits. No signal is
raised.

“The results of some bitwise operations on signed integers (C90
6.3, C99 6.5).”

Bitwise operations on signed values act on the 2’s complement
representation, including the sign bit. The result of a signed right
shift expression is sign extended.

C99 allows some aspects of signed "<<' to be undefined. MPLAB
C32 C compiler does not do so.

“The accuracy of the floating-point operations and of the library
functions in <math.h> and <complex.h> that return floating-point
results (C90 and C99 5.2.4.2.2).”

The accuracy is unknown.

“The accuracy of the conversions between floating-point internal
representations and string representations performed by the
library functions in <stdio.h>, <stdlib.h>, and <wchar.h> (C90 and
C995.24.2.2)”

The accuracy is unknown.

“The rounding behaviors characterized by non-standard values of
FLT_ROUNDS (C90 and C99 5.2.4.2.2).”

No such values are used.

“The evaluation methods characterized by non-standard negative
values of FLT_EVAL_METHOD (C90 and C99 5.2.4.2.2).”

No such values are used.

“The direction of rounding when an integer is converted to a
floating-point number that cannot exactly represent the original
value (C90 6.2.1.3, C99 6.3.1.4).”

C99 Annex F is followed.

“The direction of rounding when a floating-point number is

converted to a narrower floating-point number (C90 6.2.1.4,
6.3.1.5).”

© 2007 Microchip Technology Inc.

DS51686A-page 91

MPLAB® C32 C Compiler User’s Guide

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:
ISO Standard:
Implementation:

ISO Standard:

Implementation:
ISO Standard:
Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

C99 Annex F is followed.

“How the nearest representable value or the larger or smaller
representable value immediately adjacent to the nearest
representable value is chosen for certain floating constants (C90
6.1.3.1,C996.4.4.2).”

C99 Annex F is followed.

“Whether and how floating expressions are contracted when not
disallowed by the FP_CONTRACT pragma (C99 6.5).”

The pragma is not implemented.

“The default state for the FENV_ACCESS pragma (C99 7.6.1).”
This pragma is not implemented.

“Additional floating-point exceptions, rounding modes,
environments, and classifications, and their macro names (C99
7.6,7.12).”

None supported.

“The default state for the FP_CONTRACT pragma (C99 7.12.2).”
This pragma is not implemented.

“Whether the “inexact” floating-point exception can be raised
when the rounded result actually does equal the mathematical
result in an IEC 60559 conformant implementation (C99 F.9).”
Unknown.

“Whether the “underflow” (and “inexact”) floating-point exception
can be raised when a result is tiny but not inexact in an IEC 60559

conformant implementation (C99 F.9).”

Unknown.

A.10 ARRAYS AND POINTERS

ISO Standard:

Implementation:

“The result of converting a pointer to an integer or vice versa (C90
6.3.4,C996.3.2.3).”

A cast from an integer to a pointer or vice versa results uses the
binary representation of the source type, reinterpreted as
appropriate for the destination type.

If the source type is larger than the destination type, the most
significant bits are discarded. When casting from a pointer to an
integer, if the source type is smaller than the destination type, the
result is sign extended. When casting from an integer to a pointer,
if the source type is smaller than the destination type, the result is
extended base don the signedness of the source type.

DS51686A-page 92

© 2007 Microchip Technology Inc.

Implementation Defined Behavior

A.11 HINTS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The size of the result of subtracting two pointers to elements of
the same array (C90 6.3.6, C99 6.5.6).”

32 bit signed integer.

“The extent to which suggestions made by using the register
storage-class specifier are effective (C90 6.5.1, C99 6.7.1).”

The register storage class specifier generally has no effect.

“The extent to which suggestions made by using the inline function
specifier are effective (C99 6.7.4).”

If -fno-inline or -00 are specified, no functions will be inlined,
even if specified with the inline specifier. Otherwise, the
function may or may not be inlined dependent on the optimization
heuristics of the compiler.

A.12 STRUCTURES, UNIONS, ENUMERATIONS, AND BIT-FIELDS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

“A member of a union object is accessed using a member of a
different type (C90 6.3.2.3).”

The corresponding bytes of the union object are interpreted as an
object of the type of the member being accessed without regard
for alignment or other possible invalid conditions.

“Whether a “plain” int bit-field is treated as a signed int bit-field or
as an unsigned int bit-field (C906.5.2, C906.5.2.1,C996.7.2, C99
6.7.2.1).”

By default, a plain int bit-field is treated as a signed integer. This
behavior can be altered by use of the -funsigned-bitfields
command line option.

“Allowable bit-field types other than _Bool, signed int, and
unsigned int (C99 6.7.2.1).”

No other types are supported.

“Whether a bit-field can straddle a storage-unit boundary (C90
6.5.2.1,C99 6.7.2.1).”

No.

“The order of allocation of bit-fields within a unit (C906.5.2.1, C99
6.7.2.1).”

Bit-fields are allocated left to right.

“The alignment of non-bit-field members of structures (C90
6.5.2.1,C99 6.7.2.1).”

© 2007 Microchip Technology Inc.

DS51686A-page 93

MPLAB® C32 C Compiler User’s Guide

Implementation:

ISO Standard:

Implementation:

A.13 QUALIFIERS

ISO Standard:

Implementation:

A.14 DECLARATORS

ISO Standard:

Implementation:

A.15 STATEMENTS

ISO Standard:

Implementation:

Each member is located to the lowest available offset allowable
according to the alignment restrictions of the member type.

“The integer type compatible with each enumerated type (C90
6.5.2.2,C996.7.2.2).”

If the enumeration values are all non-negative, the type is
unsigned int, elseitis int. The -fshort-enums command
line option can change this.

“What constitutes an access to an object that has volatile-qualified
type (C90 6.5.3, C99 6.7.3).”

Any expression which uses the value of or stores a value to a
volatile object is considered an access to that object. There is no
guarantee that such an access is atomic.

If an expression contains a reference to a volatile object but
neither uses the value nor stores to the object, the expression is
considered an access to the volatile object or not depending on
the type of the object. If the object is of scalar type, an aggregate
type with a single member of scalar type, or a union with members
of (only) scalar type, the expression is considered an access to the
volatile object. Otherwise, the expression is evaluated for its side
effects but is not considered an access to the volatile object.

For example,
volatile int a;
is scalar */

a; /* access to ‘a’ since ‘a’

“The maximum number of declarators that may modify an
arithmetic, structure or union type (C90 6.5.4).”

No limit.

“The maximum number of case values in a switch statement (C90
6.6.4.2).”

No limit.

A.16 PRE-PROCESSING DIRECTIVES

ISO Standard:

“How sequences in both forms of header names are mapped to
headers or external source file names (C90 6.1.7, C99 6.4.7).”

DS51686A-page 94

© 2007 Microchip Technology Inc.

Implementation Defined Behavior

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

The character sequence between the delimiters is considered to
be a string which is a file name for the host environment.

“Whether the value of a character constant in a constant
expression that controls conditional inclusion matches the value of
the same character constant in the execution character set (C90
6.8.1, C996.10.1).”

Yes.

“Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion may have
a negative value (C90 6.8.1, C99 6.10.1).”

Yes.

“The places that are searched for an included < > delimited
header, and how the places are specified or the header is
identified (C90 6.8.2, C99 6.10.2).”

<install directory>/lib/gcc/pic32mx/3.4.4/include

<install directorys>/pic32mx/include

“How the named source file is searched for in an included “”
delimited header(C90 6.8.2, C99 6.10.2).”

The compiler first searches for the named file in the directory
containing the including file, the directories specified by the
-igquote command line option (if any), then the directories which
are searched for a < > delimited header.

“The method by which preprocessing tokens are combined into a
header name (C90 6.8.2, C99 6.10.2).”

All tokens, including whitespace, are considered part of the header
file name. Macro expansion is not performed on tokens inside the

delimiters.

“The nesting limit for #include processing (C90 6.8.2, C99
6.10.2).”

No limit.

“The behavior on each recognized non-STDC #pragma directive
(C90 6.8.6, C99 6.10.6).”

See Section 1.7 “Attributes and Pragmas”.
“The definitionsfor DATE ~ and _ TIME _ when
respectively, the date and time of translation are not available

(C906.8.8,C99 6.10.8).”

The date and time of translation are always available.

© 2007 Microchip Technology Inc.

DS51686A-page 95

MPLAB® C32 C Compiler User’s Guide

A.17 LIBRARY FUNCTIONS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The null pointer constant to which the macro NULL expands (C90
7.1.6,C997.17).

(void *)O0

“Any library facilities available to a freestanding program, other
than the minimal set required by clause 4 (5.1.2.1).”

See the “MPLAB C32 C Compiler Libraries” (DS51685).

“The format of the diagnostic printed by the assert macro
(7.2.1.1).

“Failed assertion ‘message’ at line line of ‘filename’ \n”
“The default state for the FENV_ACCESS pragma (7.6.1).”
Unimplemented.

“The representation of floating point exception flags stored by the
fegetexceptflag function (7.6.2.2).”

Unimplemented.

“Whether the feraiseexcept function raises the inexact
exception in addition to the overflow or underflow exception
(7.6.2.3).”

Unimplemented.

“Floating environment macros other than FE_DFL_ENV that can
be used as the argument to the fesetenv or feupdateenv
function (7.6.4.3, 7.6.4.4).”

Unimplemented.

“Strings other than “c” and “” that may be passed as the
second argument to the setlocale function (7.11.1.1).”

None.

“The types defined for f1oat t and double t when the value
of the FLT EVAL METHOD macro is less than O or greater than 2
(7.12).”

Unimplemented.

“The infinity to which the INFINITY macro expands, if any
(7.12).”

Unimplemented.

DS51686A-page 96

© 2007 Microchip Technology Inc.

Implementation Defined Behavior

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The quiet NaN to which the NAN macro expands, when it is
defined (7.12).”

Unimplemented.

“Domain errors for the mathematics functions, other than those
required by this International Standard (7.12.1).”

None.

“The values returned by the mathematics functions, and whether
errno is set to the value of the macro EDOM, on domain errors
(7.12.1).

errno is set to EDOM on domain errors.

“Whether the mathematics functions set errno to the value of the
macro ERANGE on overflow and/or underflow range errors
(7.12.1).

Yes.

“The default state for the FP__CONTRACT pragma (7.12.2)

Unimplemented.

“Whether a domain error occurs or zero is returned when the £mod
function has a second argument of zero (7.12.10.1).”

NaN is returned.

“The base-2 logarithm of the modulus used by the remquo
function in reducing the quotient (7.12.10.3).”

Unimplemented.

“The set of signals, their semantics, and their default handling
(7.14).”

The default handling of signals is to always return failure. Actual
signal handling is application defined.

“If the equivalent of signal (sig, SIG _DFL); is notexecuted
prior to the call of a signal handler, the blocking of the signal that
is performed (7.14.1.1).”

Application defined.

“Whether the equivalent of signal (sig, SIG DFL); is
executed prior to the call of a signal handler for the signal SIGILL

(7.14.1.1).

Application defined.

© 2007 Microchip Technology Inc.

DS51686A-page 97

MPLAB® C32 C Compiler User’s Guide

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“Signal values other than SIGFPE, SIGILL, and SIGSEGV that
correspond to a computational exception (7.14.1.1).”

Application defined.

“Whether the last line of a text stream requires a terminating
new-line character (7.19.2).”

Yes.

“Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in
(7.19.2).”

Yes.

“The number of null characters that may be appended to data
written to a binary stream (7.19.2).”

No null characters are appended to a binary stream.

“Whether the file position indicator of an append-mode stream is
initially positioned at the beginning or end of the file (7.19.3).”

Application defined. The system level function open is called with
the 0_APPEND flag.

“Whether a write on a text stream causes the associated file to be
truncated beyond that point (7.19.3).”

Application defined.

“The characteristics of file buffering (7.19.3).”

“Whether a zero-length file actually exists (7.19.3).”
Application defined.

“The rules for composing valid file names (7.19.3).”
Application defined.

“Whether the same file can be open multiple times (7.19.3).”
Application defined.

“The nature and choice of encodings used for multibyte characters
in files (7.19.3).”

Encodings are the same for each file.
“The effect of the remove function on an open file (7.19.4.1).”

Application defined. The system function unlink is called.

DS51686A-page 98

© 2007 Microchip Technology Inc.

Implementation Defined Behavior

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The effect if a file with the new name exists prior to a call to the
rename function (7.19.4.2).”

Application defined. The system function 1ink is called to create
the new filename, then unl ink is called to remove the old
filename. Typically, 1ink will fail if the new filename already
exists.

“Whether an open temporary file is removed upon abnormal
program termination (7.19.4.3).”

No.

“What happens when the tmpnam function is called more than
TMP_MAX times (7.19.4.4).”

Temporary names will wrap around and be reused.

“Which changes of mode are permitted (if any), and under what
circumstances (7.19.5.4).”

The file is closed via the system level close function and
re-opened with the open function with the new mode. No
additional restriction beyond those of the application defined open
and close functions are imposed.

“The style used to print an infinity or NaN, and the meaning of the
n-char-sequence if that style is printed for a NaN (7.19.6.1,
7.24.2.1).

No char sequence is printed.

NaN is printed as “NaN”.

Infinity is printed as “[-/+]Inf".

“The output for $p conversion in the fprintf or fwprintf
function (7.19.6.1, 7.24.2.1).”

Functionally equivalent to $x.

“The interpretation of a - character that is neither the first nor the
last character, nor the second where a * character is the first, in
the scanlist for ¥ [conversion in the £scanf or fwscanf
function (7.19.6.2, 7.24.2.1).”

Unknown

“The set of sequences matched by the $p conversion in the
fscanf or fwscanf function (7.19.6.2, 7.24.2.2).”

The same set of sequences matched by %x.

© 2007 Microchip Technology Inc.

DS51686A-page 99

MPLAB® C32 C Compiler User’s Guide

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

“The interpretation of the input item corresponding to a $p
conversion in the fscanf or fwscanf function (7.19.6.2,
7.24.2.2).

If the result is not a valid pointer, the behavior is undefined.
“The value to which the macro errno is set by the fgetpos,
fsetpos, or ftell functions on failure (7.19.9.1, 7.19.9.3,
7.19.9.4).”

If the result exceeds LONG_MAX, errno is set to ERANGE.

Other errors are application defined according to the application
definition of the 1seek function.

“The meaning of the n-char-sequence in a string converted by the
strtod, strtof, strtold, westod, westof, or westold
function (7.20.1.3, 7.24.4.1.1).”

No meaning is attached to the sequence.

“Whether or not the strtod, strtof, strtold, westod,
wcestof, or westold function sets errno to ERANGE when
underflow occurs (7.20.1.3, 7.24.4.1.1).”

Yes.

“Whether the calloc, malloc, and realloc functions return a
null pointer or a pointer to an allocated object when the size
requested is zero (7.20.3).”

A pointer to a statically allocated object is returned.

“Whether open output streams are flushed, open streams are
closed, or temporary files are removed when the abort function
is called (7.20.4.1).”

No.

“The termination status returned to the host environment by the
abort function (7.20.4.1).”

By default, there is no host environment.

“The value returned by the system function when its argument is
not a null pointer (7.20.4.5).”

Application defined.
“The local time zone and Daylight Saving Time (7.23.1).”
Application defined.

“The era for the clock function (7.23.2.1).”

DS51686A-page 100

© 2007 Microchip Technology Inc.

Implementation Defined Behavior

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

A.18 ARCHITECTURE

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

Application defined.

“The positive value for tm_isdst inanormalized tmx structure
(7.23.2.6).”

1.

“The replacement string for the $z specifier to the strftime,
strfxtime, wesftime, and wesfxtime functions in the “c”
locale (7.23.3.5, 7.23.3.6, 7.24.5.1, 7.24.5.2)”

Unimplemented.

“Whether or when the trigonometric, hyperbolic, base-e
exponential, base-e logarithmic, error, and log gamma functions
raise the inexact exception in an IEC 60559 conformant
implementation (F.9).”

No.

“Whether the inexact exception may be raised when the rounded
result actually does equal the mathematical resultin an IEC 60559
conformant implementation (F.9).”

No.

“Whether the underflow (and inexact) exception may be raised
when a result is tiny but not inexact in an IEC 60559 conformant
implementation (F.9).”

No.

“Whether the functions honor the rounding direction mode (F.9).”

The rounding mode is not forced.

“The values or expressions assigned to the macros specified in
the headers <float.h>, <limits.h>, and <stdint.h> (C90
and C99 5.2.4.2,C99 7.18.2, 7.18.3).”

See Section 1.5.6 “1imits.h”.

“The number, order, and encoding of bytes in any object (when not
explicitly specified in the standard) (C99 6.2.6.1).”

Little endian, populated from least significant byte first. See
Section 1.5 “Data Storage”.

“The value of the result of the sizeof operator (C90 6.3.3.4, C99
6.5.3.4).”

See Section 1.5 “Data Storage”.

© 2007 Microchip Technology Inc.

DS51686A-page 101

MPLAB® C32 C Compiler User’s Guide

NOTES:

DS51686A-page 102 © 2007 Microchip Technology Inc.

MPLAB® C32 C COMPILER
MICROCHIP USER’S GUIDE

Appendix B. Open Source Licensing

B.1 INTRODUCTION

This chapter gives a summary of the open source licenses used for portions of the
MPLAB C32 C compiler package.

B.2 GENERAL PUBLIC LICENSE

The executables for the compiler, assembler, linker, and associated binary utilities are
covered under the GNU General Public License. See the file doc/COPYING.GPL in the
product installation directory for the full text of the license.

B.3 BSD LICENSE

Portions of the standard library are distributed under the terms of the “BSD” license
from the University of California:

Copyright © Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the
following acknowledgement:

This product includes software developed by the University of California, Berkeley and
its contributors.

4. Neither the name of the University nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

© 2007 Microchip Technology Inc. DS51686A-page 103

MPLAB® C32 C Compiler User’s Guide

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

B.4 SUN MICROSYSTEMS

Portions of the standard library are copyright Sun Microsystems and are distributed
under the permissions granted by the following terms:

Developed at SunPro, a Sun Microsystems, Inc. business. Permission to use, copy,
modify, and distribute this software is freely granted, provided that this notice is
preserved.

DS51686A-page 104 © 2007 Microchip Technology Inc.

MICROCHIP

MPLAB® C32 C COMPILER

USER’S GUIDE

Index

Symbols C MIPSEL s 11
HAEMING ..o 32 CMIPSEL s 11
BHAGNT ..o 39 _ NO_FLOAT .o 10
BT oo 25 Pl 10
FNCIUAE ... 33,34 PG 10
BHINE ..o 35 _PIC32MX ..., 10
o g=Ye 11T OO 21 __PIC32MX__ o 10
#pragma Configooveereeeiiesie e 15 __PrOCESSOM___ ciiiiiiiiiiieeeeeeee e 10
HPragma INterTUPL.......c.ovvieeeeeeeieeeeeeeee e 14 _ RBO00... .. e 11
HPragma VECIOrc..cvoeveeeeeeeeeeeeeeee e, 14 _ R3000 s 11
.app_excpt SECHONcoovieeeeeeeeeeeeeeeeeee 79 _ramfuNG__ oo 61, 85
DEV_EXCPE SECHON ... 78 __SOFT_FLOAT ... 10
DSS e, 63 _BEV_EXCPT_ADDR.....cooiiiiininiinriniiiens 76,78
DSS SECHON oo 82 _bmxdkpba_address.............cccooiiiiiiinnn. 66,73, 83
.CONFIG_ AAATESS ..o 77 _bmxdudba_address............ccoooreiiiiiinnnnn, 66,73, 83
BB e 64 _bmxdupba_address..........c.ccoonniiininns 66, 73, 83
AALA SECHON <. 81 _bootstrap_exception_handler.......................... 43,72
.dbg_data SECtONovovvveeeeeeeeeeeeeeeeeeen 80 _bootstrap_exception_handler()c.c.ccoerurnnen. 49
.dbg_eXCpt SECHONovvevoeeeeeeeeeeeeeeeeeee 78 _bss_begin.........cooiiiiiiii, 64,73,82
GOt SECHONovooeeeeeeeeeeeeeeeeeeeeeee e, 81 _bss_end.......o 64,73, 82
AP SECHON ... 83 _data_beginc.cooeiiii 64,73, 81
T oo, 64 _data_end ... 64, 73,81, 82
Jit4 SECHON ... 82 _data_image_begin.............cccooniiiininnin 64,73, 81
I8 e 64 _DBG_CODE_ADDR.......cccoeuiimriniiiininiens 76,79
[it8 SECHON ... 82 _DBG_EXCPT_ADDRcooririiiiiiiciiis 76,78
FAMFUNC .o oe oo 61,65, 84 _DEBUGGER..........cciiiiicciccr 78, 80
FAMFUNG SECHON - 83 _ebase_address...........cccoociiiiniciniee 69, 73
FESEE SECHON ..o 78 BN e 73,82
10data SECHON ..o e, 80 Xt ——————————— 44
eSS ettt er s 63 _GEN_EXCPT_ADDRccoooiiiiiiiiniiie 76,79
SDSS SECHON v eeeeeeee e e eeee e e e s e e e 82 _general_exception_context().........c.coceeeiirnninininns 49
SDSS2 SECHON v ee e oo e e s e e e 80 _general_exception_handler............................. 43,72
[To F=] ¢= [T 64 0P 63,73, 81
SAALA SECHON oo 81 heap ... 61,73, 83
.SAALA2 SECHON v, 80 _LANGUAGE_ASSEMBLYccoiiiiiiiiiiiiie, 10
StACK SECHON ..o 83 _LANGUAGE_C......coivciiccccccce 10
SATUP SECHON ..o 79 CMCHP e 10
AEXE SECHON oo 79 _mchp_Nno_float.........cccoiiiiniiiiiiccccee 10
VECtOr N SECHONSc..cvoeviveeeieeeeeeeeeeeeeeeeeen, 79 _MCHP_SZINT oo 10
_ LANGUAGE_ASSEMBLYccoeoveieeeeeeeeeeeee 10 _MCHP_SZLONG........ooiiiieieeee e 10
~ LANGUAGE_ASSEMBLY __....ooovivieeieeeeeeeen 10 _MCHP_SZPTRcoiiiieirerce e, 10

LANGUAGE C ..o, 10 _MIN_heap_SiZecccevovviiriieieeeeee e 61,74
YN 187X =T T 10 _MIN_Stack_SiZ€.........ccorwueriueriierieneeenena 61,74, 83
Iongramfunc ___ 61, 85 mips .. 11

MUPS ettt ettt ettt eae e 11 _MIPS_ o 10
UMD, ettt 11 _MIPS_ARCH_PIC32MX......cooiiriiiiiininninininene 11
_ MIPS_ISA_TEV ..ot 11 CMIPS P s 11
__mips_single_floatcccooveeerieeeeeeeeeee e 11 CMIPS _ISA e 11
PSSOt FIOAL ..o 11 _Mips_N0_float..........cccooiiiiiiiiii e 10
B 111113 (2O 11 _MIPS_SZINT ..o 10
MPSTBE oo 11 _MIPS_SZLONG........eooiiiriiiiinrinnene 10

© 2007 Microchip Technology Inc.

DS51686A-page 105

MPLAB® C32 C Compiler User’s Guide

_MIPS_SZPTR....ooiiiiiie e 10
_MIPS_TUNE_PIC32MXcceiiiiiieiiiee e 11
CIMIPSEL oo 11
_MON_GELC .ot 43
_IMON_PULC e 43
B 101 T o 1V | €SS 43
B 101 T4 (=SSR 43
_NMi_handler ... 43, 61
_ON_DOOSIrapeeeeviiiiiiiiiciieee e 43
_ON_TESEL .o 43,63
_RB000....cc e 11
_ramfunc_beginccccoeiiiiiiiie 65,73, 83
_ramfunc_endccoeeiiiiiiiie e 65,73, 83
_ramfunc_image_begin.........cccccceeriirennenn. 65,73, 83
_ramfunc_lengthcccccoiniiiniii. 66, 73, 83
_TESEL e 74
_RESET_ADDRooiiiiiieece e 76,78
_SbSS_begin ... 82
_SPSS_eNd....iiiiiiiiiie 82
_sdata_begin........cccooiiiii 81
_sdata_end ... 81
StACK 61,73,84
_text_begin.....oii 79
et end ... 79
_VECOr_SPACING ...cceeeiiiiiiieeieiiiiieee e 68, 73,75
“On Bootstrap” Procedure...........cccccoeeeeiiiveeeecennnee. 71
A
e 32
A0-83 .o 47
alias (“Symbol”).......oeiiiiii e 13
AlGNEA (N) weeiiiiie e 13
always_inliNe ... 11
SANST et 18, 35
ANSI C, StriCt.....eeeeiieeee e 19
Assembly OptioNnSccccovveeiiiiiiirieeeeee e 35
SWa 35
at_vector Attribute ... 12,49
Attribute, Function
alias (“Symbol”).....ccueeiiieee e 13
always_inline.......cccoooiiiiiiii 11
at_VECHOr ... 12
CONSE Lottt 12
deprecatedcoeiiiiiiiiiii 13
B e 11
format (type, format_index, first_to_check)....... 12
format_arg (iNdeX)......cccovceeeiiiieiee e 13
INTEITUPE ... 11
1ONGCAll ... 11
MAOC. .. 13
011 1 O 11
NAKEAooiiiiiiiiie e 12
(01T | PP 11
no_instrument_function.............ccccciiniiinnen. 39
NOINIINE ... 12
NOMIPSTB ..ot 11
noNNUIl (INAEX, ...) eveerieieeie e 13
NOFEIUM ...t 12,24
1= P 12
section (“NAME”)cc.eeiiiiiiiiiiee e 12
UNIQUE_SECHIONeeeeeiiiieieieccee e 12

UNUSEA ..ttt 13
USEA ittt 13
VECHOK ittt 11
warn_unused_result.........cccccoviieiiiieinien e, 13
WEAK ...ttt 13
Attribute, Variable
aligned (N) .eeveeeeeee e 13
cleanup (function).......ccccooecviiineiiee e 14
deprecatedoooeeiiiiii 14
PACKED.eiiiiiiiiiiieiie e 14
section (“NAME”)cooccviiiiiiiiee e 14
transparent_unioncccccvveviiiiiiiiie e, 14
(U] g o [TCTT=Tox 1] o S 14
UNUSEA ..ttt 14
WEAK ...t 14
Attribute, Vector
Aat_VECIOrooiiiiie e 49
VECEON it 49
Automatic Variableccccoooiiiiiiii e 21,23
SAUXAINTO Lo 18
B
B s

Bad Virtual Address Register
BadVAddr. See Bad Virtual Address Register

Bit FieldS.....ccoiiiiiiiece e 18
BMXDKPBA ...ttt 65
BMXDUDBA ..ottt 65
BMXDUPBA ...ttt 65
Boot Memory Region
kseg0_boot_mem..........ccceeviiiiniiiiiiee e 76
kseg1_boot_mem.........ccoceeviiiiiiiiiiiee 76
Bootstrap Exceptioncccoooiiiiiiiiiieeee e 49
Branch Delay ..o 68
Bus Matrix Register ... 65
BMXDKPBA ..ottt 65
BMXDUDBA......coiiiiiiiiieeee e 65
BMXDUPBAooiiiiiieie e 65
C
e s 32
=G ettt 17,36
C Dialect Control Options.........cccceecvveeeeeiiiiieeeeees 18
SANSH s 18
—QUX-INFO L 18
-ffreestandingccoceviiiiii 18
SfNO-8SM .. 18
-fO-DUIItIN ., 18
-fno-signed-bitfields...........cccocoiiviiiiiie 18
-fno-unsigned-bitfields............c.ccocciiiiininns 18
-fsigned-bitfieldsccoociiiiiiie 18
-fsigned-charcccciiiiii e 18
-funsigned-bitfieldsccccoiiiniiiiie 18
-funsigned-charcccooviiiiiic e 18
-fwritable-strings.........ccccovreiiiiere e 18
C Stack USageccooveviviiiiiiiieeee e 58
Call MaIN ..o 7
CaAllOC ..t 59
CaSt . 21,23,24
Cause Register........cccveiiiie e 67,68
Char i 8,18, 19,59

DS51686A-page 106

© 2007 Microchip Technology Inc.

CHAR _BIT ..o 9

CHAR _MAX ..ottt 9

CHAR _MIN ..ot 9

cleanup (function)ccccviiiiiiii i 14

ClOSE ... e 43

Code Generation Conventions Options 38
-fargument-alias.........c.ccocoeiiiiini 38
-fargument-noalias...........cccccoiiiiiiiiiiiiee e 38
-fargument-noalias-globalccccoieeinneenn. 38
-feall-saved ... 38
-feall-used ... 38
SFAXEA e 38
-finstrument-functionscccccoiieiiiii e 39
-fno-ident... ..o 39
-fno-short-double ..o 39
-fno-verbose-asm..........ccccoiiiiiiiiiii i 39
-fpack-struct ..o 39
-fpce-struct-returncccccooieiii 39
-fshort-enums..........oooooiiiiii e 39
-fverbose-asm........coociiiiiiiii e 39
-fvolatile ..o 39
-fvolatile-global...........ccccoieiiiiiini e 39
-fvolatile-static

Code Size, Reduce
Command Line Option, Compiler

S e 32
-fdate-sections ... 14
-ffunction-sections..........ccccccoiiiiiiiiii 12
-fshort-enums ... 94
-funsigned-bitfields...........ccccceiinniiiiii e 93
-funsigned-char..........ccccoooiiiiiiiii e 8
SIQUOLE .. 95
e SRR URR 36
-mdebugger ... 78,79, 80
SMIPSTO e 11,45
-mips16 -mno-float...........cccccoeviiiiiiiiiee s 45
-MIONG-CallS ... 11
=mMNO-float......ooviiiiee e 45
“MPFOCESSONuuiiiiiiiiiiiiiiiirie e re e e e e 75
20 €XT.0UL ..o 40
SO s 45
O3 -MIPST6 ..o 45
-0O3 -mips16 -mno-float.............cccecevenviinierinnns 45
-O3 -mno-float........coeveiiiiieiiee e 45
SO e 45
=08 -MIPST6 ..o 45
-Os -mips16 -mno-float..........ccccvviiiiiecineenn, 45
-Os -mno-float........cooveiiiiiii e 45
SWal e 21
SWNRoNNUILL ..o 13
Command Line Option, Linker
—=defSYM ..o 74
--defsym_min_stack_Sizeccccccevviieinneenn. 58
SR 75
Command Line Optionsccceecvvieeeceiiiieeeees 15
(07072411 41=T 0] (S 19, 32
Common Subexpression Elimination 28,29, 30
Common Subexpressions..........ccccovceveiiieeenieecnnee. 31
Compare RegiSter.........ccccoviiieiiiiiineee e 67
Compiler

DriVEr ..o 7,37,40
Compiling Multiple Filescccoeoiieiiiiiieeieene 41
CON FIGN .t 77
Config Register ... 69
Configl Registercovviiiiiiiiiieee e 69
Config2 RegIStercccvveiiiiieeeeeee e 69
Config3 RegIStercoovviiiiiieeeeeeee e 70
Configuration Bit ACCESScuevveiiiririiieiiie e 54
Configuration Memory Region

config3, config2, config1, config0...............c.e.... 76
Configuration Pragmacccoeeeiiiiinieiiiieens 54, 55
Configuration Wordscccoccveriirenieenieene 54, 55
CONSE...eiie e 12
COUNL. ..o 66
Count REGIStervviiiiiiiecce e 67
CoUNIDM ... 67
CPO Access MacCroS.........cceeeeiieeeiiiieniee e 54
CPO RegiSter ACCESSoovieeeeriiiieeiiie e 53
CPO REGISLEIS ..o 66
Customer Notification Service..........cccoocvvviiviernnennn. 5
Customer SUPPOIt.......coeiiieeiiiiie e 5
D
D s 32,33,35
Data Memory Region

ksegl1_data_memccoccviiiiiiiiie e 76
Data Memory SPaceccccevoeeeeieeeenieeeieeeeiee e 59
DBD. See Debug Branch Delay
2D e 32
Debug Branch Delayccoooeviiiiiiiiiiccieecieeee 7
Debug Exception Program Counter 70
Debug Exception Save Registerc.cccceeviivinne. 71
Debug Executive Memory Region

debug_exec_mem ... 76
Debug Register ... 67,70
Debug Sections.........cccoviiiiiiiii 84
debug_eXxeC_Mem.......c.cocceeiiiieiiiiieeee e 79
Debug2 Register ... 70
Debugging Information...........cccoooiiiiiiiniinieee 26
Debugging Optionscccoevieeiiiiee e 26

R o TSP 26

S e 26

=SAVE-tBIMPS ...ooiiiiiiiiiee e 26
—=defSYM Lo 74
—defsym _ebase_address=Acccccceerriieerriennn. 69
--defsym _min_heap_size=M..........cccccccvrriienininnnes 61
--defsym _min_stack_size=N..........c.ccccccoriiinininnnes 61
--defsym, _min_heap_Sizecccccovvrniiiriiecnieennn 59
--defsym_min_stack_Size.........ccccoviriiiiiieniiinens 58
DEPC. See Debug Exception Program Counter
deprecated Attribute..........coeeeeeeii 13,14, 24
DESAVE ...coiiiiee 71
DireCtories ... 33,35
Directory Search Optionsccccveivieeiiiiieiiiiee 37

B e 37

SSPECST ittt 37
SAM e 32
SAN e 32
Documentation

CoNVENLIONSviiiiiic e 2

LayOuL ..o 1

© 2007 Microchip Technology Inc.

DS51686A-page 107

MPLAB® C32 C Compiler User’s Guide

dOUbIE ... 8,39, 59
E
e 17, 32, 34, 35, 36
EBase Register ... 69
EJTAGVENoiiiiiiieeee e 70
ENTRY .o 74
EPC Registerc.uvvviiaiieeeiee e 47,68, 71
ERET .ot 61
Error Control Options
-pedantiC-ErrOrS.......uuviiiiieieeeeee e eee s 19
SWEITON . 24
-Werror-implicit-function-declaration.................. 19
Error Exception Program Counter...........cccceevvenenes 71
ErrorEPC. See Error Exception Program Counter
Exception Base Register..........ccccccoviiiieiiiiiiiiiennnn. 69
Exception Memory Region
eXCePioN_MEeMcccceiiiiiiiiiie e 76
Exception Program Counter............ccocceeiiieeiniinens 68
Exception VECOr..........oovviiiiiiiiiiec e 48
eXCEPLION_MEM ... 79
Executables. ... 40
EXIE e 44
EXL Bit e 68
EXtENSIONS...cciiiiiiiiie e 34
EXTERN ...t 74
EXEEIN Lo 24,31, 39
External Interrupt Controller............ccccoveeeeeviieneenn. 68
F
-falign-functionsccccooiiiiin i 28
-falign-labelscccoeiiiiiii e 28
-falign=-looPS......ceoiiiiiii 28
A e 11
-fargument-aliasccccoiiiiiiii e 38
-fargument-noaliascccoiieiiiiien e 38
-fargument-noalias-global..............cccoeiiiinieniee. 38
-fcaller-saves.........ccovviiiiiiiee e 28
-feall-saved........oooviiiii 38
-feall-used.o 38
-fese-folloOW-JUMPS ...ooooiiiiiiiiee e 28
-fecse-sKip-DIOCKS........coieiiiiiiieeeeceee e 28
-fdata-sections.........ccoccoe i 14,28
-fdefer-pop. See -fno-defer
-fexpensive-optimizations...........cccccccevcieiiiee e 28
SFFIXEA i 38
SFfOrCe-MEM ..eeeceeeecee e 27,31
-ffreestandingccccoeiiii i 18
-ffunction-sectionscccce i 12,28
QTS i 28
SfGCSE-IM e 29
SfGCSE-SIM . 29
File EXtENSIONSooiiiiiiiiii e 7
111 Lo S 7
flE N 7
BTt 7
fil€.0 e 7
filE.S e 8
filE.S i 7
File Naming Convention.........ccccccceeveeeeiee e 7
L1 L= oS 7

L1158 o SRS 7
L1 = S 7
FilB.0 e 7
flE.S s 8
FIlB.S e 7
-finline-functionscccccociviie i 24,27, 31
-finline-limit=n ... 31
-finstrument-functions............cccoooiiiii e 39
-fkeep-inline-functionsccccciiiiieiiic i, 31
-fkeep-static-CoNStscooveiiiiiiiii 31
Flags, Positive and Negative...............ccccccoeeeie 31,38
float. .o 8,39, 59
Float. N 8
Floating-Point Format

AOUDIE ... 8

Float .. 8

long double..........oooviiiiiiii 8
-fmove-all-movablesc..ccevriiiinie e 29
SN0 e 31,38
AfNO-8SM .o 18
-FRO-DUIltin. ... 18
-fno-defer-pop......ccooviiiiiiiii 29
-fRo-fuNCtion-CSe......ooeiiii 31
AfNo-Ident ... 39
AfNO-ININE..coi 32
-fno-keep-static-consts ..o 31
-fno-peephole ... 29
-fno-peephole2 ... 29
-fno-short-double ... 39
-fno-show-ColUMN ..o 32
-fno-signed-bitfieldsccoeveiiiiiie 18
-fno-unsigned-bitfieldsccccooiiiieiiii i 18
-fNO-verbose-asmcccooiiiii i 39
-fomit-frame-pointer............ccoooiiiiiiiii 27, 32
-foptimize-register-move..........cccccviieiiieieicce, 29
-foptimize-sibling-callscccocoiiiiiiiiieee 32
format (type, format_index, first_to_check).............. 12
format_arg (INdeX)ooeeieieiie e 13
L]« PRSP 47
-fPack-StruCt.........ooiiii 39
-fpec-struct-return ... 39
Frame Pointer (W14).......ocooeiiiiiieeeeeeeeee 32,38
-freduce-all-giVscooviiiiiiiii 29
-frEgMOVE ... 29
-frename-registerscccoiiiiiiiine 29
-frerun-cse-after-loop.........ccccooeiiiniiiiiice 29, 30
-frerun-loop-0pt.......ccvviiiiii 29
-fschedule-inSNscooooiiiiiee e 29
-fschedule-inSNS2 ..o 29
-fshort-enumscccoeiiiini 39,94
-fsigned-bitfields ... 18
-fsigned-char ... 18
-fstrength-reduceccccoiiiiiiiiiii 29, 30
-fstrict-aliasingcooeeeeiiii 27,30
-FSYNtaX-0NlY ..o 19
-fthread-jumps ... 27,30
Full Mode

(o] 01T SR 43

ISEEK ..t 43

(o] 0= o USRS 43

DS51686A-page 108

© 2007 Microchip Technology Inc.

FEAT ... ittt 43
WIIEE e 43
Function
Call Conventions..........ccceeeieiiiiieee e 59
Function Attributes. See Attributes, Function
-funroll-all-loopsccceeeeieeiiiiieeeece e 27,30
-FUNroll-loopsooeeveeiiieeieece e 27,30
-funsigned-bitfieldscccccoeiviiiiiiiii 18,93
-funsigned-char ... 8,18
-fVerbosSe-asm ... 39
SFVOlatile e 39
-fvolatile-globalccooceiiiiie 39
-fvolatile-staticcccvvieeii e 39
-fwritable-strings.........ccoooeiiiii e 18
G
o PP PPSRRN 26
SG NUM e 15
General EXCeplionccccovviiiiiiii i 49
Generic Processor Header File..........cccooeevviiinnen. 51
GEIENV L. 44
] o U 63, 64
o] o TR 47,62,63
H
TH 32
Hardware Enable Register..........cccocooeviiiiiiecinnenn. 66
Header Files.........ccccovvvveeeeieieeieeeien, 7,32,33,34, 35
HEAD e 61
Heap USageoooiiiiiiiieiiiiee e 59
SmNBID s 17
HeX File .o 40
Nl s 47
High-Priority Interruptsccoceiieiiie e, 47
HWRENAooiiiiieciie e 66
|
e 33,35
S 33,35
Sidirafter ..o 33
SIMACTOS i 33,35
INCIUAE ... 40
SINCIUAE e 33,35
Include Files..........oooiii e 37
INhibit Warnings ..o 19
INNNE <o 24,27, 31
ININE e 32,39
INPUT e 75
N e 8,59
INT_MAX oo 9
INT_MIN e 9
] O 1 P 68
Integer Values
CRAK e 8
1) SRR 8
JONG e 8
[ONG IONG e 8
SO . 8
Signed Charceeeeiiii e 8
SIGNEd Nt ..o 8
SIGNEA IONG ...veiiiiii e 8

signed [oNg 1oNg........veiiiiiiiiiiieee e 8
Signed ShOrtooooiiiiiiie 8
UNSIGNEd Charoooviiiiiiiiiei e 8
uUNSIGNEd iNt......oooiiiiiii e 8
UNSIGNEA I0NG....coiiiiiiiiiiiiiie e 8
unsigned 1ong [ONg........veeeieiiiiiiiiieeee e 8
unsigned Short ..o 8
Internet ADAress.........cocvveeiiiiiie e 4
Interrupt
High Priorityoooveiiiiiec e 47
Lower Prioritycccoeoieiiiiiiieee e 47
1] (=14 U] o) SO 11
Interrupt Control Register..........ccccovieiniiiiiiceeenee. 68
Interrupt Handler ..., 47
Interrupt Handler Functioncccococeviiiiininiinnen. 47
interrupt handler functioncccccooeiiiiiiniee, 47
Interrupt Pragma Clauseccccoovvieiiieeeieec e 48
SIPFEIIX oo 33
SIQUOLE e 95
SISYSIEM . 33,37
SIWIERPPEfiX .o 33
-iwithprefixbefore ... 33
K
KO e 47
KT e e s 47
KSEGOD ...ttt 79
kseg0_boot_ mem.........c.ccoviiiiiiiiiiiii e 79
kseg0_program_memccccceeeenne 79, 80, 81, 82, 83
KSEG1 Data Memory.........coocceeeieeiiiiiiee e 61,62
kseg1_boot_mem.........cciiiiiiiiii e 78
kseg1_data_mem........c.ccoceeviriininicnnnnen. 80, 81, 82, 83
L
L 36,37,75
L e 36
LANGUAGE_ASSEMBLYooiiiiiiieieenec e 10
LANGUAGE_C.....oooiiiiiiieceeeeeeeeee e 10
Library ..o 36,40
HMIES. N e 9
CHAR_BIT ..o 9
CHAR_MAX ..ottt 9
CHAR_MIN ..ot 9
INT_MAX L 9
INT_MIN oo 9
LLONG_MAX ..ottt 9
LLONG_MIN ..ottt 9
LONG_MAX ..ottt 9
LONG_MIN ..ottt 9
MB_LEN_MAXcceiiiiiiiieiiiniii e 9
SCHAR_MAX ...t 9
SCHAR_MIN ...t 9
SHRT_MAX ..o 9
SHRT_MIN ..ot 9
UCHAR_MAX ..ottt 9
UINT_MAX .ot 9
ULLONG_MAX ..ttt 9
ULONG_MAX ..ottt 9
USHRT_MAX ..ot 9
HMIES. N 8
BINK e 99

© 2007 Microchip Technology Inc.

DS51686A-page 109

MPLAB® C32 C Compiler User’s Guide

LINKEr e 36
Linker SCriptcuvveeeieice e 40
Linking OPLioNSccccvviiiiiie e 36
L 36, 37
s 36
-nodefaultlibs..........cccooviiiiiii 36
SNOSEAND Lo 36
S PP PEP 36
LU PSRN 36
SWE s 36
SXINKET e 36
little-endiancooeeiiiii e 8
LLONG_MAX oottt 9
LLONG_MIN ..ot 9
o USSP 47
[0CAIECONV ...ooiiiiiiiie e 44
JONG e 8,59
Long doubleooeiiiiiii e 59
long double..........ooeeiiiiii e 8,39
[ONG IONG ..t 8, 24,59
LONG_MAX et 9
LONG_MIN ..ot 9
1ONGCAII ... 11
longcall Attribute..........oocveiiiiii 85
Loop OptiMIzZEer......cccooiiiiiee e 29
Loop UNrollingceeeeeiiiiiiiee e 30
Lower-Priority Interrupts..........cccooviiineeiiiieciiees 47
ISEEK ..t 43
M
AV e 34
90 F= 1] (o TR UP SRR 32,33,35
MAIOC ... 13,59
MB_LEN_MAX ... 9
-mcheck-zero-diviSioncccocceeeiiiniiieeee e 16
SMD s 34
-mdebugger........ooooiiii i 78,79, 80
-mdouble-float ..o 15
-membedded-data...........ccociiiiii 16
AMIF s 34
MG s 34
Microchip Internet Web Siteccooceeiviiiiiiccinen. 4
SMIPSTO e 11,15, 45
MIPSTO .. 11
-mips16 -mno-floatcccceeeeiiiiiiiiiceeee e, 45
MIPSEL ... 11
SMIONQG32 ..o 15
SMIONGBA ... 15
-mIONg-CallScooiiiiiii e 11,16
MM s 34
SMIMD s 34
“MIMEMICPY -ttt et e e e et e e e e et e e s 16
-mno-check-zero-divisioncccccveiiiiieeie i, 16
-mno-embedded-data..............coccoiiiiiii 16
-MNO-float ...eeeeeee 15,45
-MNO-10NG-CallS.......ooiiiiiiiiiic 16
“MNO-MEMCPY iirieeeeaiiie e et e e e e e e 16
“MNO-MIPST6 oo 15, 45
-mno-peripheral-libsccccoviiiiiiiiieieeeeeee e, 16
-mno-uninit-const-in-rodatacccccoeiis 16
TMIP s 34

MPLAB C32 MaACIOSccceeiiiiiieeeciiiiiee e e ciiiee e 10
_ LANGUAGE_ASSEMBLYccccveiiiiierieeenne 10
__ LANGUAGE_ASSEMBLY _ ..oooiiiiiiieeiee. 10
__ LANGUAGE_C.....ooeeeeeeiee e 10
__LANGUAGE_C__ ..o 10
_ NO_FLOAT .. 10
L PIC 10
B o) (oSSR 10
_ PIC32MX ..o 10
_ PIC32MX i 10
_ PFOCESSON__ .eeiiiiiiiieeee e 10
_ SOFT_FLOAT .ot 10
_LANGUAGE_ASSEMBLYcccccviiireriereee 10
_LANGUAGE_C...ooieeiieeeee e 10
_mchp_no_float..........cccuveiiiiiii 10
_MCHP_SZINT ..o 10
_MCHP_SZLONG.......cccteeeiie e 10
_MCHP_SZPTR ...t 10
LANGUAGE_ASSEMBLYccooiiiiieieeeeeeeee 10
LANGUAGE_C.....oooiiiieeeeeeeeee e 10
PIC32MX ...ttt 10
SMPFOCESSON .ceeiiiiiiieeaaaaeee e e aeeeebeaeeeeeeeas 15,51,75
TMQ s 34
-msingle-float............cccooioiiiiiin 15
-msoft-floatoooviiiiii 45
L S 34
MTCO Instructionccoooiiiiieeeeee e, 68
-muninit-const-in-rodataccccoocoiiiii 16
N
NAKEA.....oiiiiiiiiieieee e 12
TS | TP 11
no_instrument_function Attribute..................c..o.eel 39
-nodefaultlibscoooiiieiiiii e 36
NOINIINE «.coeeeieeeeeee e 12
NOLOAD ..ot 79, 80
NOMIPST6 ... 11,61,72
NONNUIL (INAEX, ...) cevieiiii e 13
NOP .t 79
Lo = 18] o SRR 12
noreturn Attribute...........ccooooiiii 24
SNOSEAINC ... 33,35
SNOSEAID ..o 36
(0]
S0 s
o TSRS
-0 ex1.out
L
L R
-02 ...
@ 1 TSP
“O3 -MIPSTB .. 45
-0O3 -mips16 -mno-floatc..coeeuvvieeiiiiiieeeees 45
03 -mno-floatccuveeeeiiiiiiee e 45
(0] 0] =Y i o 1= 28, 34, 36
OPEIN .ottt e 43
Optimization Control Optionscccccovveeinieiennnen. 27
-falign-functions...........ccccoiiiiiini 28
-falign-labelsccooioiiiiiii e 28
-falign=-loopsS......cceiieeiirii e 28

DS51686A-page 110

© 2007 Microchip Technology Inc.

-fcaller-savesccooceiiiiiii e 28
-fcse-follow-jumpsc..oeeriiiiieee e 28
-fcse-skip-blocksceeviiiiiiiiii 28
-fdata-sectionsccceiviiiii 28
-fexpensive-optimizationsc.cccccvceeiineenn. 28
-ffOrce-mem ..o 31
-ffunction-sections.........ccccccevieiniin i, 28
QTS i 28
SfGCSE-IM oo 29
SfGCSE-SIM ..o 29
-finline-functions.........ccccoiiiii e 31
-finline-limit=n.........ccoooiiii 31
-fkeep-inline-functions............cccoceeeiiiiiniecis 31
-fkeep-static-consts..........ccccoviiiiiiiiiiei 31
-fmove-all-movablescccooviiiiiiiiiiiee, 29
-fno-defer-popccvvvveeiiiie 29
-fno-function-Cseccoocieeiiiiiiiii e 31
-FNO-ININE oo 32
-fno-peephole.........cccoooiiiiiiii e, 29
-fno-peephole2...........cccoviiiiiiiiiice e, 29
-fomit-frame-pointercccooiiniiiin e 32
-foptimize-register-movecccoccceevveieineenn. 29
-foptimize-sibling-calls...........ccccooiiiniiiiiieenne 32
-freduce-all-giVscccoeiiiiiiiiee e 29
-fregMOVE ... 29
-frename-registersccocviiiinicii e 29
-frerun-cse-after-loopcccvvvvvciiiiee e, 29
-frerun-loop-0ptcoovviiiiiii e 29
-fschedule-inSNS.........cccooiieiiiiiii e 29
-fschedule-inSNS2.........ccooeeiiiiee e 29
-fstrength-reduceccoccceiiiiiiiiiiii e 29
-fstrict-aliasing......ccoovoevineiiee e 30
-fthread-jumps ..o 30
-funroll-all-loopscceeiiieiiiiiiiie e 30
-FUNFOII-I00PS ..o 30
S0 s 27
SO0 s 27
SO s 27
SO2 s 27
SO s 27
SO e 27
Optimization, LOOPcoieieiiiiiiie e 29
Optimization, Peephole..............ccccoveeiiiiiiiieeeces 29
Options
ASSEMDIING ..o
C Dialect Control
Code Generation Conventionsccccceeee... 38
Debuggingcccuuevieiiiiiiiiee e 26
Directory Searchc.cococeevviiiiiiiieeesieee 37
LinKing ..eeveeeieee e 36
Optimization Controlccocvevviiiieiiee e, 27
Output CoNtrolcovvviiiiiieiiee e 17
Preprocessor Control...........cccveveeiiiieeiniiennns 32
Warnings and Errors Controlcccceccceeeneee.. 19
208 e 27,45
—OS -MIPSTO ..o 45
-Os -mips16 -mno-floatccoccveiriiiiic 45
-Os -mno-float.......cccoeiiiiiii 45
Output Control OptioNnSeevvieirieeiiiee e 17
PO PRRN 17

B 17
e 1= o 17
o T TS PRURURURPIPNY 17
S T PSSR 17
SV e e e e e e e e e e e e e e e e aae e —————————————aaaas 17
X ettt e e e e e eeeas 17
OUTPUT_ARCH ..o 74
OUTPUT_FORMAT ... e 74
P
P e 35
PACKED. ..ottt 14
PATH . oot 40
-PEAANTIC ... 19, 24
-PEdANtiC-EITOrS ... 19
Peephole Optimizationccccooveeiviieeiceciieeeee, 29
PIC32-0CC ettt 7
PIC32MX ..ottt 10
PIC32MX Device-Specific Options
“G NUM L 15
-mcheck-zero-divisioncccceevvnieeeiennneeenn. 16
-mdouble-floatcooueeriiiii 15
-membedded-data..............ocoiiiiiiiii 16
SMIPSTO oo 15
SMIONG32 .. 15
SMIONGBA ... 15
-MIONG-CallS.....cooiiiiiiii 16
“MIMEMICPY .iiieie et e et e e 16
-mno-check-zero-divisionccoccveeviennineeen. 16
-mno-embedded-datacccooiiiiiii. 16
-MNO-float ... 15
-mMNO-10NG-CallSevvviiiiiiii e 16
“MNO-MEMCPY eeeeiiiiieeeeiiiiiee e et e e e rireeee e 16
“MNO-MIPST6 ceeeeeeeeee s 15
-mno-peripheral-libscccccciiiiiiiiiiieieeeee, 16
-mno-uninit-const-in-rodata..................ccooce.. 16
“MPIOCESSON ...t et e e e e 15
-msingle-floatccooiiiiii 15
-muninit-const-in-rodata.............cccccceiiiien. 16
PIC32MX Startup Code........cccvvevieeiiiieieee e 61
POINErS ... 8,24
Frame.. ... 32,38
StACK e 38
Pragmas ..o 11
#pragma configccceviieeiiiiie e 15
#pragma CONLig.iiiiiaiaeiniainnans 54,55
#pragma interrupt...........cccoevieiiniie e 14
H#Pragma VECIOrc.eeeviieeiiiiie e 14
Predefined Macrosccooieiieiiiiiiciiiiee e 10
PrEfiX oo 33,37
Preprocessor Control Options..........ccccceeeeeevciieeennn. 32
A e 32
2 e 32
D s 32
2D e 32
SAM s 32
SAN e 32
-fno-show-columnccccooiiiiiiiii e 32
H 32
s 33
Lo s 33

© 2007 Microchip Technology Inc.

DS51686A-page 111

MPLAB® C32 C Compiler User’s Guide

midirafter.. ..o 33
SIMACTOS et 33
SINCIUAE oo 33
SIPFEFIX e 33
SISYSEM ..o 33
SIWIthprefiX ... 33
-iwithprefixbefore..........c.ccooeieiiiiiii 33
M s 34
SMD s 34
AMIF s 34
MG s 34
MM e 34
SMMD e 34
SMQ s 34
M T s 34
“NOSEAING .eeiiiiiiiee e 35
P s 35
ARAGraphS oo 35
SU e 35
SUNAET e 35
PRI ..ottt 69
Processor Identification Register...............ccccevvieens 69
Processor Support Header Filesccccoooiieeen. 51
o] o o1 T:To) o o R 75
Program Memory Region
kseg0_program_memcccceevieveeeeeniiiieeeeennns 76
PROVIDE ...t 74
ProviSioNnS.......cooiiiieei e 61
PUFE ..ot 12
Q
S e an 26
R
R3B000..... . ittt 11
2= T PP SPPTOTP 47
FISE oottt ettt e 44
RAM FUNCHONS.......coiiiiiiiii e 65, 85
RAW Dependency.........ccocceeivieeeeniieiniece e 29
RDHWR......ooiiiee ettt 66
[£=T= o USRS 43
Reading, Recommended.............cccccooiiiiiiiiiiniiinnenn. 3
FEAIIOC. ... 59
Reduce Code Sizecoococeeiiiieiiiieeeee e 27
Register Conventions............coceeviiinieee e 57
Requested Interrupt Priority Level...........ccccocieenne 68
Return TYPE ...ooviiiiiiiiiee e 20
Runtime Environment............oooiiiiieee 57
[PSPPI 76
S
S SR 17,36
S TP URR 36
S0-S7 it 47
=SAVE-BIMPS ..ooiiiiiiiiee e 26
SDIK e 61
SCHAR _MAX ...t 9
SCHAR_MIN ... 9
Scheduling ...o.eeveiiee e 29
SDE Compatibility Macros..........cccccvevevcveiiiieeeinneenn 10
IMPS ettt 11

B 1011 o 1= TSR 11
_ MIPS_ISA_TEV eevviiieiiieeeeee e eee e 11
__mips_single_floatc.ccooiiiiiiii 11
__mips_soft_float.........ccccoeiiiiiiii 11
MIPST6..eeiii e 11
L MIPSTBC.cieiiiiieieeee e 11
_ MIPSEL ..ot 11
_ MIPSEL__ o 11
R3000..... et 11
R3000__ . 11
IMIPS et 11
_MIPS_ARCH_PIC32MX.....cccovirreerieiierireens 11
MIPS_fPr e 11
_MIPS_ISA ..t 11
_mips_no_float..........cccceeeiiiiiii 10
_MIPS_SZINT ..t 10
_MIPS_SZLONG......cccceiiiiiiieiiieie e 10
_MIPS_SZPTR....oiiiiiiiiiieic et 10
_MIPS_TUNE_PIC32MXc.cesviiiierieiieeienne 11
_MIPSEL ..ot 11
_RB000.... e 11
MIPSEL ...ttt 11
R3000...... it 11
Section
Configuration Wordscccccceeeiirenieeniieenne 54
SECHON .. s 28
Section (“NAME”)ccuvviiiiiiiiiee e 12,14
SECTIONS Commandccceevimieneeeniieeeeee e 77
SEHOCAIE ... 44
SFR Memory Region
SITS et 76
Shadow Register Control Register...........ccccccceeenee. 68
Shadow Register Map Register...........ccocoerviiinnen. 68
SROM e 8,59
SHRT_MAX ..ttt e 9
SHRT_MIN ..o 9
SLTIMerInt ... 67
SIGNAI .. 44
SIGNEA Char ..o 8
SIGNEA INt ..o 8
SIGNEA IONG ..ot 8
SIgNed [0NG 0NQ ...oooiiiiiieii e 8
SIgNed ShOrt.......coiiii e 8
Simple Mode
_MON_QELC i 43
_MON_PUL e 43
_MON_PULC .. 43
CMON_ W .eeiviiieieiiee e 43
Software Stackcccoeeeiiiiniiniie e 58
] o SO 47, 61
Special Function Register ACCESScccevviiiiiiaenne. 53
Special Function Registers..........ccooveviiiiniicnnneen. 40
SOPECST ..ttt 37
SR s 47
SRSCHL...eiiiee e 68
SRSEMAAP i 68
Stack
CUSAGE ...eiiiiiee et 58
Pointer (W15) ...c.oviiiieiee e 38
SOftWAre ..o 58

DS51686A-page 112

© 2007 Microchip Technology Inc.

Stack Locationcccooceeiiiiiiin e 84
Stack Pointer.........ooooiiiiiiee e 61
Stack Usage........ooevieiiiiiiiiiie e 58
Startup and Initialization...............ccoocoiiniiine 61
SEALIC. e 39
Status ReQiISteroocuviviiee e 67
StatuUSBEVooiiieeeee e 69,72
SHINGS <ot 18
SEIUCIUIE ... 59
SWILCH . 21
SYMDOL. ... 36
Syntax ChecKooooiiiieieeee e 19
SYS/attribs.h . ..o 44
SYS/KMEMLN ..o 44
System Function

BNK e 99

UNTINK ©oee e 99
System Header Files.........ccccoviieeiiiiinieceee 21,34
T
F0-ED e 47
Trace Control Register.........cccvvviiiieiceeieeeieeene 70
TraceBPC Register.......cocccviiiiiiiiiiieiieeieee e 70
—traditionalcooeviiii 18
Traditional C..........ooviiiiii e 25
transparent_unionccccoiieiiiiii i 14
TrGraphscooe i 21,35
AAGrapNS oo 35
Type CONVEISION ...cooiiieiiiee et 24
typPeAEf ... 51
U
S e 32,33,35
LU PP PP UPPPUPFRRTN 36
UCHAR_MAX ...ttt 9
UINT_MAX .ottt 9
ULLONG_MAX ..ottt 9
ULONG_MAX ...ttt 9
SUNAET 35
UNIQUE_SECLION ...t 12,14
UNTINK. e s 99
[0 o o | 1o Yo o U 30
UNSIGNEd Char ... 8
UNSIGNEd Nt 8
UNSIGNEA IONG...ciiiiieiiiiiiee e 8
unsigned 1oNg lIoNgcooviiiiriiiiiie e 8
uNSIgNEd SOtcoiiiiiiiiiii e 8
unused Attribute..........ccco 13,14, 21
Unused Function Parameter...........cccoooveiiinieeen. 21
Unused Variable ... 21
used AHbUteocveii 13
User Trace Data Registerccooceeviiiiiicciieen, 70
USHRT_MAX ..ttt 9
\'
) ettt e et e e hetee e e e e eaeeea e e e nreeeaaeaanaeeaaeaannns 17
VO e 47
Ve 47
Variable Attributes. See Attributes, Variable
VECTON . 11
Vector Attribute ... 49

vector Attribute ... 49
Vector Pragmaceeeeiiiiiiiec e 49
VOIALIE ..o 39
w
SWV e 19, 21, 23, 25
SV et e et e e e e e e e e e e e e e e e e 19
WX et e e e e 76
SV 35
-Waggregate-return..........ccccoooiieieiinceeen 23
SWall 19, 21, 23,25
warn_unused_result.........coceviiiiieeinie e 13
Warnings and Errors Control Options 19
-fSYNtaX-0NlY......oviiiiiiie 19
B 1Yo £- T o o3P 19
-pedantiC-errors...........ccoeeeeeevcieeee e 19
SV e 23
SWV et e e e e e e e e e e e e e e e e b ananae e e e eeeaeas 19
-Waggregate-return.........ccccoceeriiiiniiniec e, 23
SWal 19
-Wbad-function-cast..........c.cccooviriiiiiincrneen 23
-Weast-align ... 24
-Weast-qual.....ccoooeeeeeeiiii e 24
-Wchar-subscCriptsc.oveeeiiiiiecc e 19
SWEOMMENE.....eiiiiic e 19
“WCONVEISION ...t 24
“WAIV-DY-ZErO0....cooiiiiiiiiei e 19
SWEITON .. 24
-Werror-implicit-function-declaration.................. 19
SWFOrmateeeei 19
SWIMPHCHE e 19
-Wimplicit-function-declaration.......................... 19
-Wimplicit-int ... 19
SWINNNE o 24
-Wilarger-than- ..o, 24
SWIONG-IONG .. 24
SWMAIN ... 19
-WmisSinNg-bracescccocvvivieeiniee i 19
-Wmissing-declarations.............cccooveeeiiiiiieneen. 24
-Wmissing-format-attribute..............cccccoccoeeeee. 24
-Wmissing-noreturn.........cccoocieeiiiene i, 24
-Wmissing-prototypesccccovveeeiiieeiniieeien, 24
SWmultichar ... 20
-Whnested-externs.cccecvieriecineie e, 24
-Wno-long-1ongooviiiiiii 24
-Wno-multichar..........cccoeeviiii e, 20
-WhNO-SigN-ComMPAreccooeeeeeeniiieeeee e 25
-Wpaddedoocoveiiiiii 24
-Wparentheses..........coocveveviiiiiiec e 20
-Wpointer-arithccoceeiiiiii, 24
-Wredundant-decls............ccccooviiiinciiieecen, 25
SWreturn-type ... 20
-Wsequence-point..........cceeeeeeeii i 20
SWShadOW ..o 25
-WSIgN-ComMPare.......ccccceeeveeieiiiieeeniee e 25
-Wstrict-prototypes.........coovvveiiieeiiiiee e 25
SWSWItCh . 21
-Wsystem-headers.........ccccveveeiiiiiiiieeiiiieen 21
-Witraditional..........ccocoieiiii 25
SWRRGraphs oo 21
SWUNAET L 25

© 2007 Microchip Technology Inc.

DS51686A-page 113

MPLAB® C32 C Compiler User’s Guide

-Wuninitialized............ccoooiii 21

-WUnNKnown-pragmasccueeeeeeinmereeeeeniennenn. 21

-Wunreachable-code...........ccccoociiiiiiiiiciecnee, 25

SWUNUSEd ... 21

-Wunused-functioncccccveeiiiiiiiec e 21

-Wunused-label..........ccccccoiiiii 21

-Wunused-parameter.............ccoooeeecciiinininininnens 22

-Wunused-value..........ccccoviiiiiiiiiiiieeee e 22

-Wunused-variable...........ccccccoviiiiiiiinie, 22

SWWItE-SENGS ...oveeeviiiiiie e 25
Warnings, Inhibit ..o 19
Warranty Registration............ccccooiiiiiiiiicee, 3
-Wbad-function-castcccevoeiiiiienie e 23
-Weast-align ..o 24
SWEast-qualooieieiiii e 24
-Wehar-subSCriptscveivieiiiiieeeeeee e 19
SWEOMMENT ... 19
“WCONVEISION .o 24
“WAIV-DY-ZErO ..o 19
WDTCON ...ttt 51
WEAK ...t 13,14
SWEBITON e 24
-Werror-implicit-function-declaration 19
SWFOrMat ..o 19,24
SWIMPHICH .o 19
-Wimplicit-function-declarationcc.ccoounne. 19
SWImPliCit-int. ... 19
SWINNE (o 24
SWWE e 36
-Wlarger-than- ... 24
“WIONG-IONG i 24
SWMaIN o 19
-WmISSING-braces..........cccocoeveiiieiiiiiieeiee e 19
-Wmissing-declarations.............ccccocveieiiiiiniiec i 24
-Wmissing-format-attributeccocinine. 24
-WmIsSiNg-Noreturn ... 24
-Wmissing-prototypes. ..o 24
SWmultichar ... 20
-Wnested-externscccovevveiieee e 24
SWVNO0- s 19
-Wno-deprecated-declarations............ccccccoeveerrnnnn. 24
-WnNOo-diV-DY-ZErO......cccoiiiiiiiiiieceeee 19
-WnNo-1oNg-1oNg........ooiiiiii e 24
-Wno-multichar ..o 20
SWnonnUl ... 13
-WNOo-SigN-ComMPare...........ccceevmereiienee e 23,25
SWpadded......oeeeiie 24
-Wparenthesesccccovuieiiiiiiiiieee e 20
-Wpointer-arith............cccooiiiiiiie e, 24
-Wredundant-decls.............ccccoeniiiiiiini 25
SWreturn-typeoooceeiiiii e 20
W ettt e e e 43
-WsequencCe-pointccooceeeiiiee i 20
“WShadOWcoeeiiiiiiiice e 25
-WSIgN-COMPArecooeeiiiiiiiiiieiiiiieeee e 25
-Wstrict-prototypes ... 25
SWSWITCH ... 21
-Wsystem-headersccceivieiiiiiiiniie e 21
-Wiraditionalccooiiiiiii 25
SWARGraphS .. 21

SWUNET ... 25
-Wuninitializedcccooooiiiiiiicc 21
-WUNKNOWN-Pragmasc.c.eeeeereerineeennneesniee e 21
-Wunreachable-code................ccooiciiiiiieeeeeeeeee, 25
SWUNUSEA ... 21,23
-Wunused-functioncoooe oo 21
-Wunused-labelcccoooeiiiiiiiiiiiiceee e, 21
-Wunused-parameterocooe i 22
SWUNUSEA-VAIUE ... 22
-Wunused-variableocoeiiciiiieeeee 22
SWWHEE-SEINGS ..eeeiiiiicccee e 25
WWW AAAIESSuiieeiiiieeeeeeeee et 4
X

X ettt e e e e et e et ————eeeeeeeeeeee—————————————aaarrerrrr———————— 17
“XINKET e 36

DS51686A-page 114

© 2007 Microchip Technology Inc.

IndeXx

NOTES:

© 2007 Microchip Technology Inc. DS51686A-page 115

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

10/05/07

DS51686A-page 116

© 2007 Microchip Technology Inc.

	Introduction
	Document Layout
	Conventions Used in this Guide
	Recommended Reading
	The Microchip Web Site
	Development Systems Customer Change Notification Service
	Customer Support
	Document Revision History
	Chapter 1. Language Specifics
	1.1 Introduction
	1.2 Highlights
	1.3 Overview
	1.4 File Naming Conventions
	1.5 Data Storage
	1.6 Predefined Macros
	1.7 Attributes and Pragmas
	1.7.1 Function Attributes

	1.8 Command Line Options
	1.9 Compiling a Single File on the Command Line
	1.10 Compiling Multiple Files on the Command Line
	Chapter 2. Library Environment
	2.1 Introduction
	2.2 Highlights
	2.3 Standard I/O
	2.4 Weak Functions
	2.5 “Helper” Header Files
	2.5.1 sys/attribs.h
	2.5.2 sys/kmem.h

	2.6 Multilibs
	2.6.1 What are Multilibs?
	2.6.2 What Multilibs are Available for MPLAB C32 Language Tools?
	2.6.3 Where are the Multilibs Directories?
	2.6.4 Which Multilib Directory Are Selected?

	Chapter 3. Interrupts
	3.1 Introduction
	3.2 Highlights
	3.3 Specifying an Interrupt Handler Function
	3.3.1 Handler Function Context Saving
	3.3.2 Marking a Function as an Interrupt Handler

	3.4 Associating a Handler Function with an Exception Vector
	3.4.1 Interrupt Pragma Clause
	3.4.2 Vector Pragma
	3.4.3 Vector Attribute

	3.5 Exception Handlers
	3.5.1 Bootstrap Exception
	3.5.2 General Exception

	Chapter 4. Low Level Processor Control
	4.1 Introduction
	4.2 Highlights
	4.3 Generic Processor Header File
	4.4 Processor Support Header Files
	4.5 Peripheral Library Functions
	4.6 Special Function Register Access
	4.7 CP0 Register Access
	4.7.1 CP0 Register Definitions Header File
	4.7.2 CP0 Register Definitions
	4.7.3 CP0 Register Field Definitions
	4.7.4 CP0 Access Macros

	4.8 Configuration Bit Access
	4.8.1.2 Example

	Chapter 5. Compiler Runtime Environment
	5.1 Introduction
	5.2 Highlights
	5.3 Register Conventions
	5.4 Stack Usage
	5.5 Heap Usage
	5.6 Function Calling Convention
	5.7 Startup and Initialization
	5.7.1 Provisions
	5.7.2 PIC32MX Startup Code
	5.7.2.1 Jump to NMI Handler If an NMI Occurred
	5.7.2.2 Initialize Stack Pointer and Heap
	5.7.2.3 Initialize Global Pointer
	5.7.2.4 Call “On Reset” Procedure
	5.7.2.5 Clear Uninitialized Data Sections
	5.7.2.6 Copy Initialized Data from Program Flash to Data Memory
	5.7.2.7 Copy RAM Functions from Program Flash to Data Memory
	5.7.2.8 Initialize Bus Matrix Registers
	5.7.2.9 Initialize CP0 Registers
	5.7.2.10 Trace Control 2 Register (TraceControl2 - CP0 Register 23, Select 2)
	5.7.2.11 Call “On Bootstrap” Procedure
	5.7.2.12 Change Location of Exception Vectors
	5.7.2.13 Call Main

	5.7.3 Exceptions
	5.7.4 Symbols Required by Startup Code and C Library

	5.8 Contents of the Default Linker Script
	5.8.1 Output Format and Entry Points
	5.8.2 Default Values for Minimum Stack and Heap Sizes
	5.8.3 Processor Definitions Include File
	5.8.3.1 Inclusion of Processor-Specific Object File(s)
	5.8.3.2 Base Exception Vector Address and Vector Spacing Symbols
	5.8.3.3 Memory Address Equates
	5.8.3.4 Memory Regions
	5.8.3.5 Configuration Words Input/Output Section Map

	5.8.4 Input/Output Section Map
	5.8.4.1 .reset Section
	5.8.4.2 .bev_excpt Section
	5.8.4.3 .dbg_excpt Section
	5.8.4.4 .dbg_code Section
	5.8.4.5 .app_excpt Section
	5.8.4.6 .vector_0 .. .vector_63 Sections
	5.8.4.7 .startup Section
	5.8.4.8 .text Section
	5.8.4.9 .rodata Section
	5.8.4.10 .sdata2 Section
	5.8.4.11 .sbss2 Section
	5.8.4.12 .dbg_data Section
	5.8.4.13 .data Section
	5.8.4.14 .got Section
	5.8.4.15 .sdata Section
	5.8.4.16 .lit8 Section
	5.8.4.17 .lit4 Section
	5.8.4.18 .sbss Section
	5.8.4.19 .bss Section
	5.8.4.20 .heap Section
	5.8.4.21 .stack Section
	5.8.4.22 .ramfunc Section
	5.8.4.23 Stack Location
	5.8.4.24 Debug Sections

	5.9 RAM Functions
	Appendix A. Implementation Defined Behavior
	A.1 Introduction
	A.2 Highlights
	A.3 Overview
	A.4 Translation
	A.5 Environment
	A.6 Identifiers
	A.7 Characters
	A.8 Integers
	A.9 Floating-Point
	A.10 Arrays and Pointers
	A.11 Hints
	A.12 Structures, Unions, Enumerations, and Bit-fields
	A.13 Qualifiers
	A.14 Declarators
	A.15 Statements
	A.16 Pre-Processing Directives
	A.17 Library Functions
	A.18 Architecture
	Appendix B. Open Source Licensing
	B.1 Introduction
	B.2 General Public License
	B.3 BSD License
	B.4 Sun Microsystems
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /MICROCHIP
 /SymbolMT
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

