5 V ECL 4:1 Differential Multiplexer #### **Description** The MC10/100EL57 is a fully differential 4:1 multiplexer. By leaving the SEL1 line open (pulled LOW via the input pulldown resistors) the device can also be used as a differential 2:1 multiplexer with SEL0 input selecting between D0 and D1. The SEL1 is the most significant select line. The binary number applied to the select inputs will select the same numbered data input (i.e., 00 selects D0). Multiple V_{BB} outputs are provided for single-ended or AC coupled interfaces. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. The 100 Series contains temperature compensation. #### **Features** - Useful as Either 4:1 or 2:1 Multiplexer - V_{BB} Output for Single-Ended Operation - PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V - NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -4.2 V to -5.7 V - Internal Input Pulldown Resistors on All Inputs - Q Outputs Will Default LOW with Inputs Open or at VEE - These Devices are Pb-Free, Halogen Free and are RoHS Compliant ## ON Semiconductor® www.onsemi.com SOIC-16 D SUFFIX CASE 751B-05 #### **MARKING DIAGRAMS*** A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package ### **ORDERING INFORMATION** | Device | Package | Shipping† | |---------------|-------------------------|------------------| | MC10EL57DG | SOIC-16 NB
(Pb-Free) | 48 Units/Tube | | MC10EL57DR2G | SOIC-16 NB
(Pb-Free) | 2500 Tape & Reel | | MC100EL57DG | SOIC-16 NB
(Pb-Free) | 48 Units/Tube | | MC100EL57DR2G | SOIC-16 NB
(Pb-Free) | 2500 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>. **Table 1. ATTRIBUTES** | Characteristic | s | Value | |--|------------------------|-----------------------------| | Internal Input Pulldown Resistor | | 75 KΩ | | Internal Input Pullup Resistor | | N/A | | ESD Protection
Human Body Model
Machine Model
Charge Device Model | | > 1 kV
> 100 V
> 2 kV | | Moisture Sensitivity (Note 1) | | Level 1 | | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | Transistor Count | | 109 Devices | | Meets or Exceeds JEDEC Spec EIA/JE | SD78 IC Latchup Test | | ^{1.} For additional Moisture Sensitivity information, refer to Application Note AND8003/D. Figure 1. Logic Diagram and Pinout Assignment **Table 3. FUNCTION TABLE** | SEL1* | SEL0* | DATA OUT | |-------|-------|----------| | L | L | D0 | | L | Н | D1 | | Н | L | D2 | | Н | Н | D3 | ^{*} Pin will default low when left open. **Table 2. PIN DESCRIPTION** | PIN | FUNCTION | |-----------------------|--------------------------| | D0-3, D0-3 | ECL Diff Data Inputs | | SEL0,1 | ECL MUX Select Inputs | | Q, \overline{Q} | ECL Data Outputs | | V_{BB1},V_{BB2} | Reference Voltage Output | | V_{CC} | Positive Supply | | V_{EE} | Negative Supply | | | | **Table 4. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--|---|-------------|------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -8 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6
-6 | V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA | | I _{BB} | V _{BB} Sink/Source | | | ±0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-16
SOIC-16 | 130
75 | °C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-16 | 33 to 36 | °C/W | | T _{sol} | Wave Solder (Pb-Free) | < 2 to 3 sec @ 260°C | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 5. 10EL SERIES PECL DC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = 0 V (Note 1)) | | | | -40°C | °C 25°C | | | | | 85°C | | | |--------------------|--|------|-------|---------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | | 24 | | | 24 | | | 24 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 3920 | 4010 | 4110 | 4020 | 4105 | 4190 | 4090 | 4185 | 4280 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 3050 | 3200 | 3350 | 3050 | 3210 | 3370 | 3050 | 3227 | 3405 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3770 | | 4110 | 3870 | | 4190 | 3940 | | 4280 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3050 | | 3500 | 3050 | | 3520 | 3050 | | 3555 | mV | | V _{BB} | Output Voltage Reference | 3.57 | | 3.7 | 3.65 | | 3.75 | 3.69 | | 3.81 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3) | 2.5 | | 4.6 | 2.5 | | 4.6 | 2.5 | | 4.6 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _I Γ | Input LOW Current | 0.5 | | | 0.5 | | | 0.3 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.06 V / -0.5 V. Outputs are terminated through a 50 \(\Omega\) resistor to V_{CC} 2.0 V. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V. Table 6. 10EL SERIES NECL DC CHARACTERISTICS (V_{CC} = 0 V; V_{EE} = -5.0 V (Note 1)) | | | | -40°C | | 25°C | | | 85°C | | | | |--------------------|--|-------|-------|-------|-------|-------|-------|-------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | | 24 | | | 24 | | | 24 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | -1080 | -990 | -890 | -980 | -895 | -810 | -910 | -815 | -720 | mV | | V _{OL} | Output LOW Voltage (Note 2) | -1950 | -1800 | -1650 | -1950 | -1790 | -1630 | -1950 | -1773 | -1595 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1230 | | -890 | -1130 | | -810 | -1060 | | -720 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1950 | | -1500 | -1950 | | -1480 | -1950 | | -1445 | mV | | V_{BB} | Output Voltage Reference | -1.43 | | -1.30 | -1.35 | | -1.25 | -1.31 | | -1.19 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3) | -2.5 | | -0.4 | -2.5 | | -0.4 | -2.5 | | -0.4 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.3 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary +0.06 V / -0.5 V. 2. Outputs are terminated through a 50 Ω resistor to V $_{CC}$ 2.0 V. - 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V. Table 7. 100EL SERIES PECL DC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = 0 V (Note 1)) | | | -40°C | | | | 25°C | | 85°C | | | | |--------------------|--|-------|------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | | 24 | | | 24 | | | 27 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 3915 | 3995 | 4120 | 3975 | 4045 | 4120 | 3975 | 4050 | 4120 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 3170 | 3305 | 3445 | 3190 | 3295 | 3380 | 3190 | 3295 | 3380 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3835 | | 4120 | 3835 | | 4120 | 3835 | | 4120 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3190 | | 3525 | 3190 | | 3525 | 3190 | | 3525 | mV | | V _{BB} | Output Voltage Reference | 3.62 | | 3.74 | 3.62 | | 3.74 | 3.62 | | 3.74 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3) | 2.5 | | 4.6 | 2.5 | | 4.6 | 2.5 | | 4.6 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.8 V / -0.5 V. - 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. 3. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between Vppmin and 1 V. Table 8. 100EL SERIES NECL DC CHARACTERISTICS (V_{CC} = 0 V; V_{EE} = -5.0 V (Note 1)) | | | -40°C | | | 25°C | | | 85°C | | | | |--------------------|--|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | | 24 | | | 24 | | | 27 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 2) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | V_{IH} | Input HIGH Voltage (Single-Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V_{IL} | Input LOW Voltage (Single-Ended) | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | V_{BB} | Output Voltage Reference | -1.38 | | -1.26 | -1.38 | | -1.26 | -1.38 | | -1.26 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3) | -2.5 | | -0.4 | -2.5 | | -0.4 | -2.5 | | -0.4 | > | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with $V_{CC}.\ V_{EE}$ can vary +0.8 V / -0.5 V. - 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. - V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V. Table 9. AC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = 0 V or V_{CC} = 0 V; V_{EE} = -5.0 V (Note 1)) | | | -40°C 25°C | | | 85°C | | | | | | | |--------------------------------------|---|------------|-----|------------|------------|-----|------------|------------|-----|------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Toggle Frequency | | TBD | | | TBD | | | TBD | | GHz | | t _{PLH}
t _{PHL} | Propagation DATA→Q/Q Delay SEL→Q/Q | 350
440 | | 550
690 | 360
440 | | 560
690 | 380
460 | | 580
710 | ps | | t _{SKEW} | Input Skew D _n , D _m to Q | | | 100 | | | 100 | | | 100 | ps | | t _{JITTER} | Cycle-to-Cycle Jitter | | TBD | | | TBD | | | TBD | | ps | | V_{PP} | Input Swing (Note 2) | 150 | | 1000 | 150 | | 1000 | 150 | | 1000 | mV | | t _r
t _f | Output Rise/Fall Times Q (20%-80%) | 125 | | 375 | 125 | | 375 | 125 | | 375 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. 10 Series: V_{EE} can vary +0.06 V / -0.5 V. 100 Series: V_{EE} can vary +0.8 V / -0.5 V. - 2. V_{PP} min is minimum input swing for which AC parameters guaranteed. The device has a DC gain of \approx 40. Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices) ## **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AND8001/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices #### SOIC-16 9.90x3.90x1.50 1.27P CASE 751B ISSUE L #### **DATE 29 MAY 2024** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. - 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES. - 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. - 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE. - 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIM | ETERS | | | | | | |---------|----------|----------|----------|--|--|--|--| | DIM | MIN | NOM | MAX | | | | | | А | 1.35 | 1.55 | 1.75 | | | | | | A1 | 0.00 | 0.05 | 0.10 | | | | | | A2 | 1.35 | 1.50 | 1.65 | | | | | | b | 0.35 | 0.42 | 0.49 | | | | | | С | 0.19 | 0.22 | 0.25 | | | | | | D | | 9.90 BSC | | | | | | | Е | 6.00 BSC | | | | | | | | E1 | 3.90 BSC | | | | | | | | е | 1.27 BSC | | | | | | | | h | 0.25 | | 0.50 | | | | | | L | 0.40 | 0.83 | 1.25 | | | | | | L1 | | 1.05 REF | | | | | | | Θ | 0. | | 7° | | | | | | TOLERAN | CE OF FC | RM AND | POSITION | | | | | | aaa | | 0.10 | | | | | | | bbb | 0.20 | | | | | | | | ссс | 0.10 | | | | | | | | ddd | | 0.25 | | | | | | | eee | | 0.10 | | | | | | # RECOMMENDED MOUNTING FOOTPRINT *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D | DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED" | | |------------------|--------------------------|--|-------------| | DESCRIPTION: | SOIC-16 9.90X3.90X1.50 1 | .27P | PAGE 1 OF 2 | onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. #### SOIC-16 9.90x3.90x1.50 1.27P CASE 751B ISSUE L **DATE 29 MAY 2024** # GENERIC MARKING DIAGRAM* XXXXX = Specific Device Code A = Assembly Location WL = Wafer Lot Y = Year WW = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | 077/15/ | | 077/15.0 | | 077/15.0 | | T/15 4 | | |--|--|--|---|---|---|-------------------|--------------------------------| | STYLE 1:
PIN 1. | COLLECTOR | STYLE 2: | CATHODE | STYLE 3:
PIN 1. | | TYLE 4:
PIN 1. | COLLECTOR DVF #1 | | PIN 1.
2. | | PIN 1.
2. | | PIN 1.
2. | COLLECTOR, DYE #1
BASE, #1 | PIN 1.
2. | | | 2.
3. | EMITTER | 2.
3. | NO CONNECTION | 2.
3. | | 2.
3. | | | 3.
4. | NO CONNECTION | 3.
4. | | 3.
4. | | 3.
4. | | | | EMITTER | 4.
5. | | | | | | | 5. | BASE | 5.
6. | NO CONNECTION | 5. | , | 5. | | | 6.
7. | | o.
7. | | 6. | EMITTER, #2 | 6. | | | 7.
8. | | 7.
8. | CATHODE | 7.
8. | | | COLLECTOR, #4
COLLECTOR, #4 | | 8.
9. | | 8.
9. | | | COLLECTOR, #2 | | BASE, #4 | | 9.
10. | | | ANODE | | BASE. #3 | | EMITTER, #4 | | | NO CONNECTION | | | | | | | | | EMITTER | 11. | CATHODE | | EMITTER, #3
COLLECTOR, #3 | | BASE, #3 | | | | | | | | | EMITTER, #3 | | | BASE | | CATHODE | | COLLECTOR, #4 | | BASE, #2 | | | COLLECTOR | 14. | | | BASE, #4 | | EMITTER, #2 | | 15. | | | ANODE | | EMITTER, #4 | | BASE, #1 | | 16. | COLLECTOR | 16. | CATHODE | 16. | COLLECTOR, #4 | 16. | EMITTER, #1 | | | | | | | | | | | STYLE 5: | | STYLE 6: | | STYLE 7: | | | | | | | | | | | | | | PIN 1. | , | PIN 1. | | PIN 1. | | | | | PIN 1.
2. | DRAIN, #1 | PIN 1.
2. | CATHODE | PIN 1.
2. | COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3. | DRAIN, #1
DRAIN, #2 | PIN 1.
2.
3. | CATHODE
CATHODE | PIN 1.
2.
3. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4. | DRAIN, #1
DRAIN, #2
DRAIN, #2 | PIN 1.
2.
3.
4. | CATHODE
CATHODE
CATHODE | PIN 1.
2.
3.
4. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P-CH | | | | PIN 1.
2.
3.
4.
5. | DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3 | PIN 1.
2.
3.
4.
5. | CATHODE
CATHODE
CATHODE
CATHODE | PIN 1.
2.
3.
4.
5. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P-CH
COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5.
6. | DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3 | PIN 1.
2.
3.
4.
5. | CATHODE
CATHODE
CATHODE
CATHODE
CATHODE | PIN 1.
2.
3.
4.
5. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P-CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5.
6. | DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3
DRAIN, #4 | PIN 1.
2.
3.
4.
5.
6. | CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE | PIN 1.
2.
3.
4.
5.
6.
7. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P-CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5.
6. | DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3
DRAIN, #4
DRAIN, #4 | PIN 1.
2.
3.
4.
5. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE | PIN 1.
2.
3.
4.
5. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P-CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
SOURCE P-CH | | | | PIN 1.
2.
3.
4.
5.
6. | DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3
DRAIN, #4
DRAIN, #4
GATE, #4 | PIN 1.
2.
3.
4.
5.
6. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE | PIN 1.
2.
3.
4.
5.
6.
7. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH | | | | PIN 1.
2.
3.
4.
5.
6.
7. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 SOURCE, #4 | PIN 1.
2.
3.
4.
5.
6.
7. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE | PIN 1.
2.
3.
4.
5.
6.
7. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #3 DRAIN, #4 GATE, #4 GATE, #4 SOURCE, #4 SOURCE, #3 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GOMMON DRAIN (OUTPUT) GATE N-CH | | | | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 SOURCE, #2 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) CATE N-CH COMMON DRAIN (OUTPUT) | | | | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #3 DRAIN, #4 GATE, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 GATE, #1 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) | | | | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 SOURCE, #2 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) | | | | DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------------------|---|-------------|--| | DESCRIPTION: | SOIC-16 9.90X3.90X1.50 1.27P | | PAGE 2 OF 2 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales