

Design-Guide

SXL - series

Contents

General description	4
XT-FEMTO-SXL	5
Technical data	5
Dimensions	6
PIN - Description	7
PIN - Description	8
Schematic RS232	
Schematic RS485	
Schematic I2C	
Schematic SPI	
Schematic SD-CARD	
Schematic POE	
Schematic LCD	15
XT-NANO-SXL	16
Technical data	16
Dimensions	17
PIN - Description	18
PIN – Description	19
Connection Diagram	
Schematic RS232	
Schematic RS485	
Schematic I2C	
Schematic SPI	
Schematic POE	
Schematic SD-CARD	
Schematic LCD	27
XT-PICO-SXL	28
Technical data	
Dimensions	29
PIN - Description	
PIN – Description	
Connection Diagram	
Schematic RS232	
Schematic RS485	
Schematic I2C	
Schematic SPI	
Schematic SD-CARD	
Schematic POE	
Schematic LCD	
Settings	40
General Information	40
Changing over the physical interface	
Changing the values	40

Contents

RS232	41
RS232 Configuration	41
RS232 DataControl	
Special ports	
RS485	44
RS485 Configuration	
RS485 DataControl	
Special ports	
I2C	47
I2C Functionality	
I2C Configuration	
Normale Mode:	
Protocol Mode:	
I2C Example: EEPROM 24LC16	
I2C Example: EEPROM AT24C16	
I2C Example: I/O Expander PCF8574AP	
SPI	55
SPI Configuration	
SPI Functionality SPI DataControl	
Normal Mode:	
Protocol mode:	
TTL-IO	
TTL-IO Configuration TTL-IO DataControl	
Protocol mode:	
LCD	
LCD Configuration	
SD-CARD	
SD-CARD Configuration	65
DF-CARD	67
DF-CARD Configuration	67
SSF(Serial Flash)	69
SSF Configuration	
Factory-Default / Reset -Button	
Creating a homepage	
Warranty	

General description

RS232(TTL)

You can use up to two independently operating serial interfaces. Each interface can be individually set and allows data rates of up to 2.500.000 bauds. Furthermore, it is possible to additionally set emulations, such as modems, Auto-Connect, Connect-On-Data, TCP / UDP -Client with up to 10 parallel connections, TCP/UDP - Servers, tunnel mode with transfer of signal statuses such as settings, E-mail Client including sending and receiving of E-mails.

RS485(TTL)

You can use up to two independently operating RS485 interfaces. This mode also supports so-called 2-wire components such as e.g. the MAX3072E, since there is a suitable control line for it. Each interface can be individually set and allows data to 2.500.000 bauds. rates of up Furthermore, it is possible to additionally set emulations, such as modems, Auto-Connect, Connect-On-Data, TCP / UDP -Client with up to 10 parallel connections, TCP/UDP - Servers, tunnel mode with transfer of signal statuses such as settings, E-mail Client including sending and receiving of E-mails.

I2C

You can use up to two independently operating I2C interfaces. In addition, a data mode was implemented in order to achieve a maximum of flexibility. The interface can be individually set and allows data rates of up to 2.500.000 bits/sec. Furthermore, it is possible to additionally set emulations, such as a modem, Auto-Connect, Connect-On-Data, TCP / UDP - Client with up to 10 parallel connections, TCP/UDP - Servers, E-mail Client including sending and receiving of E-mails.

SPI

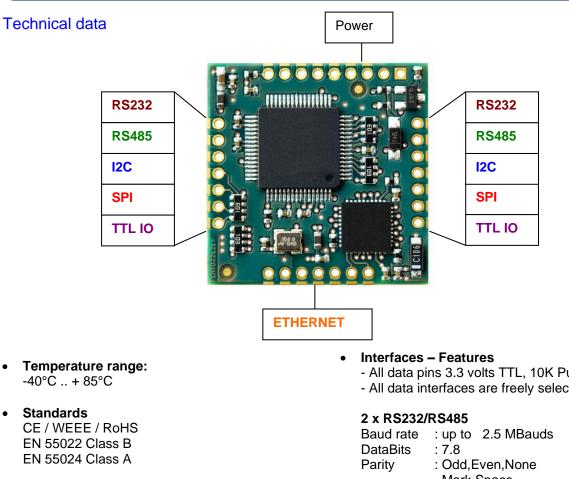
You can use up to two independently operating SPI interfaces in the master or slave mode. Each interface can be individually set and allows data rates of up to 25MBit (master) and 2.5MBit (slave). Furthermore, it is possible to additionally set emulations, such as Auto-Connect, Connect-On-Data, TCP / UDP - Client with up to 10 parallel connections, TCP/UDP - Servers, Email Client including sending and receiving of E-mails.

By means of settings in the setup, the SPI interface can directly operate SD cards, DF Data-Flash components. cards or An implemented Flash-File system with FAT12/16/32 structure supports the FTP server, in order to save data on it or to read data from it. It is only possible to save own websites or JAVA applets in order to present an own and individual appearance to the customers via the WEB server.

SD-Cards / DF-Cards:

- FAT12/16/32
- PC compatible

Serial-Flash components:


- AT45DB011B, AT45DB021B, AT45DB041B, AT45DB081B, AT45DB0161B, AT45DB0321B AT45DB0642, AT45DB1282
- SST25VF016B, SST25VF032B, SST25VF064C
 SST26VF016B, SST26VF032B, SST26VF064B,
 S25FL116K, S25FL132K, S25FL164K,
 SST25VF020

are directly recognised.

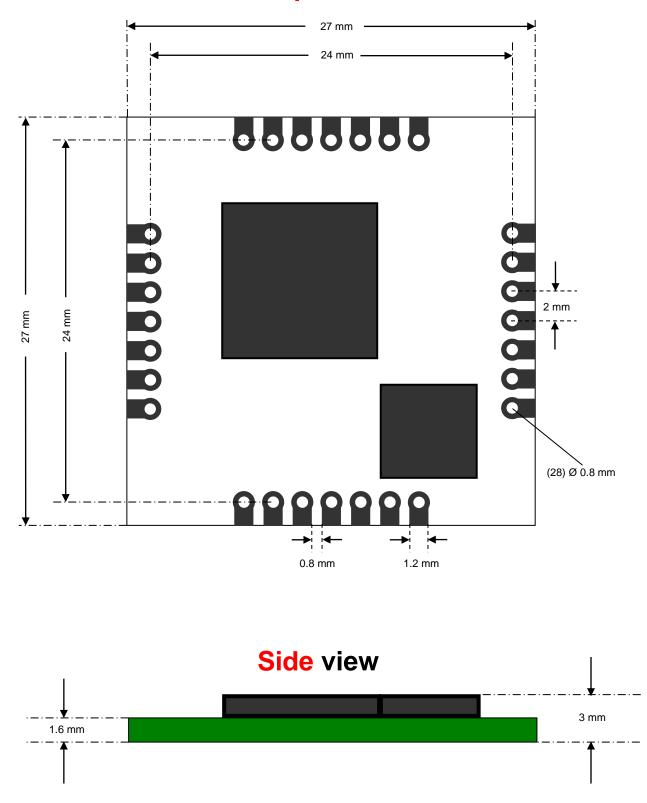
The SPI interface can directly control an SPI display e.g. the EA DOGM162B-A which you can directly use via the TCP/IP.

TTL IO

Up to 14/15 pins can be directly controlled via two interfaces. To do so, there is an own control mode, which can read, switch the signals on or off. A tunnel mode allows the automatic transmittance of signalling states.

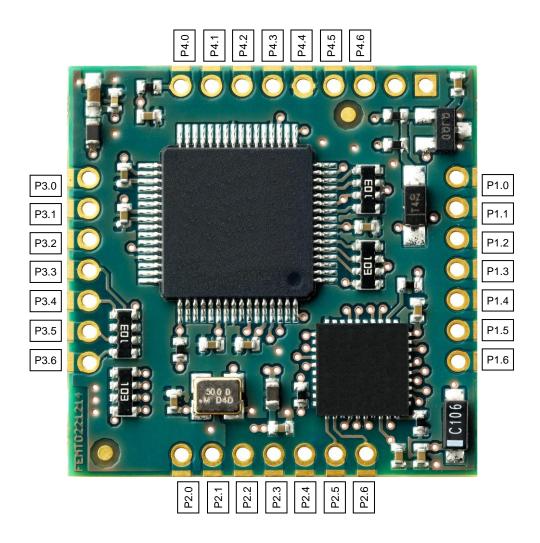
- Power supply: • 3.3 volts +-5% 170 mA
- Dimensions: • 27 x 27 x 3 mm
- Weight: • 3 grams
- Ethernet (MDIX) • 10 Half Duplex 10 Full Duplex 100 Half Duplex 100 Full Duplex AutoSensing

- All data pins 3.3 volts TTL, 10K Pullup
- All data interfaces are freely selectable


Z X ROLUZ,	
Baud rate	: up to 2.5 MBauds
DataBits	: 7.8
Parity	: Odd,Even,None
	Mark,Space
Signals	: TXD, RXD, RTS, CTS,
	DSR, DTR, DCD
RS485	ReadWrite
2 x I2C	
Mode	: Master
DataBits	: 8
Data rate	: 100KHz up to 2.5 MHz
Signals	: SDA, SCL
2 x SPI	
Mode	: Master/Slave
Mode DataBits	: 8
Mode	: 8 : uo to 25 MBits (master)
Mode DataBits Data rate	: 8 : uo to 25 MBits (master) up to 2.5 MBits (Slave)
Mode DataBits Data rate Signals	: 8 : uo to 25 MBits (master) up to 2.5 MBits (Slave) : MISO,MOSI,SCK,SS
Mode DataBits Data rate	: 8 : uo to 25 MBits (master) up to 2.5 MBits (Slave)
Mode DataBits Data rate Signals SD-CARD	: 8 : uo to 25 MBits (master) up to 2.5 MBits (Slave) : MISO,MOSI,SCK,SS
Mode DataBits Data rate Signals SD-CARD 2 x TTL-IO	: 8 : uo to 25 MBits (master) up to 2.5 MBits (Slave) : MISO,MOSI,SCK,SS CardDetect,CardLock
Mode DataBits Data rate Signals SD-CARD 2 x TTL-IO Mode	: 8 : uo to 25 MBits (master) up to 2.5 MBits (Slave) : MISO,MOSI,SCK,SS CardDetect,CardLock : digital Input/Output
Mode DataBits Data rate Signals SD-CARD 2 x TTL-IO	: 8 : uo to 25 MBits (master) up to 2.5 MBits (Slave) : MISO,MOSI,SCK,SS CardDetect,CardLock
Mode DataBits Data rate Signals SD-CARD 2 x TTL-IO Mode	: 8 : uo to 25 MBits (master) up to 2.5 MBits (Slave) : MISO,MOSI,SCK,SS CardDetect,CardLock : digital Input/Output

1 x Ethernet

Signals	: RX+,RX-,TX+,TX-,AVDD,
	LED-ACT,LED-LINK


Dimensions

Top view

PIN - Description

Top view

Absolute Maximum Ratings

Ambient temperature under bias	-40°C to +85°C
Storage temperature	-65°C to +150°C
Voltage on VDD	-0.3V to +4.0V
Voltage on any 3.3 V pin	-0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin	-0.3V to +5.5V

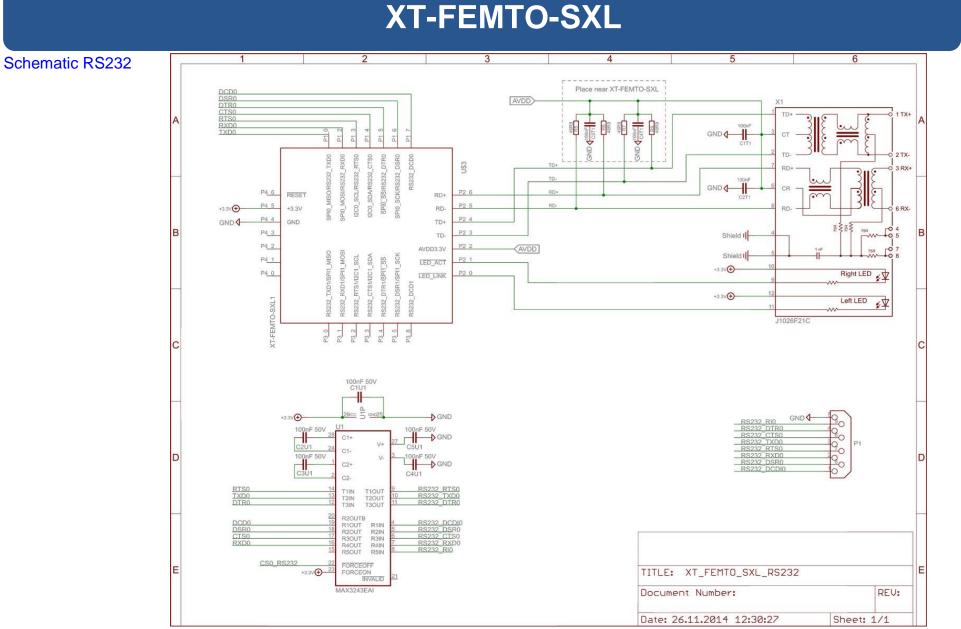
PIN - Description

PORT1:

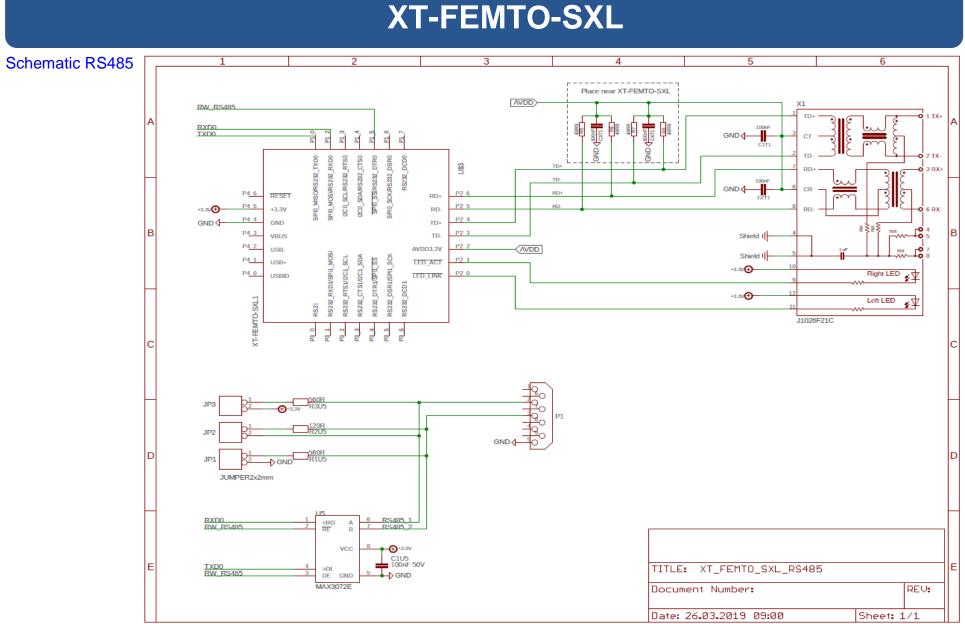
PIN	RS232	RS485	I2C	SPI	TTL-IO	PULLUP	Туре	VDD max
P1.0	TXD0	TXD0		MISO0	PIN1	10K	I/O	+3.3 volts
P1.1	RXD0	RXD0		MOSI0	PIN2	10K	I/O	+3.3 volts
P1.2	RTS0		SCL0		PIN3	10K	I/O	+3.3 volts
P1.3	CTS0		SDA0		PIN4	10K	I/O	+3.3 volts
P1.4	DTR0	R/W0		SS0	PIN5	10K	I/O	+3.3 volts
P1.5	DSR0			SCK0	PIN6	10K	I/O	+3.3 volts
P1.6	DCD0				PIN7	10K	I/O	+5V tolerant

PORT2:

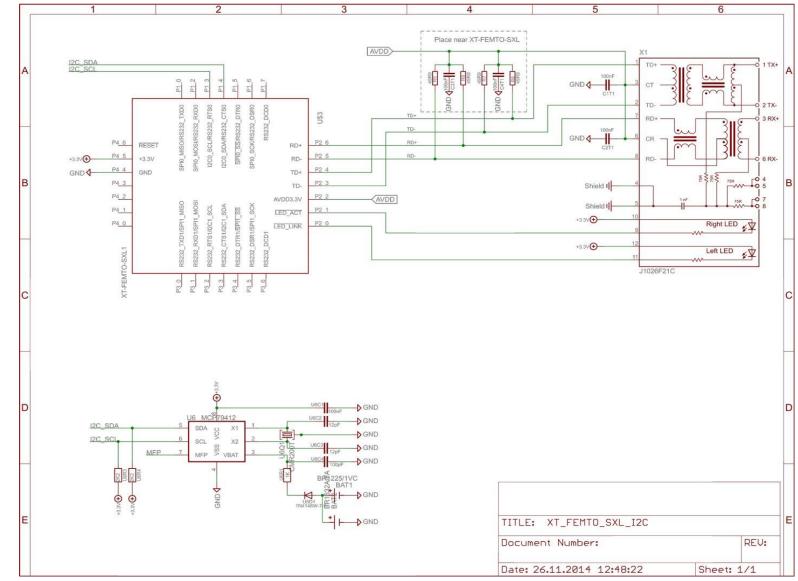
PIN	Ethernet	PULLUP	Туре	VDD max
P2.0	LED LINK		0	+3.3 volts
P2.1	LED ACT		0	+3.3 volts
P2.2	AVDD 3.3		PWR	
P2.3	TD-		I/O	
P2.4	TD+		I/O	
P2.5	RD-		I/O	
P2.6	RD+		I/O	

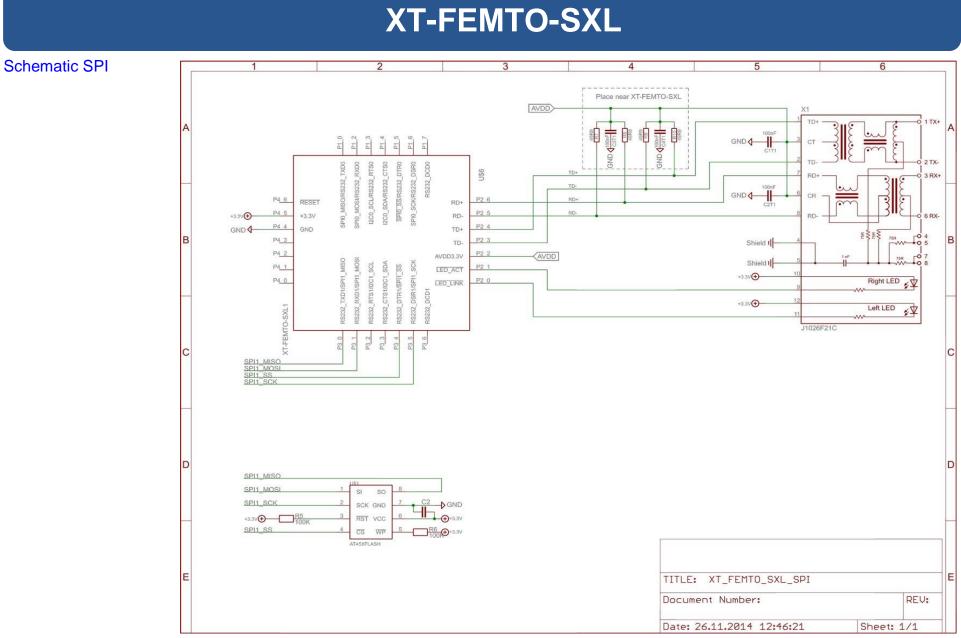

PORT3:

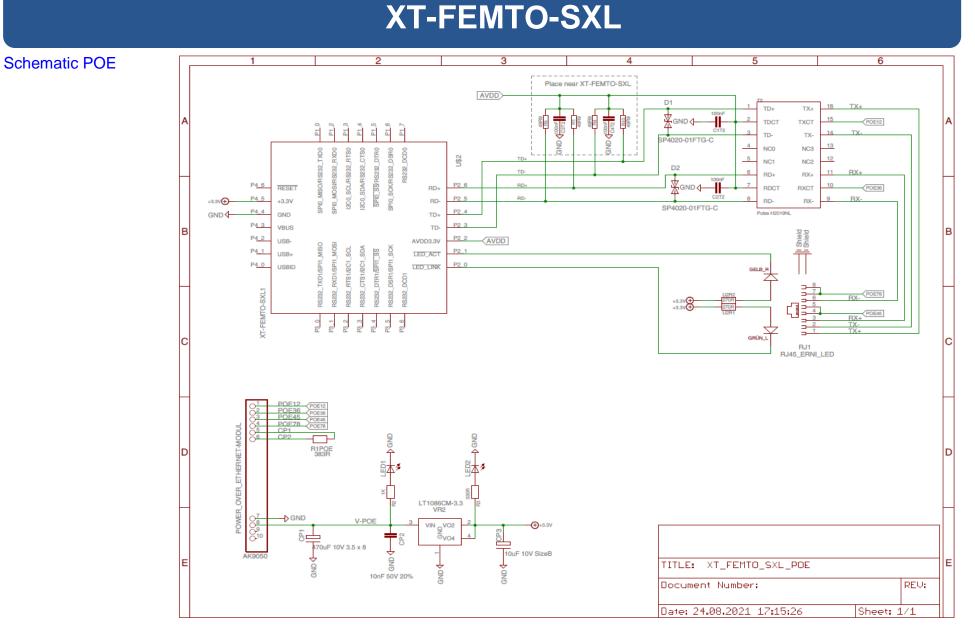
PIN	RS232	RS485	I2C	SPI	TTL-IO	alternate	PULLUP	Туре	VDD max
P3.0	TXD1	TXD1		MISO1	PIN1		10K	I/O	+3.3 volts
P3.1	RXD1	RXD1		MOSI1	PIN2		10K	I/O	+3.3 volts
P3.2	RTS1		SCL1		PIN3		10K	I/O	+5V tolerant
P3.3	CTS1		SDA1		PIN4		10K	I/O	+5V tolerant
P3.4	DTR1	R /W1		SS1	PIN5		10K	I/O	+3.3 volts
P3.5	DSR1			SCK1	PIN6		10K	I/O	+3.3 volts
P3.6	DCD1				PIN7	Factory	10K	I/O	+5V tolerant

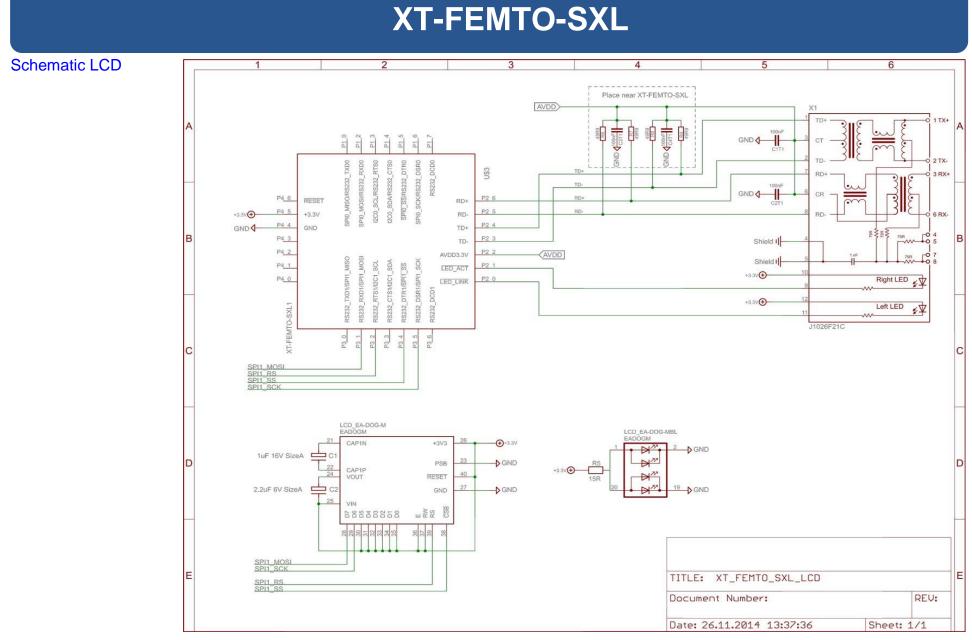

PORT4:

PIN	POWER	RESET	Туре	PULLUP	VDD max
P4.0	reserved	reserved	reserved	reserved	reserved
P4.1	reserved	reserved	reserved	reserved	reserved
P4.2	reserved	reserved	reserved	reserved	reserved
P4.3	reserved	reserved	reserved	reserved	reserved
P4.4	GND		PWR		0
P4.5	VDD		PWR		+3.3 volts +-5%
P4.6		RESET		10K	+5V tolerant




Design – Guide SXL V1.1


XT-FEMTO-SXL



Schematic I2C

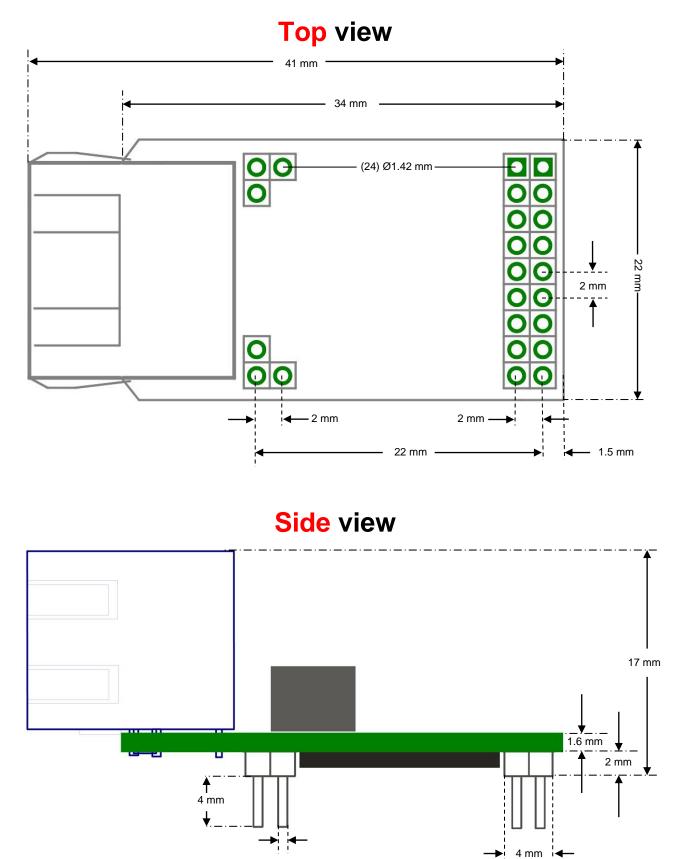
XT-FEMTO-SXL Schematic SD-CARD 5 6 1 4 Place near XT-FEMTO-SXL SPI0_SCK SPI0_SS SPI0_WP SPI0_CD X1 0 1 TX+ TD+ Δ GND C4T1 SPI0_MOSI 49R9 49Rtb 49R9 R7 R8 ADDA 100cF GND GND C3T ň 5 2 TX-DOX RS232_DSR0 SPID MOSI/RS232 RXD0 12C0_SCLRS232_RTS0 2C0_SDA/RS232_CTS0 SPI0_SS/RS232_DTR0 RS232 DCD0 U\$3 3 RX+ TD CR R P4 6 P2 6 RD+ RESET RD+ P4 5 P2 5 RD +3.3V+-+3.3V RD-6 RX-01dS P4 4 P2 4 GND 4 GND TD+ 75R 10 4 5 5 P4_3 В P2 3 TD-Shield I P4 2 P2 2 AVDD AVDD3.3V -0 Shield P4_1 /SPI1 MISC P2 1 32_RTS1/I2C1_SCL 12 RXD1/SPI1 MC 32_CTS1//2C1_SD/ 32_DTR1/SPH_SS DSR1/SPI1_SC LED_ACT +3.3V -P4_0 P2 0 Right LED LED_LINK LXD1 DCD1 +3.3V -SXL1 Left LED ¥¥ 232 ~~ J1026F21C P3 0 3 2 333 3 4 3 5 C D D P4 +3.3V SD-CARD'CONTROL Ð SPI0_SS SPI0_MOS #CS DI SCLK DO P2 P5 P7 GND CISD SPI0_SCK GND P3 SPI0_CD SPI0_WP PCDI WP CD GND SD-CA SDCMF-10915W0T0 E TITLE: XT_FEMTO_SXL_SDCARD Document Number: REV: Date: 26.11.2014 13:47:31 Sheet: 1/1

Technical data

Top view

- Temperature range: -40°C .. + 85°C
- Standards
 CE / WEEE / RoHS
 EN 55022 Class B
 EN 55024 Class A
- **Power supply:** 3.3 volts +-5% 170 mA
- Dimensions: 22 x 34(41) mm
- Weight: 5 grams
- Ethernet (MDIX) 10 Half Duplex 10 Full Duplex 100 Half Duplex 100 Full Duplex AutoSensing

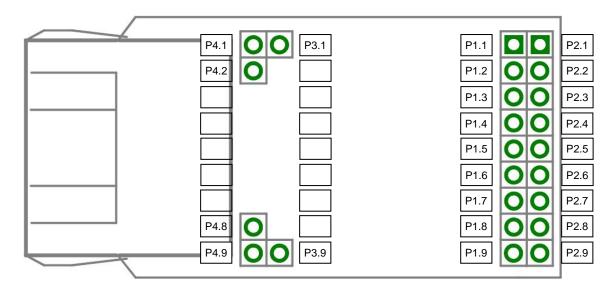
• Interfaces – Features


- All data pins 3.3 volts TTL, 10K Pullup

- All data interfaces are freely selectable

2 x RS232/RS485

Baud rate DataBits Parity Signals RS485	 : up to 2.5 MBauds : 7,8 : Odd,Even,None Mark,Space : TXD, RXD, RTS, CTS, DSR, DTR, DCD ReadWrite
2 x I2C Mode DataBits Data rate Signals	: Master : 8 : 100KHz up to 2.5 MHz : SDA, SCL
2 x SPI Mode DataBits Data rate Signals SD-CARD	: Master/Slave : 8 : uo to 25 MBits (master) up to 2.5 MBits (Slave) : MISO,MOSI,SCK,SS CardDetect,CardLock
2 x TTL-IO Mode Signals	: digital Input/Output : 7/8 Pins


Dimensions

0.6 – 0.7mm

PIN - Description

Top view

Absolute Maximum Ratings

Ambient temperature under bias	-40°C to +85°C
Storage temperature	-65°C to +150°C
Voltage on VDD	-0.3V to +4.0V
Voltage on any 3.3 V pin	-0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin	-0.3V to +5.5V

PIN – Description

PORT1:

PIN	Power	BUS	RS232	RS485	I2C	SPI	TTL-IO	alternate	Pullup	Туре	VDD max
P1.1	GND									PWR	0
P1.2	VDD									PWR	+3.3 volts +-5%
P1.3	Reset								10K	I	+5V tolerant
P1.4		1	CTS0		SDA0		PIN4_0		10K	I/O	+3.3 volts
P1.5		1	RTS0		SCL0		PIN3_0		10K	I/O	+3.3 volts
P1.6		1	DTR0	R /W0		SS0	PIN5_0		10K	I/O	+3.3 volts
P1.7		1	DSR0			SCK0	PIN6_0		10K	I/O	+3.3 volts
P1.8		1	TXD0	TXD0		MISO0	PIN2_0		10K	I/O	+3.3 volts
P1.9		1	RXD0	RXD0		MOSI0	PIN1_0		10K	I/O	+3.3 volts

PORT2:

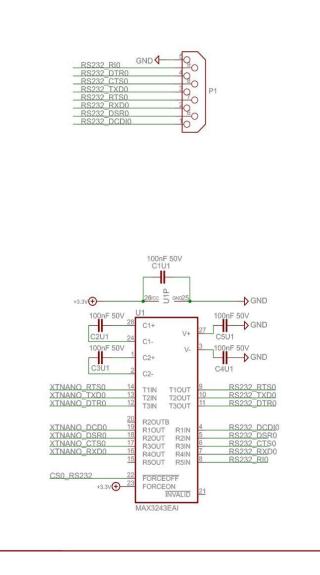
PIN	Power	BUS	RS232	RS485	I2C	SPI	TTL-IO	alternate	Pullup	Туре	VDD max
P2.1		1	DCD0				PIN7_0		10K	I/O	+5V tolerant
P2.2		2	RI1				PIN8_1		10K	I/O	+3.3 volts
P2.3		2	DCD1				PIN7_1	Factory	10K	I/O	+5V tolerant
P2.4		2	CTS1		SDA1		PIN4_1		10K	I/O	+5V tolerant
P2.5		2	RTS1		SCL1		PIN3_1		10K	I/O	+5V tolerant
P2.6		2	DTR1	R/W1		SS1	PIN5_1		10K	I/O	+3.3 volts
P2.7		2	DSR1			SCK1	PIN6_1		10K	I/O	+3.3 volts
P2.8		2	TXD1	TXD1		MISO1	PIN2_1		10K	I/O	+3.3 volts
P2.9		2	RXD1	RXD1		MOSI1	PIN1_1		10K	I/O	+3.3 volts

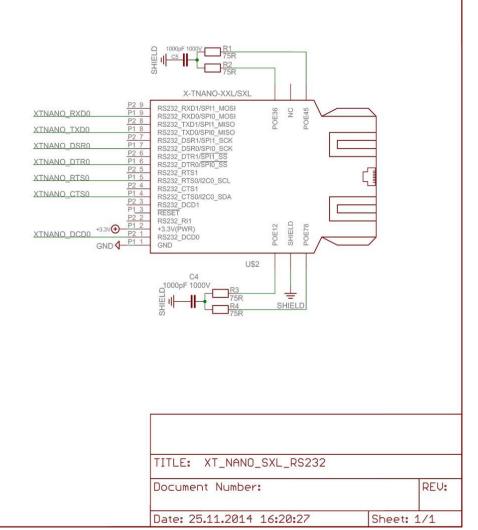
PORT3:

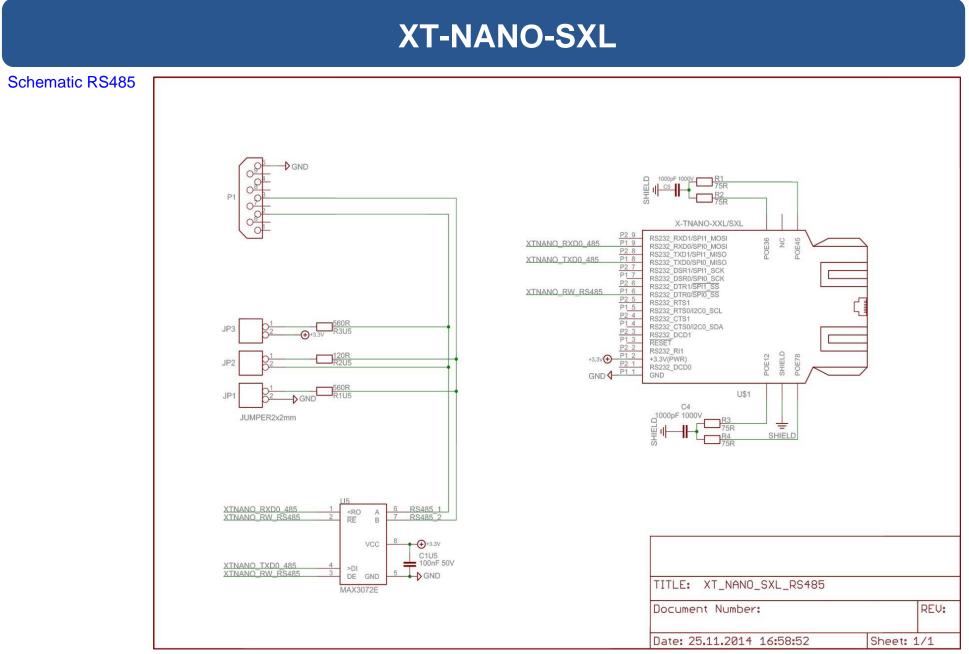
PIN	Ethernet	Туре	Beschreibung
P3.1	POE12	0	Connected to (TXCT) of the transformer
P3.9	POE36	0	Connected to (RXCT) of the transformer

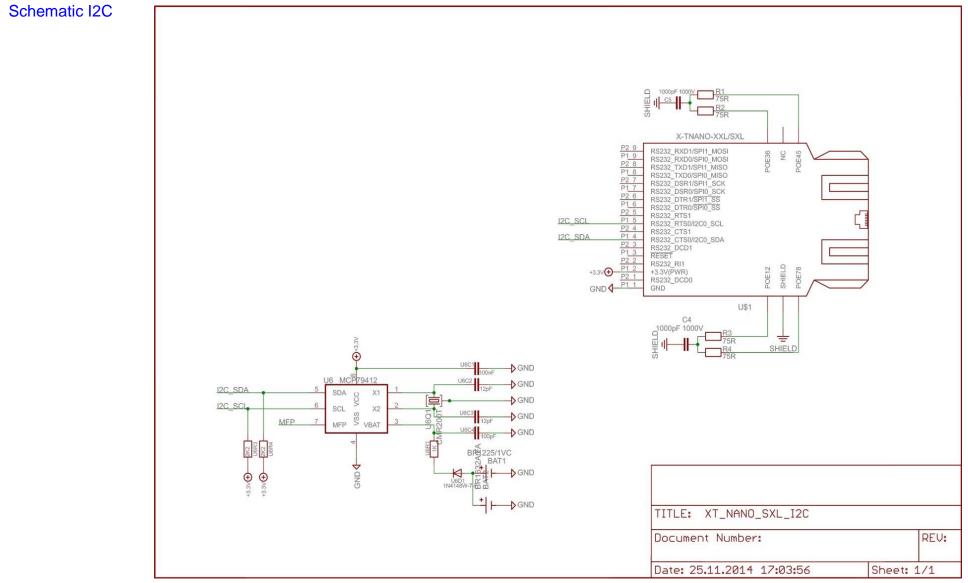
PORT4:

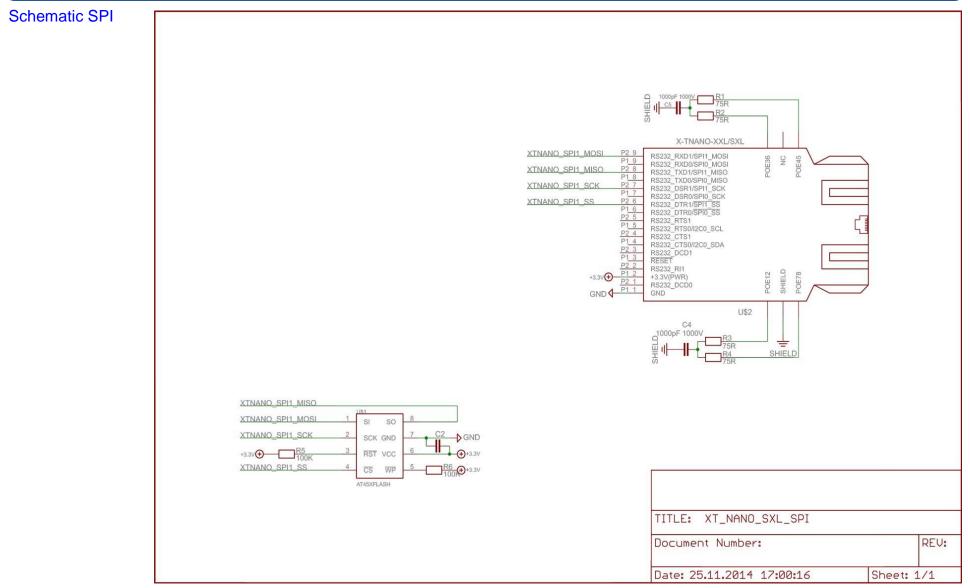
PIN	Ethernet	Туре	Туре
P4.1	Shield		Connected to Shield of the RJ45
P4.2	POE78	0	Connected to PIN7 and PIN8 of the RJ45
P4.8	POE45	0	Connected to PIN4 and PIN5 of the RJ45
P4.9			

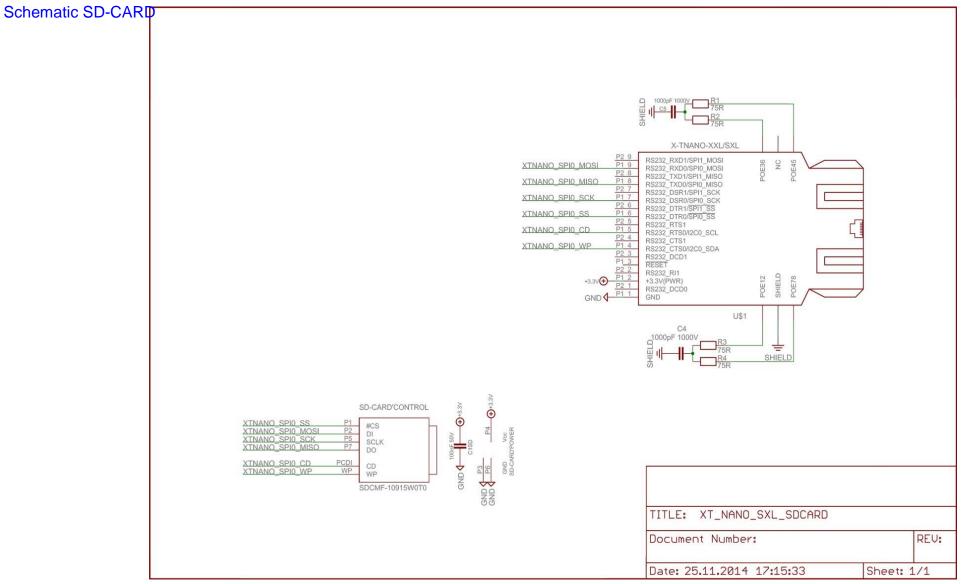


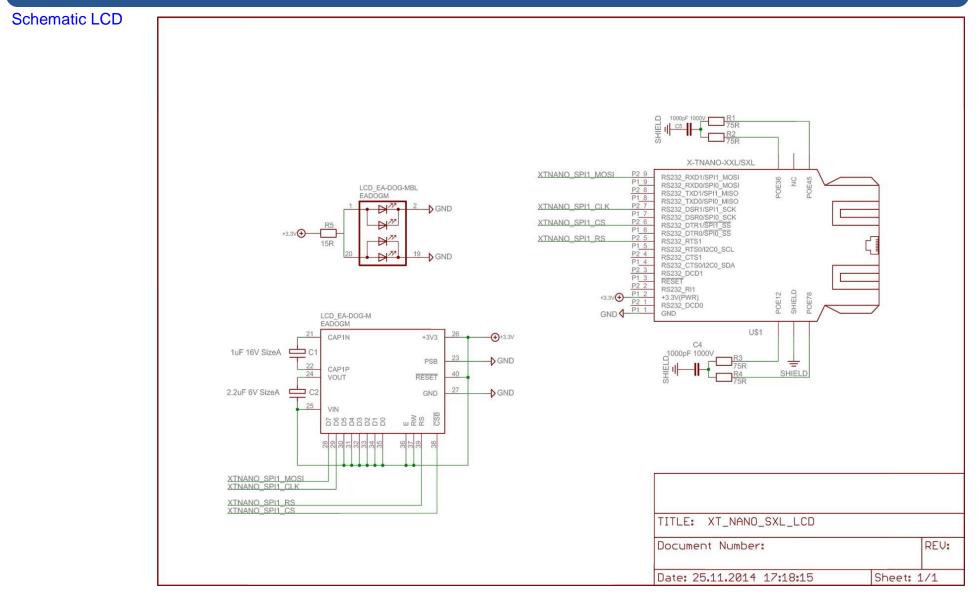

= ActivLow


Connection Diagram


PIN	RS232	RS485 MAX3072	I2C	SPI	SD-CARD	DataFlash AT45xxx	LCD EADOGM	TTLIO	BUS
P1.4	CTS0		SDA0		WP			PIN4	
P1.5	RTS0		SCL0		CD		RS	PIN3	
P1.6	DTR0	RE/DE		SSO\	CSI	CSI	CSI	PIN5	В
P1.7	DSR0			SCK0	SCLK	SCLK	SCLK	PIN6	U
P1.8	TXD0	DI		MISO0	SO	SO		PIN2	S
P1.9	RXD0	RO		MOSIO	SI	SI	MOSI	PIN1	-
P2.1	DCD0							PIN7	
P2.2	RI1				6			PIN8	8
P2.3	DCD1							PIN7	_
P2.4	CTS1		SDA1		WP			PIN4	В
P2.5	RTS1		SCL1		CD		RS	PIN3	BU
P2.6	DTR1	RE/DE		SS1\	CSI	CSI	CSI	PIN5	S
P2.7	DSR1			SCK1	CLK	SCLK	SCLK	PIN6	2
P2.8	TXD1	DI		MISO1	SO	SO		PIN2	
P2.9	RXD1	RO		MOSI1	SI	SI	MOSI1	PIN1	





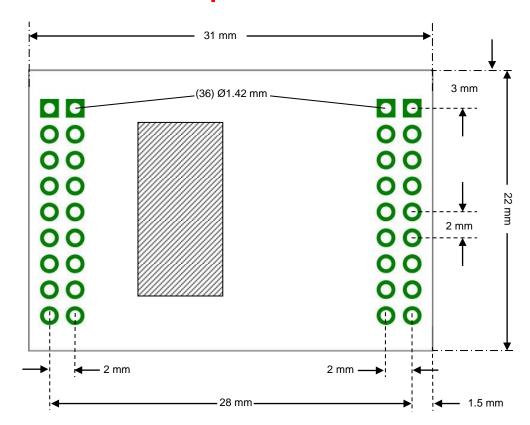


XT-NANO-SXL Schematic POE GND RESET RESE X-TNANO-XXL/SXL XTNANO_RXD1 XTNANO_RXD0 P2 9 RS232_RXD1/SPI1_MOSI RS232_RXD0/SPI0_MOSI RS232_TXD1/SPI1_MISO RS232_TXD1/SPI0_MISO POE36 NC P1 9 P2 8 P1 8 XTNANO_TXD1 XTNANO_TXD0 P2 7 P1 7 XTNANO_DSR1 RS232_DSR1/SP11_SCK RS232_DSR0/SP10_SCK RS232_DTR1/SP11_SS RS232_DTR1/SP11_SS RS232_DTR0/SP10_SS XTNANO_DSR0 P2 6 P1 6 XTNANO_DTR1 XTNANO DTRO XTNANO_RTS1 P2 5 P1 5 RS232_RTS1 XTNANO RTSO RS232_RTS0/12C0_SCL P2 4 P1 4 XTNANO CTS1 RS232_CTS1 RS232_CTS0/I2C0_SDA XTNANO_CTS0 P2 3 P1 3 P2 2 XTNANO_DCD1 RESET RS232_DCD1 RESET XTNANO RI1 RS232_RI1 +3.3V P1 2 P2 1 POE12 SHIELD POE12 +3.3V(PWR) POE36 POE45 POE78 XTNANO DCD0 RS232_DCD0 GND P1 1 GND OWER_OVER_ETHERNET-MODUL CP1 DND 4 U\$1 CP2 DND 4 R1POE 383R PO = 日本* SHIELD ¥ LT1086CM-3.3 VR2 00001 GND V-POE VIN VO2 +3.3V CP3 5 4 470uF 10V 3.5 x 8 4 10uF 10V SizeB AK9050 GND ← GND GND 4 GND 10nF 50V 20% TITLE: XT_NANO_SXL_POE REV: Document Number: Date: 26.11.2014 14:08:22 Sheet: 1/1

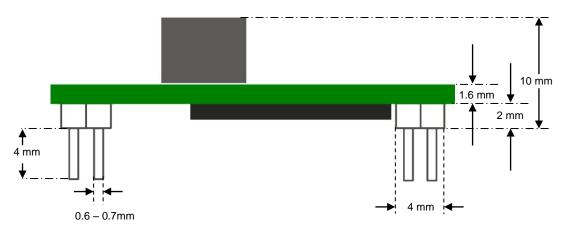
Technical data

Top view

- Temperature range: -40°C .. + 85°C
- Standards
 CE / WEEE / RoHS
 EN 55022 Class B
 EN 55024 Class A
- **Power supply:** 3.3 volts +-5% 170 mA
- Dimensions: 22 x 31 mm
- Weight: 4 grams
- Ethernet (MDIX) 10 Half Duplex 10 Full Duplex 100 Half Duplex 100 Full Duplex AutoSensing

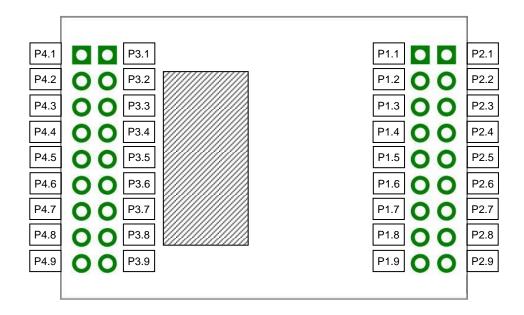

- Interfaces Features
 - All data pins 3.3 volts TTL, 10K Pullup
 - All data interfaces are freely selectable

2 x RS232/RS485


Baud rate DataBits Parity Signals RS485	 : up to 2.5 MBauds : 7,8 : Odd,Even,None Mark,Space : TXD, RXD, RTS, CTS, DSR, DTR, DCD ReadWrite
2 x I2C Mode DataBits Data rate Signals	: Master : 8 : 100KHz up to 2.5 MHz : SDA, SCL
2 x SPI Mode DataBits Data rate Signals SD-CARD 2 x TTL-IO Mode Signals	: Master/Slave : 8 : uo to 25 MBits (master) up to 2.5 MBits (Slave) : MISO,MOSI,SCK,SS CardDetect,CardLock : digital Input/Output : 7/8 Pins

Dimensions

Top view



Side view

PIN - Description

Top view

Absolute Maximum Ratings

Ambient temperature under bias	-40°C to +85°C
Storage temperature	-65°C to +150°C
Voltage on VDD	-0.3V to +4.0V
Voltage on any 3.3 V pin	-0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin	-0.3V to +5.5V

PIN – Description

PORT1:

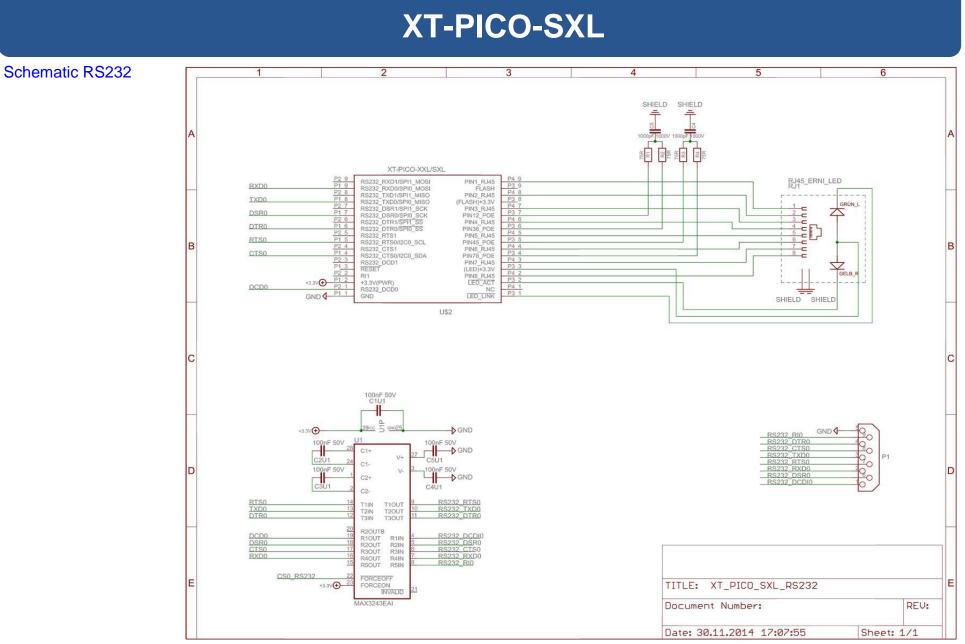
PIN	Power	BUS	RS232	RS485	I2C	SPI	TTL-IO	alternate	Pullup	Туре	VDD max
P1.1	GND									PWR	0
P1.2	VDD									PWR	+3.3 volts +5%
P1.3	RESET								10K	Ι	+5V tolerant
P1.4		1	CTS0		SDA0		PIN4_0		10K	I/O	+3.3 volts
P1.5		1	RTS0		SCL0		PIN3_0		10K	I/O	+3.3 volts
P1.6		1	DTR0	R/W0		SS0	PIN5_0		10K	I/O	+3.3 volts
P1.7		1	DSR0			SCK0	PIN6_0		10K	I/O	+3.3 volts
P1.8		1	TXD0	TXD0		MISO0	PIN2_0		10K	I/O	+3.3 volts
P1.9		1	RXD0	RXD0		MOSI0	PIN1_0		10K	I/O	+3.3 volts

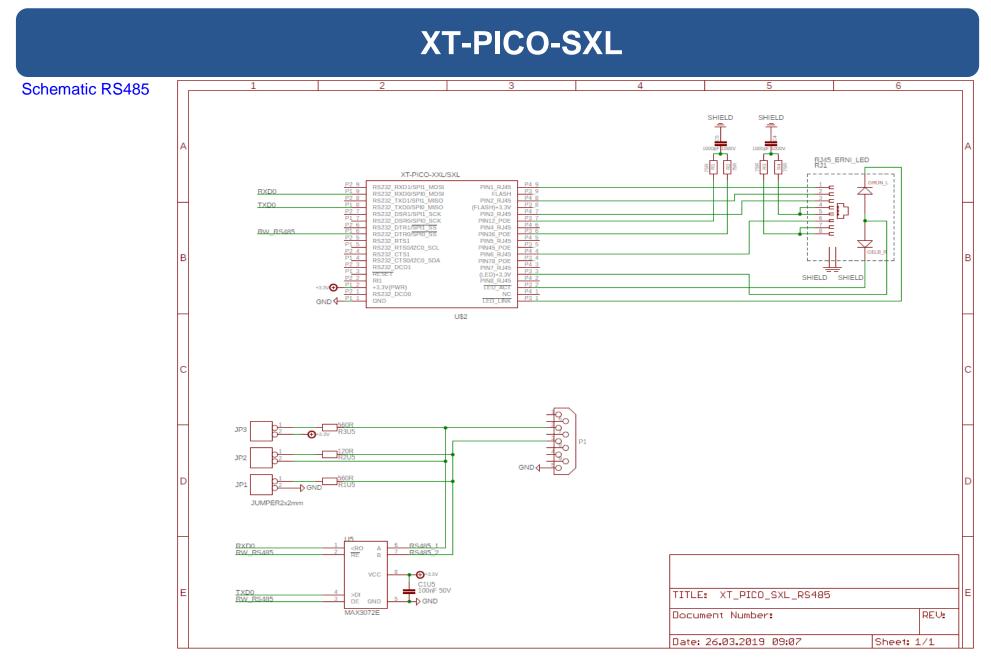
PORT2:

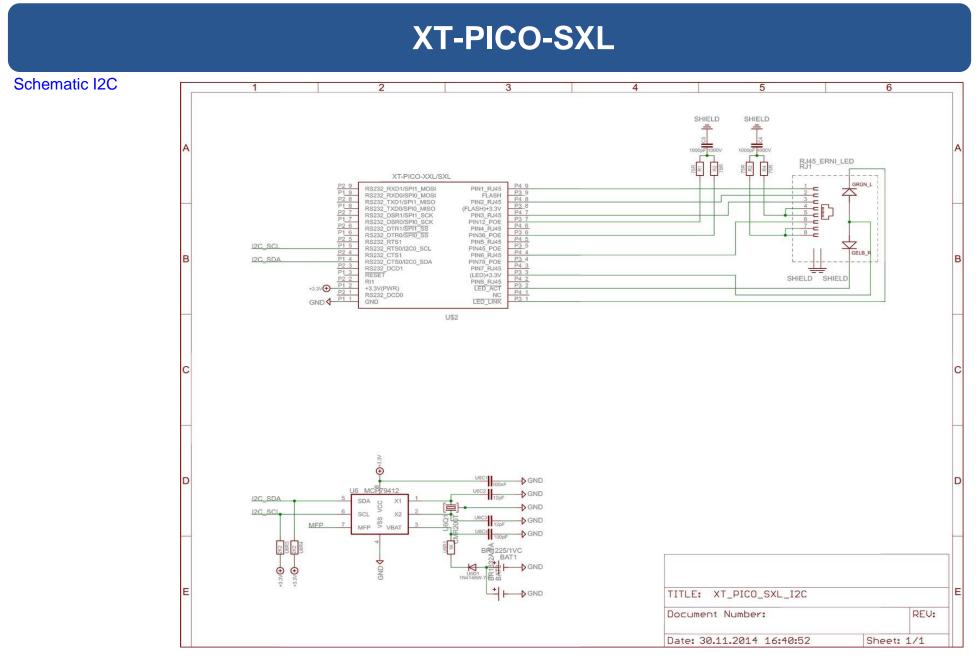
PIN	Power	BUS	RS232	RS485	I2C	SPI	TTL-IO	alternate	Pullup	Туре	VDD max
P2.1		1	DCD0				PIN7_0		10K	I/O	+5V tolerant
P2.2		2	RI1				PIN8_1		10K	I/O	+3.3 volts
P2.3		2	DCD1				PIN7_1	Factory	10K	I/O	+5V tolerant
P2.4		2	CTS1		SDA1		PIN4_1		10K	I/O	+5V tolerant
P2.5		2	RTS1		SCL1		PIN3_1		10K	I/O	+5V tolerant
P2.6		2	DTR1	R/W1		SS1	PIN5_1		10K	I/O	+3.3 volts
P2.7		2	DSR1			SCK1	PIN6_1		10K	I/O	+3.3 volts
P2.8		2	TXD1	TXD1		MISO1	PIN2_1		10K	I/O	+3.3 volts
P2.9		2	RXD1	RXD1		MOSI1	PIN1_1		10K	I/O	+3.3 volts

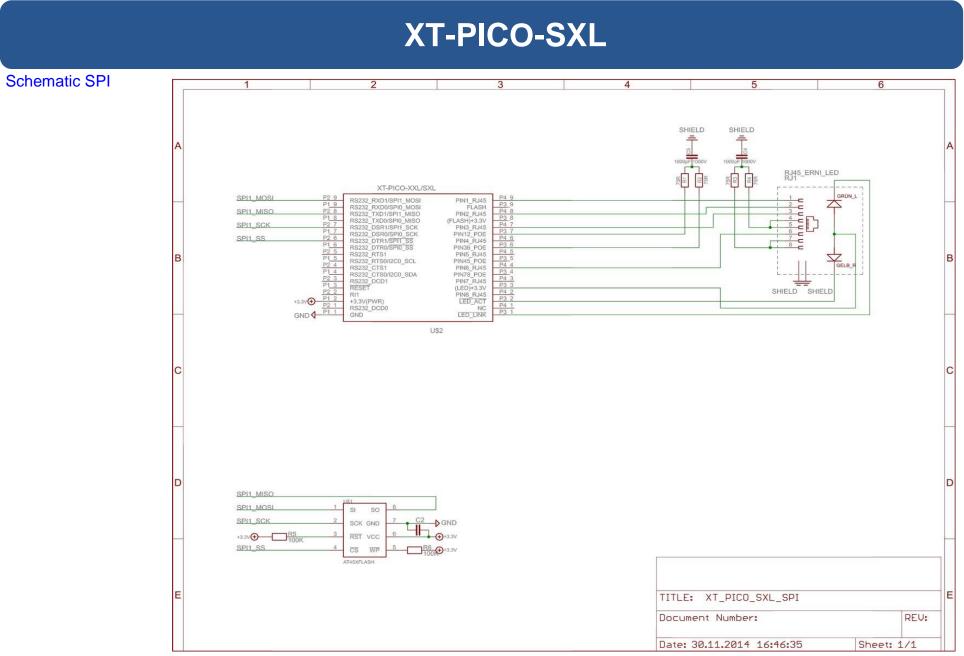
PORT3:

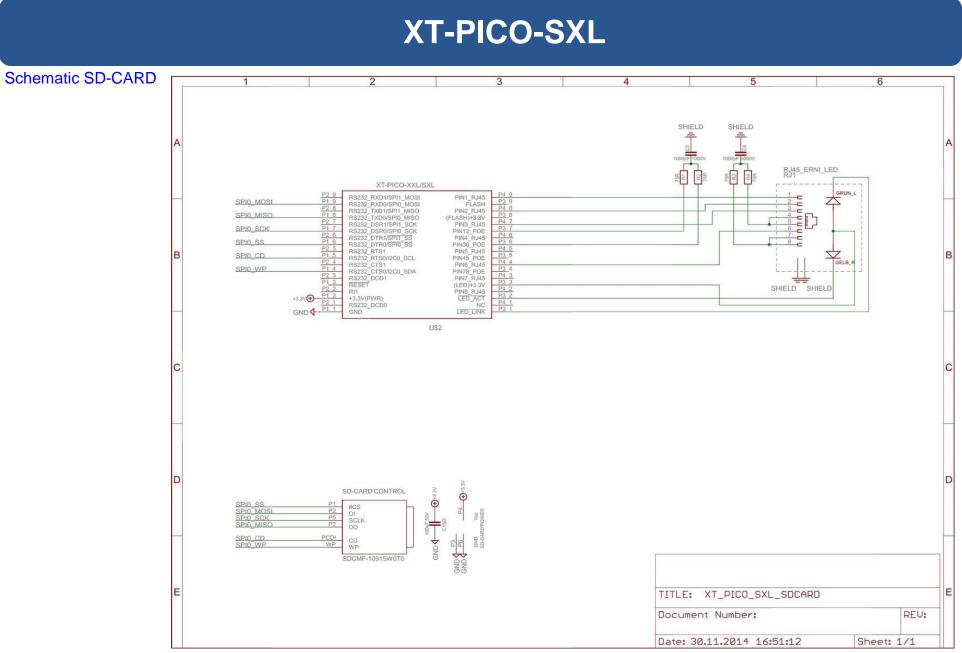
PIN	Ethernet	Туре	Beschreibung
P3.1	LED_Link\	0	to LED's of the RJ45. No resistor necessary
P3.2	LED_ACT\	0	to LED's of the RJ45. No resistor necessary
P3.3	+3.3V	0	for LED's of the RJ45
P3.4	POE78	0	Connected to Pin7 and Pin8 of the RJ45
P3.5	POE45	0	Connected to Pin4 and Pin5 of the RJ45
P3.6	POE36	0	Connected to (RXCT) of the transformer
P3.7	POE12	0	Connected to (TXCT) of the transformer
P3.8	NC		
P3.9	NC		

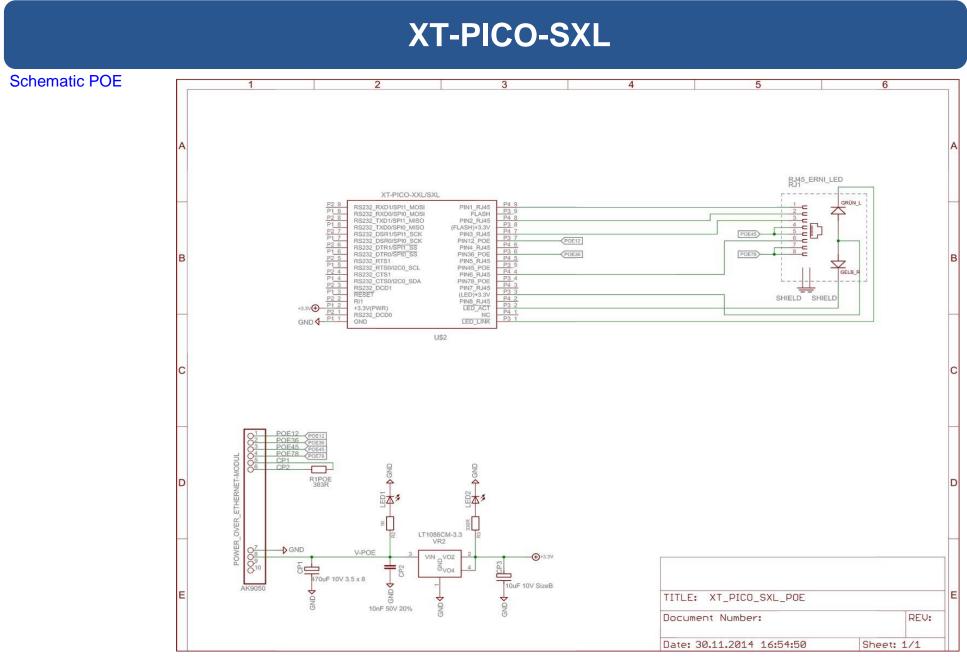

PORT4:

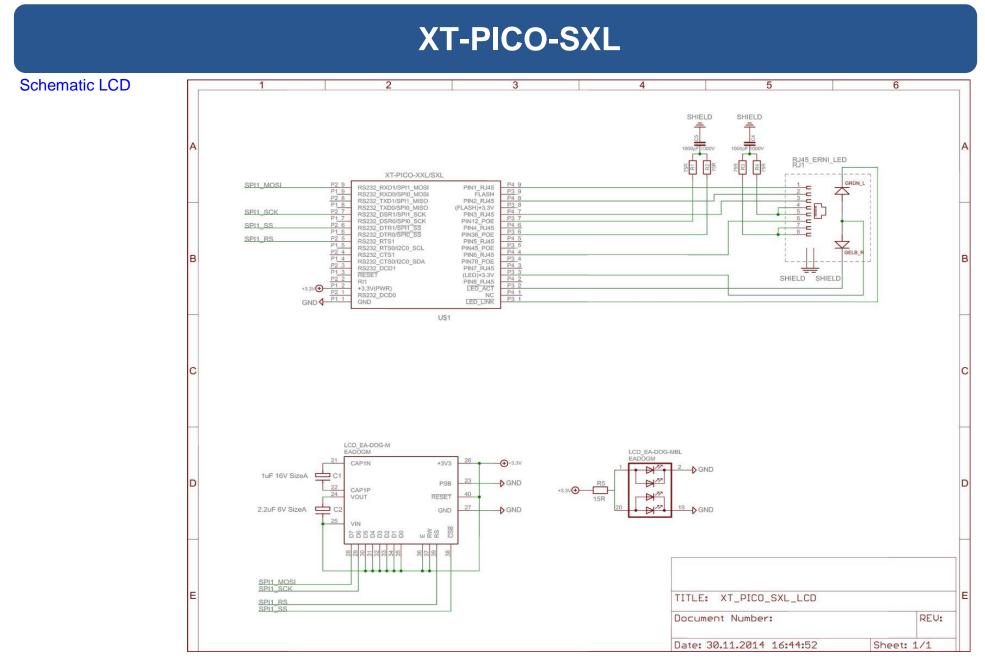

PIN	RJ45	Туре	Beschreibung
P4.1	NC		
P4.2	RJ45_8	Ι	direct from RJ45 Pin8
P4.3	RJ45_7	Ι	direct from RJ45 Pin7
P4.4	RJ45_6	Ι	direct from RJ45 Pin6
P4.5	RJ45_5	Ι	direct from RJ45 Pin5
P4.6	RJ45_4	Ι	direct from RJ45 Pin4
P4.7	RJ45_3	Ι	direct from RJ45 Pin3
P4.8	RJ45_2	Ι	direct from RJ45 Pin2
P4.9	RJ45_1	1	direct from RJ45 Pin1




Connection Diagram


PIN	RS232	RS485 MAX3072	I2C	SPI	SD-CARD	DataFlash AT45xxx	LCD EADOGM	TTLIO	BUS
P1.4	CTS0		SDA0		WP			PIN4	
P1.5	RTS0		SCL0		CD		RS	PIN3	_
P1.6	DTR0	RE/DE		SSO\	CSI	CSI	CSI	PIN5	В
P1.7	DSR0			SCK0	SCLK	SCLK	SCLK	PIN6	U
P1.8	TXD0	DI		MISO0	SO	SO		PIN2	S
P1.9	RXD0	RO		MOSIO	SI	SI	MOSI	PIN1	- ·
P2.1	DCD0							PIN7	
P2.2	RI1							PIN8	0
P2.3	DCD1							PIN7	_
P2.4	CTS1		SDA1		WP			PIN4	В
P2.5	RTS1		SCL1		CD		RS	PIN3	B
P2.6	DTR1	RE/DE		SS1\	CSI	CSI	CSI	PIN5	S
P2.7	DSR1			SCK1	CLK	SCLK	SCLK	PIN6	2
P2.8	TXD1	DI		MISO1	SO	SO		PIN2	_
P2.9	RXD1	RO		MOSI1	SI	SI	MOSI1	PIN1	





Settings

General Information

In the Design Guide only the settings of the physical interface are described. Please find all other settings of the embedded module in the main manual of the AK-XXL/SXL products.

Changing over the physical interface

Generally, there are 2 physical interfaces available. In each menu "Interface→xxx→Config Menu" there is always the menu item "BUS". You can reconfigure each bus by entering an admissible value, such as e.g.RS232, RS485, I2C, SPI, LCD, SDCARD or DFCARD into the menu item "Bus". However, only after having restarted the embedded module, the selected BUS is activated and can be configured.

If you would like to set an I2C interface, configure e.g. "I2C" in the menu item "BUS" of the just activated interface and restart the embedded module. Subsequently you can perform all other settings, such as e.g. "Baudrate" etc.

Changing the values

Please find either a number or a letter in front of each adjustable value. Followed by an equal sign and a short description. Then the set value is displayed.

Display: 1 = Baud rate = 9600

In order to change this value, please enter the figure and the letters, then an equal sign followed by the new value and press the button "ENTER". All entries without space characters.

Entry: 1=19200 + "ENTER"

Then the new value is displayed. If this is not the case, please either check your entry or if the value can be set at all.

Note:

For all speed settings, a value is additionally displayed in brackets. This value indicates the actual value. Due to the used quartz it is sometimes not possible to attain the desired speed.

RS232 Configuration

1 = Baud rate:	Enter the baud rate of your terminal here. The baud rate can be set variably up to 2.5 MBits.
2 = Data bits:	Enter the number of you data bits here. 8 7
3 = Parity:	Parity N=NONE O=ODD E=EVEN M=MARK S=SPACE
4 = Stop bits:	Number of stop bits, 1 2
5 = FlowControl	Switches the flow control on or off. N = None H = Hardware = RST/CTS S = Software = XON/XOFF

RS232 Configuration

6 = RTS Protocol	1 2	TS line (outlet) = RTS Always ON = RTS Follows CTS = RTS Follows DSR = RTS Indicates Connection TTL = LOW
		= RTS Indicates Connection TTL = HIGH = RTS Always OFF
7 = DCD Protocol	10 11 12 13	CD line (outlet) = DCD (inlet) no function = DCD (outlet) Allways ON = DCD (outlet) Indicates Connection TTL = LOW = DCD (outlet) Follows DSR = DCD (outlet) Indicates Connection TTL = HIGH = DCD (outlet) Allways OFF
8 = DTR Protocol	1 2 3	TR line (outlet) = DTR Always ON = DTR Indicate Connection TTL = LOW = DTR Follows DSR = DTR Indicate Connection TTL = HIGH = DTR Always OFF
9 = DSR Protocol	1 2	SR line (inlet) = DSR No Control = DSR Control Incoming = DSR Clear Connection = DSR Control Incoming and DSR Clear Connection
a = Emulation	TCPSERVER MODEM EMAIL TCPCLIENT	= Modem Emulation = E-Mail Emulation = =
b = Emucode	You can release	e customized functions in this menu item.
c = BUS	RS232	
d = InputTimeOut	received by e.g completely rece network by the e.g. 2, then the	long the device server shall wait until the data are sent which are . the serial interface. This value is important if the packages are not eived at the target, since the data are more rapidly sent to the device server than they will be received by the terminal. If you enter interface will wait for 20 ms after having received the last byte on the and only sends the data in a package.
e = Local Port		the TCP/IP or UDP Port here which is admitted anding serial interface.
f = Local SSL Port	Has the same fu	unction as the Local Port, but it is only used for the encrypted ation

Note:

All other menus are described in the main manual of the AK-XXL/SXL products.

RS232 DataControl

Special ports

- **11011**: Using this port it is possible to control all signals, baud rates, data bits and flow controls of the serial **Interface 1** by means of your software. There is an exact additional description for this port.
- **22022**: Using this port it is possible to control all signals, baud rates, data bits and flow controls of the serial **Interface 2** by means of your software. There is an exact additional description for this port.

Note:

The exact description as well as the programming instructions can be obtained from AK-NORD.

RS485 Configuration

1 = Baud rate:	Enter the baud rate of your terminal here. The baud rate can be set variably up to 2.5 MBits .		
2 = Data bits:	Enter the numb 8 7	per of you data bits here.	
3 = Parity:	Parity N = O = E = M = S =	NONE ODD EVEN MARK SPACE	
4 = Stop bits:	Number of stop 1 2	o bits,	
5 = FlowControl	Switches the flow control on or off. N = None H = Hardware = RST/CTS S = Software = XON/XOFF No effect for a 2-wire transfer.		

RS485 Configuration

6 = RTS Protocol	Control fo the RTS line (outlet)0= RTS Always ON1= RTS Follows CTS2= RTS Follows DSR3= RTS Indicates Connection TTL = LOW4= RTS Indicates Connection TTL = HIGH5= RTS Always OFFNo effect for a 2-wire transfer.
7 = DCD Protocol	Control of the DCD line0= DCD (inlet) no function10= DCD (outlet) Allways ON11= DCD (outlet) Indicates Connection TTL = LOW12= DCD (outlet) Follows DSR13= DCD (outlet) Indicates Connection TTL = HIGH15= DCD (outlet) Allways OFFNo effect for a 2-wire transfer.
8 = DTR Protocol	no function DTR is used as control line for the RS485 ICs
9 = DSR Protocol	Control of the DSR line (inlet)0= DSR No Control1= DSR Control Incoming2= DSR Clear Connection3= DSR Control Incoming and DSR Clear ConnectionNo effect for a 2-wire transfer.
a = Emulation	It is possible to use the following emulations:TCPSERVER= always activeMODEM= Modem EmulationEMAIL= E-mail EmulationTCPCLIENT=UDPCLIENT=UDPSERVER=
b = Emucode	You can release customized functions in this menu item.
c = BUS	RS485
d = InputTimeOut	Determine how long the device server shall wait until the data are sent which are received by e.g. the serial interface. This value is important if the packages are not completely received at the target, since the data are more rapidly sent to the network by the device server than they will be received by the terminal. If you enter e.g. 2, then the interface will wait for 20 ms after having received the last byte on the serial interface and only sends the data in a package.
e = Local Port	You can define the TCP/IP or UDP Port here which is admitted for the corresponding serial interface.
f = Local SSL Port	Has the same function as the Local Port, but it is only used for the encrypted SSL communication

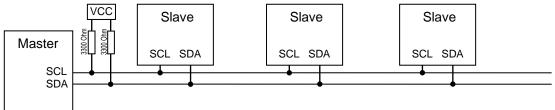
Note:

All other menus are described in the main manual of the AK-XXL/SXL products.

RS485 DataControl

Special ports

- **11011**: Using this port it is possible to control all signals, baud rates, data bits and flow controls of the serial **Interface 1** by means of your software. There is an exact additional description for this port.
- **22022**: Using this port it is possible to control all signals, baud rates, data bits and flow controls of the serial **Interface 2** by means of your software. There is an exact additional description for this port.


Note:

The exact description as well as the programming instructions can be obtained from AK-NORD.

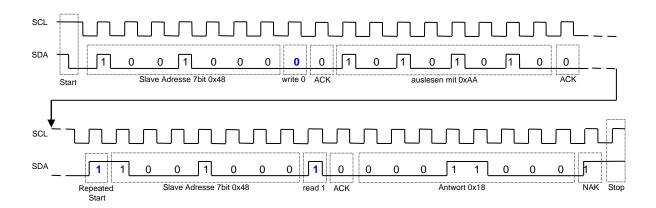
I2C Functionality

The I2C-BUS is a serial 2-wire bus to easily connect several ICs. The two necessary lines are the "Serial Clock Line SCL" and the "Serial Data Line SDA". A bidirectional connection is possible. It is possible to address several "Slaves" from one "Master".

Connection:

Note:

The size of the 3K3 pullup resistances indicated in this example are depending on the cable length and on the used I2C components. Please check in any case the signals using an oscilloscope and adapt these resistances, if required.


Adressierung:

X	Х	Х	Х	Х	Х	Х	X
	-	7bit A	dres	se			Read/ Write

The first byte which the "Master" sends, includes the address of the "Slave". It is a 7bit address. The 8th bit indicates if the Master would like to read or write. The data transmission is performed after the first byte.

Example: Query of a thermometer (DS1621) with the address 0x48.

First,the write command is transmitted (7Bit=address and 1Bit(0)=Write). It is followed by an acknowledgement (ACK) of the thermometer. With the command byte 0xAA the current temperature of the DS1621 is prompted. After another "ACK" a "Repeated-Start" is initiated and the reading of the temperature value via a read command (7Bit=address and 1Bit=(1)Read) is initiated. After another "ACK" the temperature value 0x18 follows which is converted to 24° Celsius. If no other bytes are sent, a "NACK" is sent.

I2C Configuration

4

	==== CONFIG MENU ==================	
1 = Slave Addr		
2 = Baud rate 3 = Data Control	= 100000 (100.000) = N	
4 = Data Control 4 = Data Poll*10ms		
4 - Data POIT TOMS	- 10	
5 = Flow Control	= N	
6 = RTS Protocol	= 0	
e — Truletien		
	= TCPSERVER = 0000	
	= 12C	
<pre>d = InputTimeOut*10ms</pre>		
e = Local Port		
f = Local SSL Port		
STATE=HW ONLINE		
STATE IN CALINE		
RTS = LOW CTS = LOW		
For example:'1=2'		
Q = QUIT] Please enter	vour choice:	

1 = Slave Addr	Address of the Slave. Possible value 0-127
2 = Baud rate	Clock frequency on the I2C bus. The clock frequency can be set variably up to 2.5 MBits.
3 = Data Control	N = No data control (refer to DataControl) D = DataControl (refer to DataControl)
4 = Data Poll*10ms	Only if the DataControl=N is activated. Here the slave will check every xxx ms, if data are available.
5 = Flow Control	No function
6 = RTS Protocol	No function

I2C Configuration

a = Emulation emulations	It is possible to use e.g. the following emulations: TCPCLIENT UDPCLIENT UDPSERVER TCPSERVER <i>Please find application examples and further explanations regarding the</i> <i>in the main manual of the AK-XXL/SXL products.</i>
b = Emucode	for customized functions
c = BUS	I2C
e = Local Port	You can define the TCP/IP or UDP Port here which is admitted for the corresponding serial interface.
f = Local SSL Port	Has the same function as the Local Port, but it is only used for the encrypted SSL communication

Note:

All other menus are described in the main manual of the AK-XXL/SXL products.

I2C DataControl

Normale Mode:

Settings:

1	=	Slave Addr	=	0
2	=	Baud rate	=	100000
3	=	Data Control	=	N
4	=	Data Poll*10ms	=	10
5	=	Flow Control	=	Ν

In this setting, the XT-NANO module polls every **100ms** the I2C slave to the address **0** and tries to obtain data from it. Depending on other settings such as TCP-Client, modem etc. these data are being processed. As soon as there is a connection by TCP/IP and data are received, the system tries to send the data to the I2C slave on the address **0**.

I2C DataControl

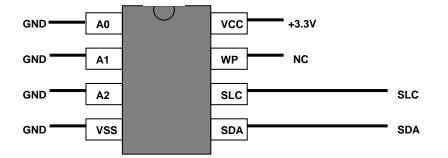
Protocol Mode:

Settings:

 1 = Slave Addr
 = 0

 2 = Baud rate
 = 400000

 3 = Data Control
 = **P**


 4 = Data Poll*10ms
 = 0

 5 = Flow Control
 = N

In this setting it is possible to directly address the I2C slave by TCP or UDP using the corresponding commands such as WRITE and READ. **All data have to be transferred binary.**

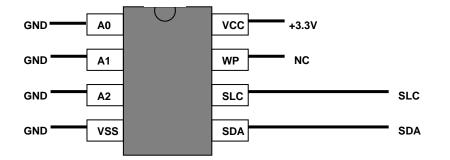
WRITE:	0x02,0x00,0x0A, 0x02	0x03,0x50,0x02,0x00,0x00,0x57,0x00,0x STX	:01,0xnn,0x03
	0x00,0x0A 0x03 0x50 0x02	Len (10 Bytes) follows function code (with all messages) Slave Address Count Internal Address	always 2 bytes
	0x00,0x00 0x57	Internal Address 0x00,0x00 W = WRITE	Count(0-4 Byte)
	0x00,0x01 0xnn 0x03	write 1 byte Byte to write ETX	always 2 bytes
READ:		0x03,0x50,0x02,0x00,0x00,0x52,0x00,0x	02,0x03
	0x02 0x00,0x09 0x03 0x50	STX Len (9 Bytes) follows function code (with all messages) Slave Address	always 2 bytes
	0x02 0x00,0x00	Count Internal Address Internal Address 0x00,0x00	Count(0-4 Byte)
	0x52 0x00,0x02 0x03	R = READ read 2 byte ETX	always 2 bytes
Responses:			
MSG:	NAK only (fu ACK only (fu	nction code = $0x00$) nction code = $0x01$) nction code = $0x02$) nction code = $0x03$)	
NAK	, ,	NAK STX NAK ETX NAK Slave Address NAK Command NAK Len NAK Buffer NAK Read and Data we could read NAK Write and nn,nn = Data we could	write
ACK	0x06,'R' 0x06,'W'	ACK Read and Data ACK Write	

I2C Example: EEPROM 24LC16

Settings:

		0			
1	=	Slave	e Addr	=	0
2	=	Baud	rate	=	400000
3	=	Data	Control	=	P
4	=	Data	Poll*10ms	=	10
5	=	Flow	Control	=	N

Write "HALLO"


WRITE: 0x02,0x00,0x0D,0x03,0x50,0x01,0x00,0x57,0x00,0x05,0x48,0x41,0x4C, 0x4C,0x4F,0x03 REPLY: 0x06,0x57

Read "HALLO"

WRITE:	0x02,0x00,0x08,0x03,0x50,0x01,0x00,0x52,0x00,0x05,0x03
REPLY:	0x06,0x52,0x48,0x41,0x4C,0x4C,0x4F

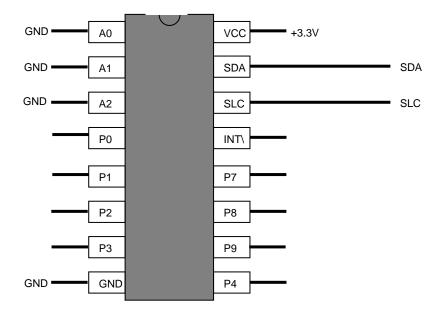
Note:

I2C Example: EEPROM AT24C16

Settings:

1 = Slave Addr	= 0
2 = Baud rate	= 400000
3 = Data Control	= P
4 = Data Poll*10ms	= 10
5 = Flow Control	= N

Write "HALLO"


WRITE: 0x02,0x00,0x0E,0x03,0x50,0x02,0x00,0x00,0x57,0x00,0x05,0x48,0x41, 0x4C,0x4C,0x4F,0x03 REPLY: 0x06,0x57

Read "HALLO"

WRITE:	0x02,0x00,0x09,0x03,0x50,0x02,0x00,0x00,0x52,0x00,0x05,0x03
REPLY:	0x06,0x52,0x48,0x41,0x4C,0x4C,0x4F

Note:

I2C Example: I/O Expander PCF8574AP

Settings:

1	=	Slave Addr	=	0
2	=	Baud rate	=	100000
3	=	Data Control	=	P
4	=	Data Poll*10ms	=	10
5	=	Flow Control	=	N

Set P0 = 0 (Low)

WRITE: 0x02,0x00,0x08,0x03,0x38,0x00,0x57,0x00,0x01,0xF7,0x03 REPLY: 0x06,0x57

Read P0-P7

WRITE: 0x02,0x00,0x07,0x03,0x38,0x00,0x52,0x00,0x01,0x03 ANSWER: 0x06,0x52,0xFF

SPI

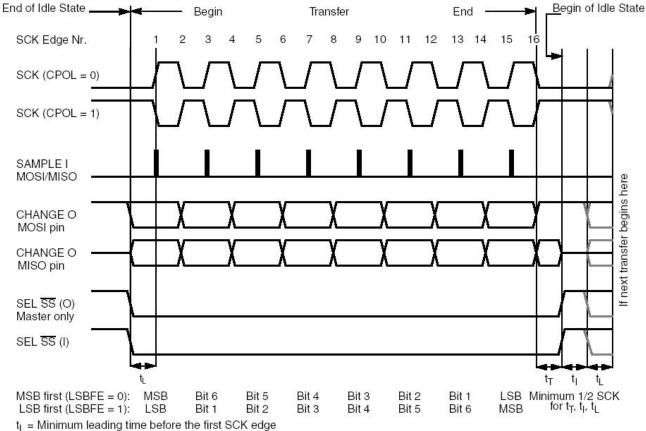
SPI Configuration

$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 = Master/Slave	= M
<pre>B = Data bits = 8 A = CPOL = 1 5 = CPHA = 0 5 = Data Control = N 7 = Data Poll*10ms = 10 8 = Flow Control = N 9 = RTS Protocol = 0 A = CS Control = S 0 = Emulation = TCPSERVER c = EmuCode = 0000 A = BUS = SPI e = InputTimeOut*10ms = 0 F = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'</pre>		
<pre>H = CPOL = 1 5 = CPHA = 0 5 = Data Control = N 7 = Data Poll*10ms = 10 8 = Flow Control = N 9 = RTS Protocol = 0 a = CS Control = S 0 = Emulation = TCPSERVER c = EmuCode = 0000 d = BUS = SPI e = InputTimeOut*10ms = 0 f = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'</pre>		
<pre>b = CPHA = 0 b = Data Control = N 7 = Data Poll*10ms = 10 8 = Flow Control = N 9 = RTS Protocol = 0 a = CS Control = S b = Emulation = TCPSERVER b = EmuCode = 0000 a = BUS = SPI e = InputTimeOut*10ms = 0 b = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'</pre>	4 = CPOL	
<pre>7 = Data Poll*10ms = 10 8 = Flow Control = N 9 = RTS Protocol = 0 a = CS Control = S 0 = Emulation = TCPSERVER c = EmuCode = 0000 d = BUS = SPI e = InputTimeOut*10ms = 0 f = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'</pre>		
<pre>B = Flow Control = N D = RTS Protocol = 0 A = CS Control = S D = Emulation = TCPSERVER c = EmuCode = 0000 d = BUS = SPI e = InputTimeOut*10ms = 0 E = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'</pre>	6 = Data Control	= N
<pre>D = RTS Protocol = 0 A = CS Control = S D = Emulation = TCPSERVER c = EmuCode = 0000 d = BUS = SPI e = InputTimeOut*10ms = 0 E = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'</pre>	7 = Data Poll*10ms	= 10
<pre>a = CS Control = S p = Emulation = TCPSERVER c = EmuCode = 0000 d = BUS = SPI e = InputTimeOut*10ms = 0 f = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'</pre>	8 = Flow Control	= N
<pre>b = Emulation = TCPSERVER c = EmuCode = 0000 d = BUS = SPI e = InputTimeOut*10ms = 0 f = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'</pre>	9 = RTS Protocol	= 0
c = EmuCode = 0000 d = BUS = SPI e = InputTimeOut*10ms = 0 f = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'	a = CS Control	= S
<pre>d = BUS = SPI e = InputTimeOut*10ms = 0 f = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'</pre>	b = Emulation	= TCPSERVER
<pre>e = InputTimeOut*10ms = 0 E = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'</pre>	c = EmuCode	= 0000
E = Local Port = 1002 g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'	d = BUS	= SPI
g = Local SSL Port = 0 RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'		
RTS = LOW CTS = LOW STATE=HW ONLINE For example:'1=M'		
For example:'1=M'	g = Local SSL Port	= 0
	RTS = LOW CTS = LOW	STATE=HW ONLINE
= QUIT] Please enter your choice:	For example:'1=M'	
	2 = QUIT] Please enter	your choice:
		·

1 = Master/Slave	Mode M = MASTER S = SLAVE
2 = Bit rate	Clock frequency on the SPI bus. (Master) up to 25.000.000 Bits/s (Slave) up to 2.500.000 Bits/s
3 = Data bits	8
4 = CPOL	Clock Polarity 0 1
5 = CPHA	Clock Phase 0 1
6 = Data Control	N = No data control (refer to DataControl) P = Protocol mode (refer to DataControl) D = Downstream. Data control mode without return data.

SPI Configuration

7 = Data Poll*10ms	Then the slave is requested every xxx ms, if data are available. (Only if DataControl=N activated)
8 = Flow Control	Additional flow control via RTS/CTS hardware lines. N = No flow control H = Hardware flow control.
9 = RTS Protocol	Signal statuses of RTS 0 = ALWAYS = RTS always low 1 = RTS_FOLLOWS_CTS = RTS follows CTS 3 = RTS_IND_CONNECTION_N = Shows an TCP/IP connection (LOW) 4 = RTS_IND_CONNECTION_I = Shows an TCP/IP connection (HIGH)
a = CS Control	Functionality of the "Chip-Select" line in the master modeS = Stream-ModeCS = Low at the beginning of the data transfer.B = Byte-ModeCS = Low at each data byte
b = Emulation emulations	It is possible to use the following emulations: TCPCLIENT UDPCLIENT UDPSERVER TCPSERVER <i>Please find application examples and further explanations regarding the</i> <i>in the main manual of the AK-XXL/SXL products.</i>
c = Emucode	for customized functions
d = BUS	SPI
f = Local Port	You can define the TCP/IP or UDP Port here which is admitted for the corresponding serial interface.
g = Local SSL Port	Has the same function as the Local Port, but it is only used for the encrypted SSL communication


Note:

All other menus are described in the main manual of the AK-XXL/SXL products.

SPI Functionality

The SPI-bus is a 4-wire serial communications interface used by many microprocessor peripheral chips. The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that is standard across many microprocessors and other peripheral chips. It provides support for a bandwidth (**25MBit**) network connection amongst CPUs and other devices supporting the SPI.

SPI bus is basically a relatively simple synchronous serial interface for connecting low speed external devices using quite minimal number of wires. SPI (serial peripheral interface) is an interface standard defined by Motorola. A synchronous clock shifts serial data into and out of the microcontrollers in blocks of 8 bits.

 $t_{\rm T}$ = Minimum trailing time before the first SCK edge $t_{\rm T}$ = Minimum trailing time after the last SCK edge

 $t_1 =$ Minimum idling time between transfers (minimum \overline{SS} high time)

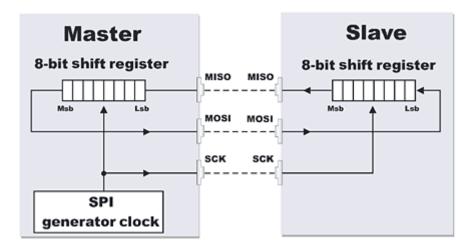
SPI

SPI DataControl

Normal Mode:

Settings:

1	=	Master/Slave	=	М
2	=	Bit rate	=	1000000(1.019.642)
3	=	Data bits	=	8
4	=	CPOL	=	1
5	=	CPHA	=	0
6	=	Data Control	=	N
7	=	Data Poll*10ms	=	10
8	=	Flow Control	=	N
9	=	RTS Protocol	=	0


In this mode, the SPI interface is absolutely transparent. I.e., no data are sent to the SPI slave, as long as no data are received. The user has the option to control the data flow himself. I.e. in order to receive data of the SPI slave, it first has to be connected via the TCP/IP and data have to be sent from the Client (remote). Then they are directly sent to the SPI slave.

Example:

There is an TCP/IP connection and the SPI slave shall respond one byte "0x33" to a 3-byte long request e.g. "0x01, 0x00, 0x33".

Remote	XT-NANO	SPI slave
0x01, 0x00, 0x33 ->	0x01, 0x00, 0x33 ->	->
0xnn, 0xnn, 0xnn <-	0xnn, 0xnn, 0xnn <-	<-
0xnn ->	0xnn ->	->
0x33 <-	0x33 <-	<-
	or (if the SPI slave is quick enou	ugh)
0x01, 0x00, 0x33, 0xnn->	0x01, 0x00, 0x33, 0xnn ->	->
0xnn, 0xnn, 0xnn ,0x33 <-	0xnn, 0xnn, 0xnn, 0x33 <-	<-

The data marked with "nn" do not include any relevant information. However, it is necessary to consider that one bit is received when another bit is leaving the master. (refer to the illustration)

SPI

SPI DataControl

Protocol mode:

Settings:

```
1 = Master/Slave = M
2 = Bit rate = 10000000(1.019.642)
3 = Data bits = 8
4 = CPOL = 1
5 = CPHA = 0
6 = Data Control = P
7 = Data Poll*10ms = 10
8 = Flow Control = N
9 = RTS Protocol = 0
```

In this setting, the XT-NANO module polls the SPI slave every **100ms** by sending an 0x00 and tries to receive data from it. In this case, the slave as well as the master have the option to separate the data from the non-relevant data "0xnn". A 0x01 has to precede each data byte which is sent or received, in order to signalise that it is a correct data byte.

Example:

•	Master	Slave	Data	
Idle run	0x00 ->	<- 0x00	none	
Master sends	0x01,0x33 ->	<- 0x00, 0x00	Slave 0x33	includes
Slave sends	0x00,0x00 ->	<- 0x01, 0x44	Master 0x44	includes
Master+Slave send	0x01,0x33,0x01,0x33 ->	<- 0x01, 0x44, 0x01, 0x44		

Note:

The Data-Poll-Timeout is only considered in the idle run. It is tried to send or receive data as rapidly as possible in the sending and receiving mode. Please consider to select the transmitting speed in a way that the slave also has the option to make the corresponding data available.

Note:

TTL-IO

TTL-IO Configuration

2 = EmuCode	= TTLIO = 1002	
STATE=HW ONLINE		
PIN1 = HIGH		
PINI = HIGH PIN2 = HIGH		
PIN3 = HIGH		
PIN4 = HIGH		
PIN5 = LOW		
PIN6 = LOW		
PIN7 = LOW		
PIN8 = LOW		
For example: '4=1002'		
) = QUIT] Please ente	vour choice.	

1 = Emulation	It is possible to use the following emulations: TCPCLIENT UDPCLIENT UDPSERVER TCPSERVER <i>Please find application examples and further explanations regarding the</i> <i>emulations in the main manual of the AK-XXL/SXL products.</i>
2 = Emucode	for customized functions
3 = BUS	TTLIO
4 = Local Port	You can define the TCP/IP or UDP port for the corresponding serial interface.

- **5 = Local SSL Port** Has the same function as the Local Port, only that it is used for the encrypted SSL communication
 - PIN1 PIN8 The current condition of the TTL signal lines is displayed

TTL-IO

TTL-IO Configuration

	====== TTL-IO	Config Menu		 -
1 = PIN1 Direction	Т/О= Т			
2 = PIN2 Direction				
3 = PIN3 Direction				
4 = PIN4 Direction	I/O= I			
5 = PIN5 Direction	I/O= I			
6 = PIN6 Direction	I/O= I			
7 = PIN7 Direction	I/O= I			
8 = PIN8 Direction	I/O= I			
a = PIN1 Value H/L				
b = PIN2 Value H/L				
c = PIN3 Value H/L				
d = PIN4 Value H/L				
e = PIN5 Value H/L				
f = PIN6 Value H/L g = PIN7 Value H/L				
g = PIN7 value H/L h = PIN8 Value H/L				
II – FINO VALUE II/L	- 11			
For example:'1=I'				
				- N
[Q = QUIT] Please en	ter your choic	e:		
		_	-	

It is possible to determine if the single PINs shall work when starting the interface as input or as output. It can also be set via the Data-Control during operation and is described on the following pages.

It is possible to determine if the single pins are HIGH or LOW when starting the interface. It can also be modified via the Data-Control during operation and is described on the following pages.

TTL-IO

TTL-IO DataControl

The TTL IO (Input/Output) mode makes more than two physical interfaces 14/15 digital signal lines available. They cab be configured either as output or as input and switched via the following log.

Protocol mode:

Log:

It is always necessary to have 2 bytes. The first byte is the function and the second byte includes the bit for the PIN.

Function:

= Read Pin
= Clear Pin
= Set Pin
= Configure Pin to Input
= Configure pin to Output
= Clear Pullup
= Set Pullup
= PIN1
= PIN2
= PIN3
= PIN4
- 1 1147
= PIN5
= PIN5

The data bits can also be combined. E.g. 0x14 means PIN5 and PIN3

Examples:

0x04 0x01	= Configure PIN1 as output
0x02 0x01	= Set PIN1 to HIGH
0x01 0x01	= Set PIN1 to LOW

Note:

LCD Configuration

================= CONFIG MENU ======= 1 = Emulation = TCPSERVER 2 = EmuCode = 0000 3 - PUS - LCD 4 = Local Port = 1003 5 = Local SSL Port = 0 6 = Display a = Bit rate = 10 b = Data bits = 8 anot = 1 c = CPOL

- 1 = Emulation It is possible to use the following emulations: TCPCLIENT UDPCLIENT UDPSERVER TCPSERVER Please find application examples and further explanations regarding the emulations in the main manual of the AK-XXL/SXL products.
- 2 = Emucode for customized functions
- 3 = BUS LCD
- 4 = Local Port You can define the TCP/IP or UDP port, which is admitted for the corresponding serial interface.
- 5 = Local SSL Port Has the same function as the Local Port, only that it is used for the encrypted SSL communication

LCD

LCD Configuration

- 6 = Display EADOGM or HD44780
- 7 = Display Columns You can indicate the display fields available per line here
- 8 = Controller Columns Using this option you can indicate the display fields per line which are made available by the Display Controller.

The following values are all preset and compatible to the display. However, they are only relevant for the SPI display EADOGM.

a = Bit rateClock frequency on the SPI bus.
(Master) up to 25.000.000 Bits/sb = Data bits8c = CPOLClock Polarity
0
1d = CPHAClock Phase
0
1

SD-CARD

SD-CARD Configuration

1 = Master/Slave	Mode M = MASTER An SD card can only be operated in the master mode.
2 = Bit rate	Clock frequency on the SPI bus. (Master) up to 25.000.000 Bits/s
3 = Data bits	8
4 = CPOL	Clock Polarity 0 1
5 = CPHA	Clock Phase 0 1
a = BUS	SDCARD

SD-CARD

SD-CARD Configuration

If no card is plugged in:

Card	state	=	not	detected
Card	info	=	not	identified

If a card is plugged in e.g.:

Card state	=	detected
Manufacturer	=	SD
Pages	=	1.987.584
PageSize	=	512
Size (MB)	=	970

DF-CARD

DF-CARD Configuration

1 = Master/Slave	Mode M = MASTER An Data-Flash-Card can only be operated in the master mode.
2 = Bit rate	Clock frequency on the SPI bus. (Master) up to 25.000.000 Bits/s
3 = Data bits	8
4 = CPOL	Clock Polarity 0 1
5 = CPHA	Clock Phase 0 1
a = BUS	DFCARD

DF-CARD

DF-CARD Configuration

If no card is plugged in:

Card	state	=	not	detected
Card	info	=	not	identified

If a card is plugged in e.g.:

Card state	= detected
Manufacturer	= AT45DB0321B
Pages	= 8192
PageSize	= 528
Size (MB)	= 4

Note:

DF cards / components:

- up to 4 GByte
- FAT12/16/32
- AT45DB011B,AT45DB021B AT45DB041B,AT45DB081B AT45DB0161B,AT45DB0321B, AT45DB0642, AT45DB1282

are directly recognised.

SSF(Serial Flash)

SSF Configuration

	===== CONFIG MENU ====================================	
	= M = 4000000(4.006.956)	
2 = Bit rate 3 = Data bits	= 4000000(4.006.956) = 8	
4 = CPOL	= 0	
5 = CPHA	= 0	
a = BUS	= SSFLASH	
Card state	= detected	
Manufacturer	= S25FL116K	
	= 512	
	= 4.096 = 2	
For example:'4=1002		
[Q = QUIT] Please ent	er your choice:	
		-

1 = Master/Slave	Mode M = MASTER A serial flash chip can only be operated in the master mode.
2 = Bit rate	Clock frequency on the SPI bus. (Master) up to 25.000.000 Bits/s
3 = Data bits	8
4 = CPOL	Clock Polarity 0 1
5 = CPHA	Clock Phase 0 1
a = BUS	SSFLASH

SSF(Serial Flash)

SSF Configuration

If no serial flash chip is connected:

Card	state	=	not	detected
Card	info	=	not	identified

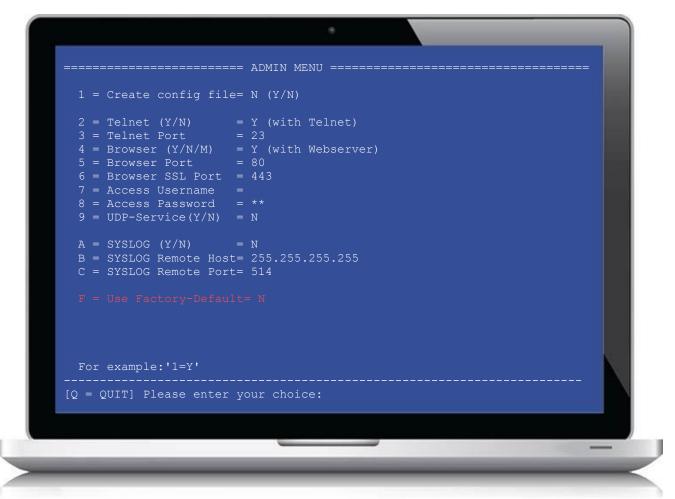
If a serial flash chip is connected e.g.:

Card state	=	detected
Manufacturer	=	S25FL116K
Pages	=	512
PageSize	=	4.096
Size (MB)	=	2

Note:

Serial-Flash chips:

SST25VF016B, SST25VF032B, SST25VF064C
 SST26VF016B, SST26VF032B, SST26VF064B,
 S25FL116K, S25FL132K, S25FL164K,
 SST25VF020


are directly recognised.

Factory-Default / Reset -Button

Factory-Default/Reset Configuration

From Version 1.7.5 on.

If PIN DCD1/PIN7 on BUS1 is not in use, you can use this Pin as Factory-Default/ Reset.

The activation will done via the ADMIN menu.

Operation:

Factory-Default:

After powering on, press the button for 5 seconds. Then all parameters will reset and the interface restarts.


Reset (Software):

During operation, press the button for 1 seconds. Then a software reset will performed.

Factory-Default / Reset-Button

Schematic: Factory-Default/Reset

From Version 1.7.5 on.

Creating a homepage

From version 1.6.3 on you can create your own homepage on the AK-Nord interfaces.

SXL series:

The internal FlashFileSystem of the SXL series is equipped with a 512KB memory and can thus be used without any additional memory.

Request the prepared homepage project from AK-NORD. Please find a description of the way of proceeding in the project.

Warranty

Warranty

The information in this manual might change without prior notice. In spite of elaborateness this manual might include errors or be incomplete. We do not take any liability for errors or data losses as a result hereof.