CC2510Fx, CC2511Fx

Silicon Errata

Literature Number: SWRZ014D September 2011–Revised August 2015

Contents

1	Known Design Exceptions to Functional Specifications	4
2	Revision History	10

List of Figures

1	Example Code	6
2	XOSC Start-Up Time	9

List of Tables

1	Advisory List	4
2	Register Settings That May Lead to RX_OVERFLOW Issue	7

SWRZ014D-September 2011-Revised August 2015

CC2510Fx, CC2511Fx Silicon Errata

1 Known Design Exceptions to Functional Specifications

Table 1. Advisory List

Title	Page
Issue 1 — Part May Hang in Power Mode	5
Issue 2 — RX_OVERFLOW Issue	7
Issue 3 — Premature XOSC_STB Assertion	9

Issue 1	Part May Hang in Power Mode		
Revision(s) Affected	All revisions affected		
Details	The following applies only to power mode 2 and power mode 3.		
	When waking up from power mode 2 and power mode 3, there is a small chance that the SLEEP.MODE bits are faulty set to a value other than zero before the PCON.IDLE bit is cleared by the CPU. This causes the chip to re-enter power mode immediately. Because an enabled interrupt is pending at this point, the chip will wake up and re-enter power mode continuously and appear to hang.		
	When the device hangs, only a system reset will get the chip back to normal operation.		
Workaround(s)	By ensuring that the SLEEP.MODE bits are written to zero at the instant the chip wakes from power mode, the chip will never re-enter power mode unintentionally.		
	If the following conditions are met, this can be done by setting up a DMA transfer to SLEEP register that is triggered right before writing the PCON.IDLE bit.		
	 The chip is running at the HS RC oscillator at the highest possible clock speed setting 		
	The high-speed crystal oscillator is powered down		
	Flash Cache is disabled		
	NOTE: The requirements stated in the following chapters of the data sheet, <i>Low-Power SoC (System-on-Chip) with MCU, Memory, 2.4 GHz RF Transceiver, and USB Controller</i> (SWRS055) still apply:		
	Power Management Control		
	Sleep Timer and Power Modes		
	NOTE: The code in Figure 1 assumes the chip is already running at the HS RC oscillator with the highest clock speed setting possible and this must be handled by the application. The code marked blue below is timing critical		

and must be done in the order as shown here with no intervening code.


```
// Initialization of source buffers and DMA descriptor for the DMA transfer
unsigned char xdata PM2 BUF[7] = {0x06,0x06,0x06,0x06,0x06,0x06,0x04};
unsigned char xdata PM3 BUF[7] = {0x07,0x07,0x07,0x07,0x07,0x04};
unsigned char xdata dmaDesc[8] = \{0x00, 0x00, 0xDF, 0xBE, 0x00, 0x07, 0x20, 0x42\};
// Store current DMA channel 0 descriptor and abort any ongoing transfers if //
the channel is in use
unsigned char storedDescHigh = DMA0CFGH;
unsigned char storedDescLow = DMA0CFGL;
DMAARM |= 0 \times 81;
// Update descriptor with correct source
// NB! Replace &PM2 BUF with &PM3 BUF if powermode 3 is chosen instead
dmaDesc[0] = (unsigned int) & PM2 BUF >> 8;
dmaDesc[1] = (unsigned int) & PM2 BUF;
// Associate the descriptor with DMA channel 0 and arm the DMA channel
DMA0CFGH = (unsigned int) & dmaDesc >> 8;
DMA0CFGL = (unsigned int) & dmaDesc;
DMAARM = 0 \times 01;
// NOTE! At this point, make sure all interrupts that will not be used to
// wake from PM are disabled as described in chapter 13.1.3 of the datasheet.
// Align with positive 32 kHz clock edge as described in chapter 13.8.2
// of the datasheet.
char temp = WORTIME0;
while( temp == WORTIME0);
// Make sure XOSC is powered down when entering PM2/3 and that the flash
// cache is disabled
// NB! Replace 0x06 with 0x07 if power mode 3 is chosen instead
MEMCTR |= 0 \times 02;
SLEEP = 0x06;
// Enter power mode as described in chapter 13.1.3 in the datasheet.
// Make sure DMA channel 0 is triggered just before setting PCON.IDLE
asm("NOP");
asm("NOP");
asm("NOP");
if( SLEEP & 0x03 ) {
    asm("MOV 0xD7,#0x01");
                               // DMAREQ = 0 \times 01;
                                // Needed to perfectly align the DMA transfer
    asm("NOP");
                                // PCON | = 0 \times 01;
    asm("ORL 0x87,#0x01");
    asm("NOP");
}
// Enable Flash Cache
MEMCTR \&= \sim 0 \times 02;
// Update DMA channel 0 with original descriptor and arm channel if it was in //
use before PM was entered
DMA0CFGH = storedDescHigh;
DMA0CFGL = storedDescLow;
DMAARM = 0 \times 01;
```

Figure 1. Example Code

Issue 2	RX_OVERFLOW Issue

Revision(s) Affected All revisions affected

Details

In addition to the RFD register, the CC251xFx devices have several internal buffers for status registers, CRC bytes, and buffers used when FEC is enabled. If there is a byte in the RFD register and more bytes are written to this register by the radio, the radio will enter RX OVERFLOW state. However, there are some cases where the radio will be stuck in RX state instead of entering RX_OVERFLOW state, as it should. Table 2 lists the register settings that will cause this problem. APPEND_STATUS is found in the PKTCTRL1 register, CRC_EN is found in the PKTCTRL0 register, and FEC_EN is in the MDMCFG1 register. In Table 2, x is the number of bytes that will be written to the RFD register by the radio (including the status bytes if APPEND STATUS = 1). Assume that the radio is configured to enter IDLE state after a packet has been received.

When the radio is stuck in RX state like this, it will draw current as in RX state, but it will not be able to receive any more data. Neither RFIF.IRQ_DONE nor RFIF.IRQ_RX_OVF will be asserted. The only way to proceed is by issuing an SIDLE strobe command (RFST = 0x04).

Register Settings	# of Bytes Read from the RFD Register	MARCSTATE	Comment
APPEND_STATUS = 1	x - 1	RX_OVERFLOW	Ok
CRC_EN = 0 FEC_EN = 0	х	IDLE	Ok
	x - 6	RX_OVERFLOW	Ok
	x – 5	RX	Not ok. Stuck in RX
APPEND_STATUS = 1	x - 4	RX	Not ok. Stuck in RX
$CRC_EN = 0$	x - 3	RX	Not ok. Stuck in RX
FEC_EN = 1	x - 2	RX	Not ok. Stuck in RX
	x – 1	RX	Not ok. Stuck in RX
	x	IDLE	Ok
	x - 3	RX_OVERFLOW	Ok
APPEND_STATUS = 1 CRC EN = 1	x - 2	RX	Not ok. Stuck in RX
$FEC_EN = 0$	x – 1	RX	Not ok. Stuck in RX
	x	IDLE	Ok
	x – 5	RX_OVERFLOW	Ok
	x - 4	RX	Not ok. Stuck in RX
APPEND_STATUS = 1 CRC_EN = 1	x - 3	RX	Not ok. Stuck in RX
$FEC_EN = 1$	x - 2	RX	Not ok. Stuck in RX
	x - 1	RX	Not ok. Stuck in RX
	Х	IDLE	Ok

Register Settings	# of Bytes Read from the RFD Register	MARCSTATE	Comment
APPEND_STATUS = 0	x - 1	RX_OVERFLOW	Ok
CRC_EN = 0 FEC_EN = 0	x	IDLE	Ok
	x - 4	RX_OVERFLOW	Ok
APPEND_STATUS = 0	x - 3	RX	Not ok. Stuck in RX
$CRC_EN = 0$	x - 2	RX	Not ok. Stuck in RX
FEC_EN = 1	x - 1	RX	Not ok. Stuck in RX
	x	IDLE	Ok
APPEND_STATUS = 0	x – 1	RX_OVERFLOW	Ok
CRC_EN = 1 FEC_EN = 0	x	IDLE	Ok
	x - 3	RX_OVERFLOW	Ok
APPEND_STATUS = 0	x - 2	RX	Not ok. Stuck in RX
CRC_EN = 1 FEC_EN = 1	x - 1	RX	Not ok. Stuck in RX
	Х	IDLE	Ok

Table 2. Register Settings That May Lead to RX_OVERFLOW Issue (continued)

Workaround(s)

In applications where the DMA is used to read the RFD register, it is important to configure the DMA in accordance with the chosen radio configuration (see <u>SWRA164</u>, *Design Note DN107 DMA and Radio Configuration*, for more details). If the RFD register is read manually, it is important that the register is read when the RFTXRXIF flag in the TCON register has been asserted. If the RFTXRX interrupt is used, it is important that this interrupt has a high priority. If a polling scheme is used, ensure that enabled interrupts will not prevent the RFD register to be read before a new byte is received.

www.ti.com	Issue 3 — Premature XOSC_STB Assertion		
Issue 3	Premature XOSC_STB Assertion		
Revision(s) Affected	All revisions affected		
Details	The XOSC_STB signal (crystal oscillator stable signal) is derived from an internal ripple counter that counts clock pulses during oscillator start-up. Due to the very small oscillation amplitude during the initial crystal start-up, the ripple counter can, in some cases, trigger on power noise instead of the actual crystal swing, and there is a finite possibility that the ripple counter used to set XOSC_STB can assert XOSC_STB prematurely.		
	If the HS XOSC is turned on by selecting it as source for the system clock (CLKCON.OSC = 0), CLKCON.OSC will remain 1 (and keep the HS RCOSC as source) until the SLEEP.XOSC_STB bit is asserted. In the cases where XOSC_STB is asserted prematurely, the system clock will change clock source prematurely and end up running on an unstable clock, which causes unpredictable behavior.		
Workaround(s)	The HS XOSC must be turned on by setting SLEEP.OSC_PD = 0. A SW delay should then be implemented to make sure the crystal is stable before selecting the HS XOSC as system clock (CLKCON.OSC = 0). The SW delay must be greater than the maximum start-up time of the crystal.		
	SLEEP &= $\sim 0 \times 04$; // Power up both oscillators (HS XOSC and HS RCOSC)		
	delay(); // Delay longer than max crystal start-up time		
	CLKCON &= ~0x40; // Set high speed crystal oscillator as system clock		
	Figure 2 shows the XOSC_Q1 pin as the crystal is turned on. When measuring on		

Figure 2 shows the XOSC_Q1 pin as the crystal is turned on. When measuring on XOSC_Q1, use a high-impedance probe to avoid loading the crystal.

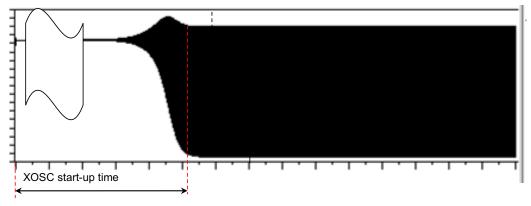


Figure 2. XOSC Start-Up Time

When finding the max start-up time, measure on several crystals over temperature. A 100% margin should be added to the measured start-up time to account for process variations.

2 Revision History

Revision Date		Description	
SWRZ014D	8/14/2015	Updated with issue related to the XOSC_STB signal.	
SWRZ014C	12/21/2007	Updated with issue related to RX_OVERFLOW state. Removed <i>Batches Affected</i> because there is only one revision available for this product.	
SWRZ014B	9/18/2007	Updated with clarified conditions to fix and update the code to remove instability.	
SWRZ014A	9/6/2007	Released for RTM.	
1.2	6/6/2006	Removed <i>Switching Between Power Modes</i> issue due to a floating signal causing the problem under testing.	
1.1	6/1/2006	Added general information. Minor text changes.	
1	5/30/2006	First edition.	

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated