# X0115MUF



### Datasheet

### 1 A sensitive gate SCR thyristor



SMBflat-3L

| Product status link |  |
|---------------------|--|
| X0115MUF            |  |

| Product summary                                         |        |  |  |
|---------------------------------------------------------|--------|--|--|
| I <sub>T(RMS)</sub> 1 A                                 |        |  |  |
| <b>V</b> <sub>DRM</sub> / <b>V</b> <sub>RRM</sub> 600 ∨ |        |  |  |
| T <sub>j(max.)</sub>                                    | 125 °C |  |  |

### **Features**

- On-state rms current, 1 A
- Narrow sensitive gate current from 30 µA to 150 µA
- Repetitive peak off-state voltage, 600 V
- Non-repetitive surge peak off-state voltage, 750 V
- Compact and ultraflat SMBflat-3L package with creepage distance of 3.4 mm

### **Applications**

- Ground-fault circuit interrupter (GFCI, RCB, RCD)
- Arc-fault circuit interrupter (AFCI)
- Overvoltage crowbar protection in power supplies
- Capacitive ignition circuits
- Low consumption triggering switches

### Description

Thanks to highly sensitive triggering levels, the 1 A X0115MUF SCR thyristor is suitable for all applications where available gate current is limited. The X0115MUF offers a high blocking voltage of 600 V, and a surge peak voltage of 750 V, ideal for applications like ground fault circuit interrupter (GFCI) and arc fault circuit interrupters (AFCI).

The surface mount SMBflat-3L package allows modern, compact, SMD based designs for automated manufacturing. Its 3.4 mm creepage distance guarantees a 250 V functional isolation (UL 840) at a level 2 pollution degree.



## 1 Characteristics

| Symbol                              | Parameters                                                                                                                                                                                                                 | Value                   | Unit                   |             |                  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|-------------|------------------|
| I <sub>T(RMS)</sub>                 | On-state RMS current (180° conduction angle) T <sub>I</sub> = 113 °C                                                                                                                                                       |                         |                        |             | Α                |
| I <sub>T(AV)</sub>                  | Average on-state current (180° conduction angle)                                                                                                                                                                           |                         | II = 113 C             | 0.64        | Α                |
| <b>I</b>                            | Non repetitive surge peak on-state current                                                                                                                                                                                 | t <sub>p</sub> = 8.3 ms | T <sub>i</sub> = 25 °C | 12          | A                |
| ITSM                                | (T <sub>j</sub> initial = 25 °C)                                                                                                                                                                                           | t <sub>p</sub> = 10 ms  | 1j = 25 C              | 11          |                  |
| l <sup>2</sup> t                    | $I^{2}t$ value for fusing $t_{p} = 10 \text{ ms}$ $T_{j} = 25 \text{ °C}$                                                                                                                                                  |                         | T <sub>j</sub> = 25 °C | 0.60        | A <sup>2</sup> s |
| dl/dt                               | $ \begin{array}{l} \mbox{Critical rate of rise of on-state current} \\ \mbox{I}_{G} = 2 \ x \ \mbox{I}_{GT} \ , \ \mbox{t}_{r} \leq 100 \ \mbox{ns} \end{array} \end{array} \ \ \ \mbox{F} = 60 \ \mbox{Hz} \label{eq:F} $ |                         | T <sub>j</sub> = 25 °C | 75          | A/µs             |
| V <sub>DRM</sub> / V <sub>RRM</sub> | Repetitive peak off-state voltage $T_j = 125 \text{ °C}$                                                                                                                                                                   |                         |                        |             | V                |
| $V_{DSM}$ / $V_{RSM}$               | Non repetitive surge peak off-state voltage t <sub>p</sub> = 10 ms                                                                                                                                                         |                         | T <sub>j</sub> = 25 °C | 750         | V                |
| I <sub>GM</sub>                     | Peak forward gate current $t_p = 20 \ \mu s$ $T_j = 125 \ ^{\circ}C$                                                                                                                                                       |                         | 1.2                    | Α           |                  |
| P <sub>G(AV)</sub>                  | Average gate power dissipation $T_j = 125 \text{ °C}$                                                                                                                                                                      |                         |                        |             | W                |
| T <sub>stg</sub>                    | Storage junction temperature range                                                                                                                                                                                         |                         |                        |             | °C               |
| Tj                                  | Operating junction temperature range                                                                                                                                                                                       |                         |                        | -40 to +125 | °C               |

### Table 1. Absolute maximum ratings (limiting values)

### Table 2. Electrical characteristics (T<sub>j</sub> = 25 °C, unless otherwise specified)

| Symbol          | Parameters                                                                                                                                                                                                                                                                                                                                                    | Va   | lue | Unit |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------|
| lor             |                                                                                                                                                                                                                                                                                                                                                               | Min. | 30  |      |
| I <sub>GT</sub> | $V_D$ = 12 V, $R_L$ = 140 $\Omega$                                                                                                                                                                                                                                                                                                                            | Max. | 150 | μA   |
| V <sub>GT</sub> |                                                                                                                                                                                                                                                                                                                                                               | Max. | 0.8 | V    |
| V <sub>GD</sub> | $V_D$ = $V_{DRM}$ , $R_L$ = 3.3 k $\Omega$ , $R_{GK}$ = 1 k $\Omega$ , $T_j$ = 125 °C                                                                                                                                                                                                                                                                         | Min. | 0.2 | V    |
| V <sub>RG</sub> | I <sub>RG</sub> = 10 μA                                                                                                                                                                                                                                                                                                                                       | Min. | 5   | V    |
| I <sub>H</sub>  | $I_T$ = 50 mA, $R_{GK}$ = 1 k $\Omega$                                                                                                                                                                                                                                                                                                                        | Max. | 5   | mA   |
| ١L              | $I_{G}$ = 1.2 $I_{GT}$ , $R_{GK}$ = 1 k $\Omega$                                                                                                                                                                                                                                                                                                              | Max. | 6   | mA   |
| dV/dt           | $V_D$ = 67 % $V_{DRM}$ , $R_{GK}$ = 1 k $\Omega$ , $T_j$ = 125 °C                                                                                                                                                                                                                                                                                             | Min. | 80  | V/µs |
| tq              | $\begin{split} I_T = 1.6 \text{ A}, \text{ V}_D = 400 \text{ V}, \text{ (dI}_T/\text{dt}) = 0.2 \text{ A}/\mu\text{s}, \text{ V}_R = 2 \text{ V}, \text{ dV}_D/\text{dt} = 10 \text{ V}/\mu\text{s}, \text{ I}_{\text{GT}} = 20 \text{ mA}, \\ t_p = 100 \ \mu\text{s}, \text{ R}_{\text{GK}} = 220 \ \Omega, \text{ T}_j = 125 \ ^\circ\text{C} \end{split}$ | Тур. | 28  | μs   |

### Table 3. Static characteristics

| Symbol                              | Test conditions                                    |                         | Value |      | Unit |
|-------------------------------------|----------------------------------------------------|-------------------------|-------|------|------|
| V <sub>T</sub>                      | I <sub>TM</sub> = 2.0 A, t <sub>p</sub> = 380 μs   | T <sub>j</sub> = 25 °C  | Max.  | 1.40 | V    |
| V <sub>TO</sub>                     | Threshold on-state voltage                         | T <sub>j</sub> = 125 °C | Max.  | 0.90 | V    |
| R <sub>d</sub>                      | Dynamic resistance                                 | T <sub>j</sub> = 125 °C | Max.  | 230  | mΩ   |
|                                     | $T_j = 25$                                         |                         | Max   | 1    | μA   |
| I <sub>DRM</sub> / I <sub>RRM</sub> | $V_D = V_{DRM}, V_R = V_{RRM}, R_{GK} = 1 k\Omega$ | T <sub>j</sub> = 125 °C | Max.  | 150  | μA   |

### Table 4. Thermal resistance

| Symbol               | Parameters                                                    | Value | Unit |
|----------------------|---------------------------------------------------------------|-------|------|
| R <sub>th(j-l)</sub> | Junction to lead (DC)                                         | 15    | °C/W |
| R <sub>th(j-a)</sub> | Junction to ambient (DC) for 5 cm <sup>2</sup> copper surface | 75    | C/VV |



#### **Characteristics (curves)** 1.1



Figure 3. Average and D.C. on-state current versus ambient temperature for 1 cm<sup>2</sup> S<sub>Cu</sub> surface



Figure 4. Average and D.C. on-state current versus lead temperature





10

100

1000

Figure 6. Non repetitive surge peak on-state current for a sinusoidal pulse with width t<sub>p</sub> < 10 ms



0





57/

# Figure 9. Relative variation of static dV/dt immunity versus junction temperature



# Figure 11. Relative variation of dV/dt immunity versus gate-cathode capacitance (typical value)

dV/dt[C<sub>GK</sub>] / dV/dt[No C<sub>GK</sub>]



# Figure 8. Relative variation of holding current versus gate-cathode resistance (typical values)



# Figure 10. Relative variation of dV/dt immunity versus gate-cathode resistance (typical values)







# Figure 13. Typical thermal resistance junction to ambient versus copper surface under anode (epoxy FR4, $e_{CU}$ = 35 µm, SMBflat-3L)





### 2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

### 2.1 SMBflat-3L package information

- Epoxy meets UL94, V0
- Lead-free package



### Figure 14. SMBflat-3L package outline

: This package drawing may slightly differ from the physical package. However, all the specified dimensions in the following table are guaranteed.

|      | Dimensions |             |      |              |               |        |
|------|------------|-------------|------|--------------|---------------|--------|
| Ref. |            | Millimeters |      | Inches (dime | ference only) |        |
|      | Min.       | Тур.        | Max. | Min.         | Тур.          | Max.   |
| А    | 0.90       |             | 1.10 | 0.0354       |               | 0.0433 |
| b    | 0.35       |             | 0.65 | 0.0138       |               | 0.0256 |
| b1   | 1.95       |             | 2.20 | 0.0768       |               | 0.0866 |
| С    | 0.15       |             | 0.40 | 0.0059       |               | 0.0157 |
| D    | 3.30       |             | 3.95 | 0.1299       |               | 0.1555 |
| E    | 5.10       |             | 5.60 | 0.2008       |               | 0.2205 |
| E1   | 4.05       |             | 4.60 | 0.1594       |               | 0.1811 |
| L    | 0.75       |             | 1.50 | 0.0295       |               | 0.0591 |
| L2   |            | 0.60        |      |              | 0.0236        |        |
| е    |            | 1.60        |      |              | 0.0630        |        |



#### Figure 15. Footprint recommendations, dimensions in mm (inches)





# **3** Ordering information

### Figure 16. Ordering information scheme



#### Table 6. Ordering information

| Order code | Marking | Package    | Weight | Base qty. | Delivery mode |
|------------|---------|------------|--------|-----------|---------------|
| X0115MUF   | X1M     | SMBflat-3L | 47 mg  | 5000      | Tape and reel |

## **Revision history**

### Table 7. Document revision history

| Date        | Revision | Changes                                                                                         |
|-------------|----------|-------------------------------------------------------------------------------------------------|
| 30-Jul-2019 | 1        | First issue.                                                                                    |
| 10-Oct-2019 | 2        | Updated Table 2. Electrical characteristics (Tj = 25 $^{\circ}$ C, unless otherwise specified). |
| 11-Apr-2023 | 3        | Updated Figure 14, and Table 5.                                                                 |
| 28-Jul-2023 | 4        | Updated Table 2.                                                                                |

#### IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved