

Maxim > Design Support > Technical Documents > Application Notes > Automotive > APP 4020 Maxim > Design Support > Technical Documents > Application Notes > High-Speed Interconnect > APP 4020 Maxim > Design Support > Technical Documents > Application Notes > High-Speed Signal Processing > APP 4020

Keywords: MAX9217, MAX9218, MAX9247, MAX9248, MAX9250

APPLICATION NOTE 4020

Working with MAX9217/MAX9218/MAX9247/MAX9248/MAX9250 Evaluation Boards

Jun 29, 2007

Abstract: This application note describes how to prepare and use the evaluation boards for the MAX9217/MAX9247 serializers and the MAX9218/MAX9248/MAX9250 deserializers.

General Description

The MAX9217/MAX9218/MAX9247/MAX9248/MAX9250 evaluation boards (EV kits) are available for customer evaluation. These EV kits consist of two sections: The right half contains one of the single-channel serializer components (MAX9217 or MAX9247) and the left half contains one of the single-channel deserializer components (MAX9218, MAX9248, or MAX9250).

The EV kits require three clock signals, which can be supplied by the same source. The serializer works with two clock signals: PCLK and DE_IN, where DE_IN is normally divided by a factor of 16 or 32 of the PCLK. The deserializer section needs a REFCLK, which can come from the same source, or it can be provided by an independent local oscillator that is within 2% accuracy of the PCLK.

Steps to Prepare the EV kits

- 1. Configure the EV kits (Figures 1 and 2) by setting the jumpers according to the configuration tables below (Tables 1–4).
- 2. Apply power to the EV kit. A single 3.3V DC power supply is sufficient to support each section of the EV board; however, if component characterization is desired, it is recommended to supply separate sources for each of the component's power-supply pins (Table 2).
- 3. Connect the PCLK, DE_IN, and REFCLK clock signals to the EV kit, as explained in Step 2 (also see examples below). An Agilent[™] 8133A pulse generator is a good choice for providing all three clock signals from one source.
- 4. Apply the input data to the input pins of the serializer (located at the right-half section of the EV kit) and check the deserializer output pins using a logic analyzer and a multimeter. A liquid-crystal display (LCD) can be used if the input to the serializer is a video signal, such as UNIGRAF's VTG-4116 video test patterns.
- 5. Special attention should be given to jumper JP13 on the serializer board. By connecting this jumper to DVCC, the ground pins of JP17–JP21 (10 x 2 headers) are connected to 3.3V, and a fixed data

pattern can be applied to the data inputs of the MAX9217/MAX9247 serializers. When external data patterns are applied, this jumper should be connected to ground.

Pseudorandom-Bit-Sequence (PRBS) Data Generation by the MAX9217/MAX9247

The MAX9217/MAX9247 can generate PRBS data for eye-diagram measurements by using the following configuration:

- 1. Connect the active-low PWRDWN pin to ground.
- 2. Connect both MOD0 and MOD1 pins (for the MAX9247, these pins are called I.C. and PRE) to a negative 2.5V DC voltage. The serializer eye diagram can be observed by connecting a differential probe to pins 2 and 3 of JP14/JP24 (4-pin, single-row headers) on the serializer board. The deserializer eye diagram is available on pins 2 and 3 of JP5/JP6 (4-pin, single-row headers) of the deserializer board.

More detailed image (PDF, 121kB) Figure 1. Circuit schematic for the MAX9217 EV kit.

More detailed image (PDF, 128kB) Figure 2. Circuit schematic for the MAX9218 EV kit.

Quick Functionality Check

The MAX9217/MAX9247/MAX9218/MAX9248/MAX9250 EV kits have headers for connection to a logic analyzer, a graphics generator, or a display. A pattern generator (which can be a part of the logic-analyzer system) such as the HP16500C system generates parallel test words that are applied to the serializer input. The test words are serialized and sent over the LVDS link to the deserializer. The logic

analyzer then reads the deserialized test words and checks for errors against the reference or test words that were sent across the serializer and deserializer. The EV kit can also be connected to a graphics generator and LCD for a visual test of the serial link.

The basic function of the serial link can be checked without a logic analyzer, a graphics generator, or a display. For a quick check of the setup, the serializer input-logic levels can be set with jumpers, and the corresponding bits/voltages can be read with a voltmeter at the deserializer output. To configure the EV kit for a quick functionality check, refer to the MAX9217/MAX9218 EV kit schematics for the name and location of associated jumpers and components. Note that when a shunt is installed across a jumper pair, the chip pin is pulled to a logic-high level. If no shunt is installed across any jumper pair, the chip pin is pulled low.

1. Configure jumpers for a quick functionality check of the EV kit (Table 1).

Part	Pin Name	Jumper	Jumper Function	Jumper Setting for Quick Check
MAX9218, MAX9248, MAX9250	R/F	JP1	Selects rising- or falling-edge output strobe	Low (falling edge)
	RNG1	JP4	Selects PLL operating range	High-frequency range (refer to the data sheet)
	RNG0	JP7	Selects PLL operating range	High-frequency range
	Active-low PWRDWN	JP11	Selects chip power-up or power-down	High (power-up)
	OUTEN (MAX9218/MAX9250), SS (MAX9248)	JP12	Selects output enable or output disable	High (output enabled for MAX9218/MAX9250), 4% spread- spectrum mode (MAX9248)
MAX9217, MAX9247	(none)	JP13	Buses logic high (DVCC) for hardwired inputs	DVCC
	MOD1 (MAX9217), PRE (MAX9247)	JP15	Selects output- modulation level	Low (modulation off), preemphasis is disabled for MAX9247
	MOD0 (MAX9217), I.C. (MAX9247)	JP16	Selects output- modulation level	Low (modulation off), internally connected pin for MAX9247
	Active-low PWRDWN	JP18 pin 15 to pin 16	Selects chip power-up or power-down	High (power-up)
	RNG0	JP22	Selects PLL operating range	High-frequency range (refer to the data sheet)
	RNG1	JP23	Selects PLL operating range	High-frequency range

Table 1. Jumper Settings for a Quick Functionality Check

2. Connect power supplies to the EV kit (Table 2).

Part	Pin Name	EV Board Connection	Voltage
	VCCIN	IVCC	+3.3V
	VCCPLL	PVCC	+3.3V
MAX9217,	VCCLVDS	LVCC	+3.3V
MAX9247	Vcc	DVCC	+3.3V
	(none)	VNEG	Ground
	PLL GND, LVDS GND, GND	GND	Ground
MAX9218, MAX9248, MAX9250	VCCPLL	PVCC	+3.3V
	VCCLVDS	LVCC	+3.3V
	Vcc	DVCC	+3.3V
	Vcco	OVCC	+3.3V
	(none)	VTEST	Open
	PLL GND, LVDS GND, V _{CCOGND} , GND	GND	Ground

Table 2. Power-Supply Connections for a Quick Functionality Check

3. Connect all clock and control signals (Table 3).

Table 3.	Clock	and	Control	Signals	for	Quick	Functionality	Check

Chip	Chip Pin Name	EV Board Connection	Signal
MAX9217, MAX9247	PCLK_IN	J18 PCLK (SMA connector)	32MHz
	DE_IN	JP18 Pin 13	1MHz
	RGB_IN and CNTL_IN	JP18, JP19, JP20, JP21	Open
MAX9218, MAX9248, MAX9250	REFCLK	J8 REF (SMA connector)	32MHz

4. Once Steps 1–3 have been completed, the following signals can be observed at the outputs of the MAX9218/MAX9248/MAX9250 deserializers (Table 4).

Table 4. MAX9218/MAX9248/MAX9250 Output States for a Quick Functionality Check Pin Name EV Board Connection Signal

		orginar
RGB_OUT, CNTL_OUT	JP3 and JP9	Low
Active-low LOCK	JP9 Pin 23	Low
PCLK_OUT	JP9 Pin 25	32MHz
DE_OUT	JP9 Pin 21	1MHz

- 5. The MAX9217/MAX9247 RGB_IN and CNTL_IN inputs have internal pull-down resistors. When an input is left open, the serializer automatically reads a logic low. Connect some inputs to 3.3V at the JP11, JP12, JP13, and JP14 headers. This can be done by setting JP13 to the DVCC position and using shunts between opposite pins of these 2 x 10 headers. The corresponding outputs on the MAX9218/MAX9248/MAX9250 deserializer should then change to a high level. For example, if RGB_IN0 (JP14 pin 1) is connected to 3.3V, then RGB_OUT0 (JP7 pin 27) should go high.
- 6. Use an oscilloscope to view the serial signal by connecting a differential FET probe across the LVDS

signal lines at the MAX9217/MAX9247 serializer outputs (JP17/JP18) or the MAX9218/MAX9248/MAX9250 deserializer inputs (JP4/JP6).

Notes

- 1. RNG0 and RNG1 have internal pull-down resistors on the MAX9217/MAX9247 and MAX9218/MAX9248/MAX9250. To activate a logic low, these pins can be left floating.
- DE_IN must be switching for the MAX9217/MAX9218 chipset to work. Typically the Data Enable pin (ENAB) from a graphics controller is connected to DE_IN on the MAX9217/MAX9247 and is recovered from DE_OUT on the MAX9218/MAX9248/MAX9250. DE_IN must transition at least once every 4,194,304 cycles of PCLK_IN.
- 3. The clock inputs have pads for 50Ω termination resistors to ground. The EV kit is shipped without these resistors—they are not installed. Clean transitions are especially important on the PCLK, DE_IN, and REF inputs. Install 50Ω input-termination resistors if needed to reduce reflections. Use 1% or better tolerance resistors for close matching of the inputs.
- Series-coupling capacitors (C28/C29 on the Rx side and C55/C58 on the Tx side) are not required for link operation. For direct-coupled operation, short the series capacitor pads with a zero ohm resistor. EV kits are shipped with 0.1µF series capacitors installed.
- 5. For termination of the LVDS signal, use either the 100Ω differential (R3) termination or a 100Ω thevenin-equivalent network (R1/R2/R5/R4). **Do not use both at the same time**. Installing both terminations will generate large reflections (see **Figure 3**).
- 6. Resistors R20-R46 shown on the MAX9217 schematic are only for the internal IC characterization and are not populated on the EV kit.
- Capacitors C1-C15 and C27-C41 shown on the MAX9218 are only for the internal IC characterization and are not populated on the EV kit. Similarly, resistors R1-R3, R6-R7, R10 and R11 are not populated on the EV kit.

Figure 3. LVDS termination options. Use only one of the above termination options; installing both terminations will generate large reflections.

Table 5. Color and Control Bit Assignments

(The following table shows the recommended video signal assignments for the parallel interfaces of the MAX9217/MAX9247 serializers and the MAX9218/MAX9248/MAX9250 deserializers. R0, G0, and B0 are the LSB.)

Graphics Controller Output		MAX9217 Input	→	MAX9218 Output		LCD Input
R0	\rightarrow	RGB_IN0	\rightarrow	RGB_OUT0	\rightarrow	R0
R1	\rightarrow	RGB_IN1	\rightarrow	RGB_OUT1	\rightarrow	R1
R2	\rightarrow	RGB_IN2	\rightarrow	RGB_OUT2	\rightarrow	R2
R3	\rightarrow	RGB_IN3	\rightarrow	RGB_OUT3	\rightarrow	R3
R4	\rightarrow	RGB_IN4	\rightarrow	RGB_OUT4	\rightarrow	R4
R5	\rightarrow	RGB_IN5	\rightarrow	RGB_OUT5	\rightarrow	R5
G0	\rightarrow	RGB_IN6	\rightarrow	RGB_OUT6	\rightarrow	G0
G1	\rightarrow	RGB_IN7	\rightarrow	RGB_OUT7	\rightarrow	G1
G2	\rightarrow	RGB_IN8	\rightarrow	RGB_OUT8	\rightarrow	G2
G3	\rightarrow	RGB_IN9	\rightarrow	RGB_OUT9	\rightarrow	G3
G4	\rightarrow	RGB_IN10	\rightarrow	RGB_OUT10	\rightarrow	G4
G5	\rightarrow	RGB_IN11	\rightarrow	RGB_OUT11	\rightarrow	G5
B0	\rightarrow	RGB_IN12	\rightarrow	RGB_OUT12	\rightarrow	B0
B1	\rightarrow	RGB_IN13	\rightarrow	RGB_OUT13	\rightarrow	B1
B2	\rightarrow	RGB_IN14	\rightarrow	RGB_OUT14	\rightarrow	B2
B3	\rightarrow	RGB_IN15		RGB_OUT15	\rightarrow	B3
B4	\rightarrow	RGB_IN16		RGB_OUT16	\rightarrow	B4
B5	\rightarrow	RGB_IN17		RGB_OUT17	\rightarrow	B5
HSYNC	\rightarrow	CNTL_IN0		CNTL_OUT0	\rightarrow	HSYNC
VSYNC	\rightarrow	CNTL_IN1	\rightarrow	CNTL_OUT1	\rightarrow	VSYNC
Not assigned	\rightarrow	CNTL_IN2	\rightarrow	CNTL_OUT2	\rightarrow	Not assigned
Not assigned	\rightarrow	CNTL_IN3	\rightarrow	CNTL_OUT3	\rightarrow	Not assigned
Not assigned	\rightarrow	CNTL_IN4		CNTL_OUT4	\rightarrow	Not assigned
Not assigned	\rightarrow	CNTL_IN5	\rightarrow	CNTL_OUT5	\rightarrow	Not assigned
Not assigned	\rightarrow	CNTL_IN6	\rightarrow	CNTL_OUT6	\rightarrow	Not assigned
Not assigned	\rightarrow	CNTL_IN7	\rightarrow	CNTL_OUT7	\rightarrow	Not assigned
Not assigned	\rightarrow	CNTL_IN8	\rightarrow	CNTL_OUT8	\rightarrow	Not assigned
Display Enable	\rightarrow	DE IN	\rightarrow	DE OUT	\rightarrow	Display Enable

Agilent is a registered trademark and registered service mark of Agilent Technologies, Inc.

Related Parts

MAX9217	27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Serializer	Free Samples
MAX9218	27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer	Free Samples
MAX9247	27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer	Free Samples
MAX9248	27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers	Free Samples
MAX9250	27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers	Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/support For Samples: http://www.maximintegrated.com/samples Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 4020: http://www.maximintegrated.com/an4020 APPLICATION NOTE 4020, AN4020, AN 4020, APP4020, Appnote4020, Appnote 4020 Copyright © by Maxim Integrated Products Additional Legal Notices: http://www.maximintegrated.com/legal