

P-Channel Enhancement Mode Field Effect Transistor

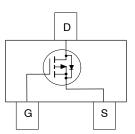
NDS0610

General Description

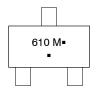
This P-Channel Enhancement Mode Field Effect Transistors are Produced using **onsemi**'s proprietary, high cell density, DMOS technology. This very high density process has been designed to minimize on-state resistance, provide rugged and reliable performance and fast switching. They can be used, with a minimum of effort, in most applications requiring up to 120 mA DC and can deliver current up to 1 A.

This product is particularly suited to low voltage applications requiring a low current high side switch.

Features


- -0.12 A, -60 V
 - $R_{DS(on)} = 10 \Omega @ V_{GS} = -10 V$
 - $R_{DS(on)} = 20 \Omega @ V_{GS} = -4.5 V$
- Voltage Controlled P-Channel Small Signal Switch
- High Density Cell design for Low R_{DS(on)}
- High Saturation Current

ABSOLUTE MAXIMUM RATINGS $T_A = 25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Value	Unit
V _{DSS}	Drain-to-Source Voltage	-60	V
V _{GSS}	Gate-to-Source Voltage	±20	V
I _D	Drain Current - Continuous (Note 1) - Pulsed	-0.12 -1	Α
P _D	Maximum Power Dissipation (Note 1)	0.36	W
	Derate Above 25°C	2.9	
T _J , T _{stg}	Operating and Storage Junction Temperature Range	–55 to +150	°C
T _L	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MARKING DIAGRAM

610 = Device Code

M = Date Code*

= Pb-Free Package

(NOTE: Microdot may be in either location)

*Date Code orientation and/or location may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NDS0610	SOT-23 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

NDS0610

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	350	°C/W

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Charac	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = -10 \mu\text{A}$	-60	-	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -10 μ A, Referenced to 25°C	-	-53	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1	μΑ
		V _{DS} = -48 V, V _{GS} = 0 V T _J = 125°C	-	-	-200	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	nA
On Charac	cteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -1$ mA	-1	-1.7	-3.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = -1 mA, Referenced to 25°C	-	-3	-	mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_D = -0.5 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -0.25 \text{ A}$ $V_{GS} = -10 \text{ V}, I_D = -0.5 \text{ A}, T_J = 125^{\circ}\text{C}$	-	1.0 1.3 1.7	10 20 16	Ω
I _{D(on)}	On-State Drain Current	V _{GS} = -10 V, V _{DS} = -10 V	-0.6	-	_	Α
9FS	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_D = -0.1 \text{ A}$	70	430	_	mS
Dynamic C	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	-	79	_	pF
C _{oss}	Output Capacitance		-	10	_	pF
C _{rss}	Reverse Transfer Capacitance		-	4	_	pF
R_{G}	Gate Resistance	V _{DS} = -15 mV, f = 1.0 MHz	-	10	_	Ω
Switching	Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -25 \text{ V}, I_D = -0.12 \text{ A},$	-	2.5	5	ns
t _r	Turn-On Rise Time	$V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$	-	6.3	12.6	ns
t _{d(off)}	Turn-Off Delay Time		-	10	15	ns
t _f	Turn-Off Fall Time		-	7.5	15	ns
Qg	Total Gate Change	$V_{DS} = -48 \text{ V}, I_D = -0.5 \text{ A}, V_{GS} = -10 \text{ V}$	-	1.8	2.5	nC
Q _{gs}	Gate-Source Change	V _{GS} = −10 V	-	0.3	_	nC
Q_{gd}	Gate-Drain Change		-	0.4	_	nC
Drain-Sou	rce Diode Characteristics and Maximum R	atings	_	_		_
IS	Maximum Continuous Drain-Source Diode	Forward Current	_	-	-0.24	Α
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = -0.24 A (Note 2)	-	-0.8	-1.5	V
t _{rr}	Diode Reverse Recovery Time	$I_F = -0.5 \text{ A}, d_{iF}/d_t = 100 \text{ A/}\mu\text{s} \text{ (Note 2)}$	-	17	-	ns
Q _{rr}	Diode Reverse Recovery Charge]	-	15	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 350 °C/W when mounted on a minimum pad.

Scale 1: 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

www.onsemi.com

NDS0610

TYPICAL CHARACTERISTICS

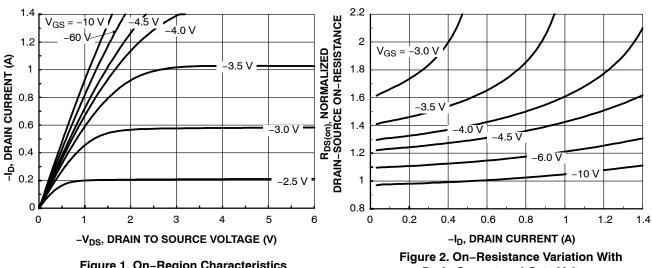


Figure 1. On-Region Characteristics

Drain Current and Gate Voltage

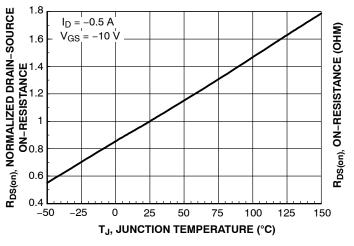


Figure 3. On-Resistance Variation with **Temperature**

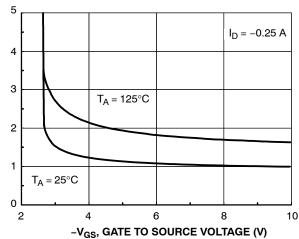


Figure 4. On-Resistance Variation with Gate-to-Source Voltage

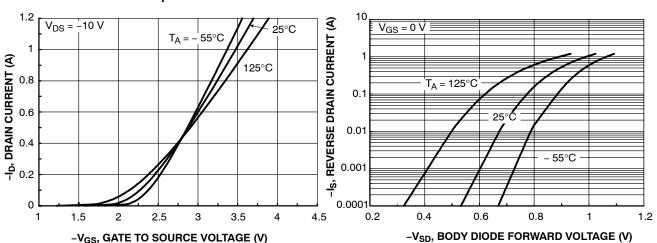


Figure 5. Transfer Characteristics

Figure 6. Body Diode Forward Voltage Variation with **Source Current and Temperature**

NDS0610

TYPICAL CHARACTERISTICS (CONTINUED)

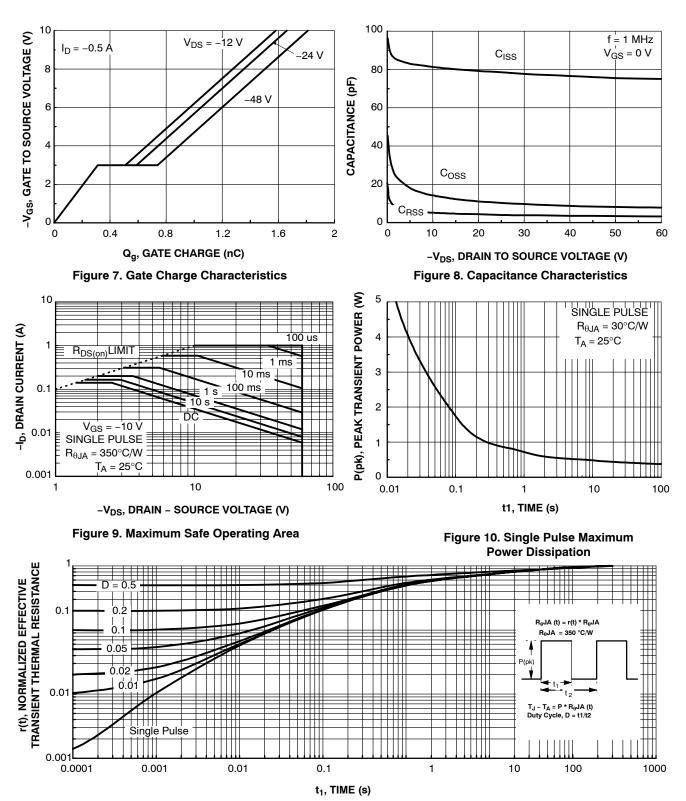
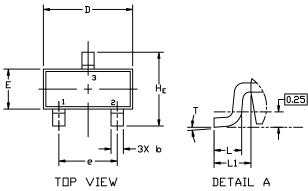
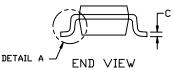


Figure 11. Transient Thermal Response Curve

Thermal characterization performed using the conditions described in Note 1a. Transient themal response will change depending on the circuit board design.



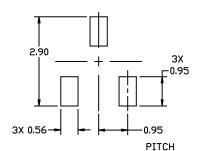

SOT-23 (TO-236) CASE 318 ISSUE AT

DATE 01 MAR 2023

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
Ε	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0*		10°	0*		10*



XXX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318 ISSUE AT

DATE 01 MAR 2023

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	ı	
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18: PIN 1. NO CONNECTION 2. CATHODE 3. ANODE	STYLE 19: I PIN 1. CATHODE 2. ANODE 3. CATHODE-ANODE	STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales