

Complementary Silicon Plastic Power Transistors

TIP31G, TIP31AG, TIP31BG, TIP31CG (NPN), TIP32G, TIP32AG, TIP32BG, TIP32CG (PNP)

Designed for use in general purpose amplifier and switching applications.

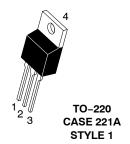
Features

- High Current Gain Bandwidth Product
- Compact TO-220 Package
- These Devices are Pb-Free and are RoHS Compliant*

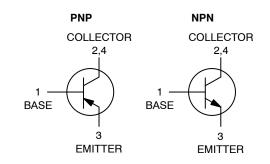
MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V _{CEO}	Collector – Emitter Voltage TIP31G, TIP32G TIP31AG, TIP32AG TIP31BG, TIP32BG TIP31CG, TIP32CG	40 60 80 100	Vdc
V _{CB}	Collector-Base Voltage TIP31G, TIP32G TIP31AG, TIP32AG TIP31BG, TIP32BG TIP31CG, TIP32CG	40 60 80 100	Vdc
V _{EB}	Emitter-Base Voltage	5.0	Vdc
I _C	Collector Current - Continuous	3.0	Adc
I _{CM}	Collector Current - Peak	5.0	Adc
I _B	Base Current	1.0	Adc
P _D	Total Power Dissipation @ T _C = 25°C Derate above 25°C	40 0.32	W W/°C
P _D	Total Power Dissipation @ T _A = 25°C Derate above 25°C	2.0 0.016	W W/°C
Е	Unclamped Inductive Load Energy (Note 1)	32	mJ
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-65 to +150	°C

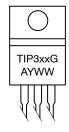
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. I_{C} = 1.8 A, L = 20 mH, P.R.F. = 10 Hz, V_{CC} = 10 V, R_{BE} = 100 Ω

THERMAL CHARACTERISTICS


Symbol	Characteristic	Max	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	3.125	°C/W

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


1

3 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 40-60-80-100 VOLTS, 40 WATTS

MARKING DIAGRAM

TIP3xx = Device Code xx = 1, 1A, 1B, 1C, 2, 2A, 2B, 2C, A = Assembly Location

Y = Year
WW = Work Week
G Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 6.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Characteristic	Min	Max	Unit
FF CHARAC	TERISTICS	·		
V _{CEO(sus)}	Collector–Emitter Sustaining Voltage (Note 2) (I _C = 30 mAdc, I _B = 0) TIP31G, TIP32G TIP31AG, TIP32AG TIP31BG, TIP32BG TIP31CG, TIP32CG	40 60 80 100	- - - -	Vdc
I _{CEO}	Collector Cutoff Current $(V_{CE}=30\ Vdc,\ I_B=0)$ TIP31G, TIP32G, TIP31AG, TIP32AG $(V_{CE}=60\ Vdc,\ I_B=0)$ TIP31BG, TIP31CG, TIP32BG, TIP32CG	-	0.3 0.3	mAdc
I _{CES}	Collector Cutoff Current $ (V_{CE} = 40 \text{ Vdc}, V_{EB} = 0) $ $ \text{TIP31G}, \text{TIP32G} $ $ (V_{CE} = 60 \text{ Vdc}, V_{EB} = 0) $ $ \text{TIP31AG}, \text{TIP32AG} $ $ (V_{CE} = 80 \text{ Vdc}, V_{EB} = 0) $ $ \text{TIP31BG}, \text{TIP32BG} $ $ (V_{CE} = 100 \text{ Vdc}, V_{EB} = 0) $ $ \text{TIP31CG}, \text{TIP32CG} $	- - -	200 200 200 200	μAdc
I _{EBO}	Emitter Cutoff Current $(V_{BE} = 5.0 \text{ Vdc}, I_C = 0)$	-	1.0	mAdc
N CHARACT	TERISTICS (Note 2)			
h _{FE}	DC Current Gain ($I_C = 1.0$ Adc, $V_{CE} = 4.0$ Vdc) ($I_C = 3.0$ Adc, $V_{CE} = 4.0$ Vdc)	25 10	- 50	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 3.0 Adc, I _B = 375 mAdc)	-	1.2	Vdc
V _{BE(on)}	Base–Emitter On Voltage (I _C = 3.0 Adc, V _{CE} = 4.0 Vdc)	-	1.8	Vdc
YNAMIC CH	ARACTERISTICS	·		
f _T	Current–Gain – Bandwidth Product ($I_C = 500 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f_{test} = 1.0 \text{ MHz}$)	3.0	_	MHz
h _{fe}	Small-Signal Current Gain (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 1.0 kHz)	20	-	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

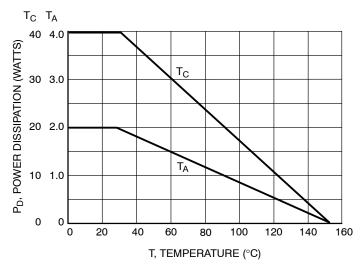
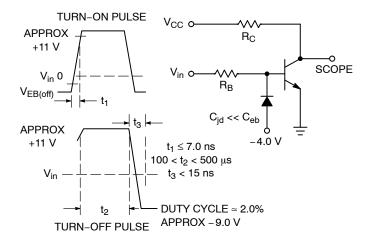
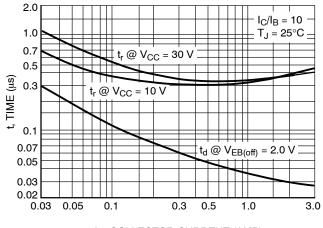




Figure 1. Power Derating

 ${\rm R}_{\rm B}$ and ${\rm R}_{\rm C}$ VARIED TO OBTAIN DESIRED CURRENT LEVELS.

Figure 2. Switching Time Equivalent Circuit

 $I_{\mathbb{C}}$, COLLECTOR CURRENT (AMP)

Figure 3. Turn-On Time

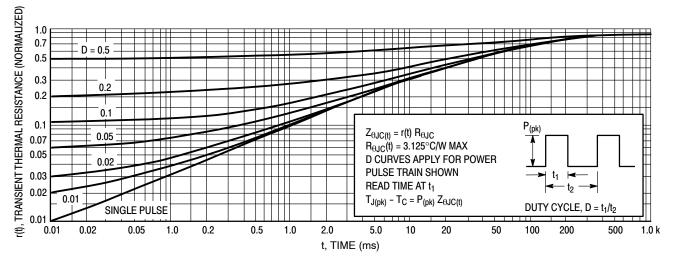


Figure 4. Thermal Response

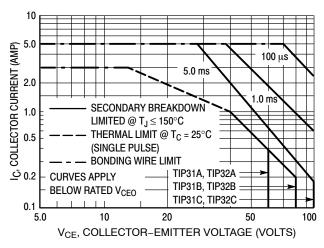


Figure 5. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

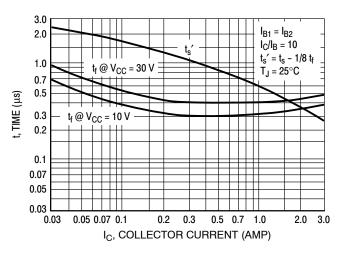


Figure 6. Turn-Off Time

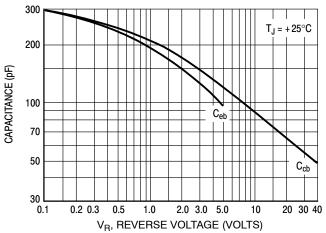
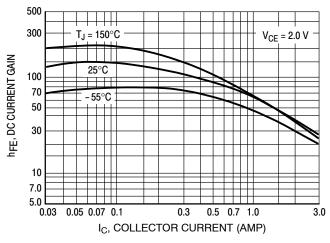
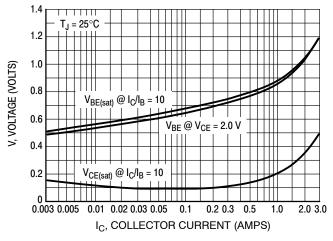



Figure 7. Capacitance


2.0

COLLECTOR-EMITTER VOLTAGE (VOLTS) $T_J = 25^{\circ}C$ 1.6 $I_{\rm C} = 0.3 \, {\rm A}$ 3.0 A 1.2 0.8 0.4 ζË, 0 1.0 2.0 10 50 100 200 500 1000 IB, BASE CURRENT (mA)

Figure 8. DC Current Gain

Figure 9. Collector Saturation Region

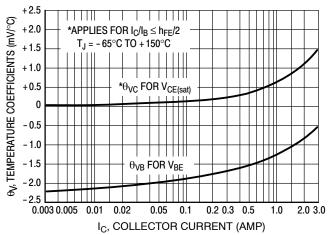
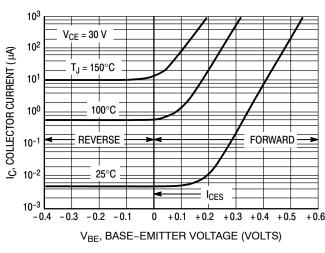



Figure 10. "On" Voltages

Figure 11. Temperature Coefficients

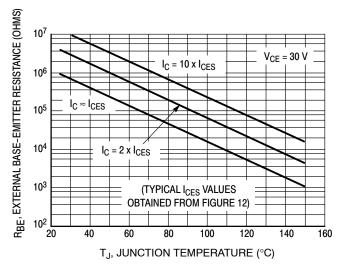
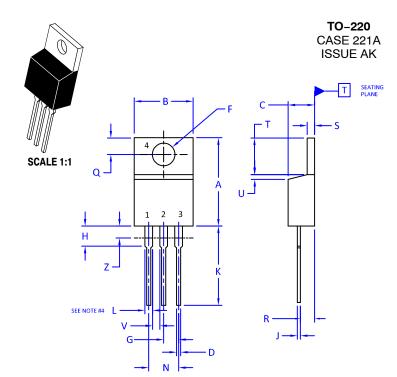


Figure 12. Collector Cut-Off Region

Figure 13. Effects of Base-Emitter Resistance

ORDERING INFORMATION


Device	Package	Shipping
TIP31AG	TO-220 (Pb-Free)	50 Units / Rail
TIP31BG	TO-220 (Pb-Free)	50 Units / Rail
TIP31CG	TO-220 (Pb-Free)	50 Units / Rail
TIP32G	TO-220 (Pb-Free)	50 Units / Rail
TIP32AG	TO-220 (Pb-Free)	50 Units / Rail
TIP32BG	TO-220 (Pb-Free)	50 Units / Rail
TIP32CG	TO-220 (Pb-Free)	50 Units / Rail

DISCONTINUED (Note 3)

TIP31G	TO-220	50 Units / Rail
	(Pb-Free)	

^{3.} **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on www.onsemi.com.

DATE 13 JAN 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 2: PIN 1. 2. 3. 4.	COLLECTOR	STYLE 3: PIN 1. 2. 3. 4.	ANODE	2. 3.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE	2. 3.	ANODE CATHODE ANODE CATHODE	STYLE 7: PIN 1. 2. 3. 4.	ANODE	2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE
STYLE 9: PIN 1. 2. 3. 4.		STYLE 10: PIN 1. 2. 3. 4.	GATE	STYLE 11: PIN 1. 2. 3. 4.	DRAIN	STYLE 12: PIN 1. 2. 3. 4.	

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales