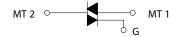

MCR68-2 Silicon Controlled Rectifiers

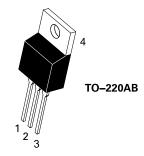
Additional Information

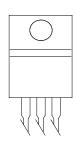


Resources Accessories

Samples

Functional Diagram


Description


Designed for overvoltage protection in crowbar circuits.

Features

- Glass-Passivated Junctions for Greater Parameter Stability and Reliability
- Center-Gate Geometry for Uniform Current Spreading Enabling High Discharge Current
- Small Rugged, Thermowatt Package Constructed for Low Thermal Resistance and Maximum Power Dissipation and Durability
- High Capacitor Discharge Current, 300 Amps
- Pb-Free Package is Available

Pin Out

Maximum Ratings (T₁ = 25 °C unless otherwise noted)

Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (- 40 to 125°C, Gate Open)	MCR68-2	V _{DRM} , V _{RRM}	50	V
On-State RMS Current (180° Conduction Angles; $T_c = 85$ °C)	I _{T (RMS)}	12	А	
Peak Discharge Current (Note 2)		I _{TM}	300	Α
Average On-State Current (180° Conduction Angles; $T_c = 85$ °C)		I _{T(AV)}	8.0	А
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, $T_J = 125$ °C)		I _{TSM}	100	А
Circuit Fusing Consideration (t = 8.3 ms)	l ² t	40	A²sec	
Forward Peak Gate Current (Pulse Width \leq 1.0 μ sec, T_c = 80°C)		I _{GM}	2.0	А
Forward Peak Gate Power (Pulse Width $\leq 1.0 \mu sec$, $T_c = 85^{\circ}C$)	P_{GM}	20	W	
Forward Average Gate Power (t = 8.3 ms, TC = 85°C)	$P_{G(AV)}$	0.5	W	
Operating Junction Temperature Range	T _J	-40 to +125	°C	
Storage Temperature Range		T _{stg}	-40 to +150	°C
Mounting Torque		_	8.0	in. lb.

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits

2. Ratings apply for tw = 1 ms. See Figure 1 for I_m capability for various duration of an exponentially decaying current waveform, tw is defined as 5 time constants of an exponentially decaying current pulse.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.0 60	°C/W
Maximum Lead Temperature for Soldering Pu 10 seconds	T_{L}	260	°C	

Electrical Characteristics - OFF ($T_J = 25$ °C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current	T ₁ = 25 °C	I _{DRM} ,	-	-	0.01	mA
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 125 °C	I _{RRM}	-	-	2.0	IIIA

Electrical Characteristics - ON $(T_J = 25 \, ^{\circ}\text{C} \text{ unless otherwise noted})$

Characteristic		Min	Тур	Max	Unit
Peak Forward On–State Voltage	4) V _{TM}	-	6.0	2.2	V
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}$; $R_L = 100 \Omega$)	I _{GT}	2.0	7.0	30	mA
Gate Trigger Voltage (Continuous dc) $(V_D = 12 \text{ V}; R_I = 100 \Omega)$		-	0.65	1.5	V
Gate Non-Trigger Voltage ($V_D = 12 V_{dc'} R_I = 100 \Omega, T_J = 125 °C$)		0.2	0.40	-	V
Holding Current (V _D = 12 V, Initiating Current = 200 mA, Gate Open))		3.0	15	50	mA
Latch Current $(V_D = 12 \text{ V}, I_G = 150 \text{ mA})$		-	-	60	mA
Gate Controlled Turn-On Time (Note 5) $(V_D = Rated V_{DRM'} I_G = 150 \text{ mA}) (I_{TM} = 24 \text{ A Peak})$		-	1.0	-	μs

are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. V_{DBM} and V_{SBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Silicon Controlled Rectifiers

Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Off–State Voltage (V_D = Rated V_{DRM} , Exponential Waveform, Gate Open, T_J = 125°C)	dv/dt	10	_	_	V/µs
Critical Rate of Rise of On–State Current $I_g = 150 \text{ A}$ $T_J = 125^{\circ}\text{C}$	di/dt	_	_	75	A/µs

- Pulse duration ≤ 300 µs, duty cycle ≤ 2%.
 Ratings apply for tw = 1 ms. See Figure 1 for I_™ capability for various durations of an exponentially decaying current waveform. tw is defined as 5 time constants of an exponentially decaying current pulse.
 The gate controlled turn-on time in a crowbar circuit will be influenced by the circuit inductance.

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Figure 1. Peak Capacitor Discharge Current

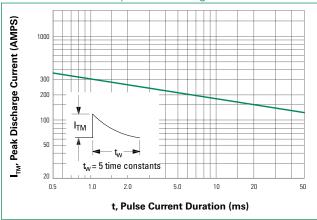
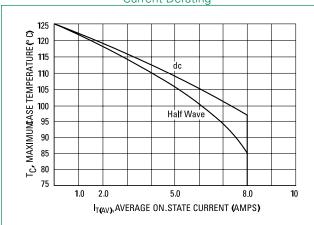



Figure 3. **Current Derating**

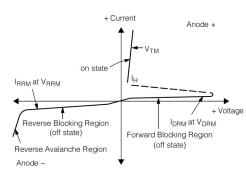


Figure 2. Peak Capacitor Discharge Current Derating

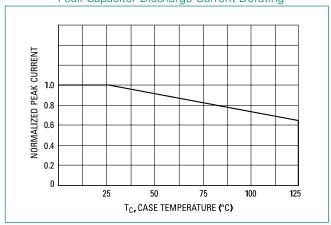
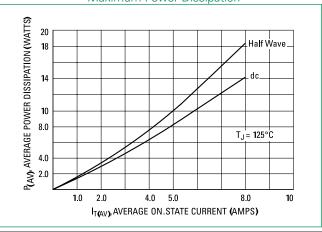
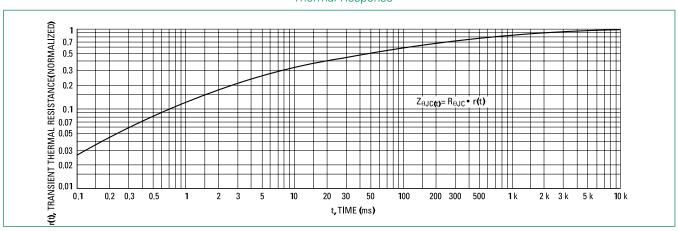
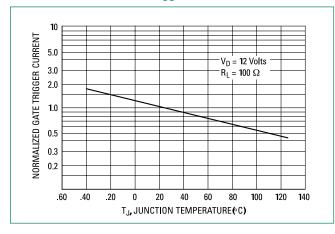
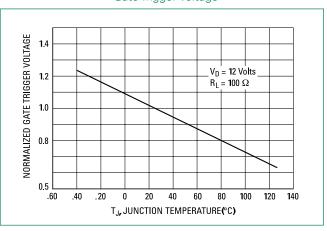


Figure 4. Maximum Power Dissipation


Figure 5.
Thermal Response

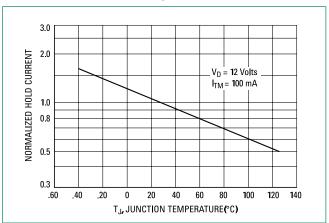
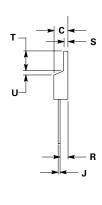
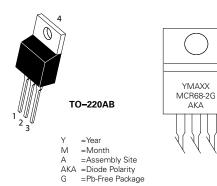

Figure 6.Gate Trigger Current

Figure 7.Gate Trigger Voltage

Figure 8. Holding Current




MCR68-2 Silicon Controlled Rectifiers

Dimensions

Part Marking System

	Inches		Millin	neters
Dim	Min	Max	Min	Max
А	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
K	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
N	0.195	0.205	4.95	5.21
Q	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	_
Z		0.080		2.04

Pin Assignment			
1	Cathode		
2	Anode		
3	Gate		
4	Anode		

Ordering Information

Device	Package	Shipping
MCR68-2	TO-220AB	1000 Unite / Pay
MCR68-2G	(Pb-Free)	1000 Units / Box

^{1.} Dimensioning and tolerancing per ansi y14.5m, 1982.

^{2.} Controlling dimension: inch.

Dimension z defines a zone where all body and lead irregularities are allowed.