1. Scope

4

3

2

1

0

REV

This specification applies to fixed metal film surface mount resistor networks [High precision and reliability]

2. Type Designation

Example:

Example:			
R M 2 0	12A - 102	/ <u>102</u> - <u>PW</u>	XI 10
(1) (2	2) (3) (4)	(5) (6) (7)	(8) (9) (10)
(1) Dec duct Tree	•		
(1) Product Typ RM		face mount resistor netwo	arke
	, Fixed metal mini sun	ace mount resistor netwo	JIKS.
(2) Size	: 2.0 x 1.25 mm		
(3) Circuit Type			
	: See para.3.		
	: See para.3.		
(4) Rated resista			
	: Example : $102 = 1$	$0 \times 10^2 = 1 \mathrm{k\Omega}$	
(5) Rated resista			
	: Same as para.(4)		
	nperature coefficient c	of resistance	
	± 10 ppm/°C		
	: ±25ppm/°C		
(7) Absolute tol	erance on rated resista	ince	
W	: ±0.05%		
	: ±0.1%		
	: $\pm 0.25\%$		
	$\pm 0.5\%$		
	coefficient of resistar	nce tracking	
	: ±1ppm/°C		
	: ±2ppm/°C		
	: ±5ppm/°C		
• •	tio on rated resistance		
	: ±0.01% : ±0.02%		
	$\pm 0.02\%$: $\pm 0.05\%$		
	$\pm 0.05\%$: $\pm 0.1\%$		
(10)Quantity per			
05	: 500 pieces / reel		
10	: 1,000 pieces / reel		
50	: 5,000 pieces / reel		
1 ·····	······		
		APPD/1. Hosoya	SUSUMU CO.,LTD
8.4. Label is changed.			Specification for
2 .Type Designation is changed.	2018/8 /10 H.HosoyaH.Hosoy	25/8/8/11	Resistor networks RM2012
3. Circuit type is changed.	16/5/31 Hosomi Hosoya	DRAWN M Nakazaki SPEC NO.	
2.Type Designation is changed.	11/5/25 Takagisi Hosoya	2018/8/10	
First edition CHANGNO NOTE.	05/ 5/27 Komatsu mori DATE DRAWN APPD	Thin Film Specialist and Innovator	RM00-4019
CITATIONO NOIE.	DATE DAAMIN AFFD		

5. Marking

Dot and bar mark is marked on the protect coating. (See para.4.)

<u>6. Ratings</u>

6.1. Ratings

Rated Resistance

Rated resistance range	Tolerance on rated Absolute resistance	Ratio (Tracking)	Tolerance on Ratio
$100\Omega \leq R < 2k\Omega$	±0.1%(B) ±0.25%(C) ±0.5%(D)	Ratio=1	$\pm 0.01\%$ (L) $\pm 0.02\%$ (P) $\pm 0.05\%$ (W) $\pm 0.1\%$ (B)
$2k \leq R \leq 100 k \Omega$	±0.05%(W) ±0.1%(B) ±0.25%(C)	1 <ratio≦10< td=""><td>$\pm 0.02\%$(P) $\pm 0.05\%$(W) $\pm 0.1\%$(B)</td></ratio≦10<>	$\pm 0.02\%$ (P) $\pm 0.05\%$ (W) $\pm 0.1\%$ (B)
	±0.23%(C) ±0.5%(D)	10 <ratio≦100< td=""><td>±0.05%(W) ±0.1%(B)</td></ratio≦100<>	±0.05%(W) ±0.1%(B)

Temperature coefficient of resistance

Rated resistance range	Temperature coefficient of resistance [Absolute]	Ratio (Tracking)	Temperature coefficient of resistance [Ratio]
$100\Omega \leq R < 300\Omega$	±25ppm/°C(P)	Ratio=1	± 1 ppm/°C(X) ± 5 ppm/°C(V)
$300\Omega \leq R \leq 100k\Omega$	±10ppm/°C(N)	$1 < \text{Ratio} \leq 3$	±2ppm/°C(W) ±5ppm/°C(V)
	±25ppm/°C(P)	$3 \leq \text{Ratio} \leq 100$	±5ppm/°C(V)

Definition of the Ratio

Tolerance on rated resistance ratio:

 $(\frac{\textit{MEASURED.RESISTANCE.RATIO..R2/R1}}{\textit{RATED.RESISTANCE.RATIO} - R2/R1} - 1) \times 100(\%)$

Tracking of Temperature Coefficient of Resistance(T.C.R.) :

$$(T.C.R. of R2) - (T.C.R. of R1)$$

The combination of the standard resistance value

Ratio	R1	R2	Ratio	R1	R2	Ratio	R1	R2
	1k Ω	1kΩ		1k Ω	5k Ω		1kΩ	20k Ω
1:1	10k Ω	10k Ω	1:5	$2k \Omega$	$10k \Omega$	1 :20	$2k\Omega$	40k Ω
	100k Ω	$100k\Omega$		10k Ω	$50k \Omega$		$5k\Omega$	100k Ω
1:2	1kΩ	2k Ω	1::6	$\frac{1k\Omega}{1:25}$	1.25	1k Ω	25k Ω	
1;2	10k Ω	20k Ω	10	$10k \Omega$	$60k \Omega$	1:23	$2k \Omega$	50k Ω
1:3	1kΩ	3kΩ	1:9	1kΩ	9k Ω	1:50	1k Ω	50k Ω
1:5	10k Ω	30k Ω	1.9	$10k\Omega$	90k Ω	1.50	$2k\Omega$	100k Ω
1.4	1k Ω	4k Ω		1k Ω	$10k\Omega$	1:100	$1 k \Omega$	100k Ω
1:4	10k Ω	40k Ω	1:10	$2k \Omega$	20k Ω			
				10k Ω	100k Ω			

It is possible with the combination except for this as well that we make it corresponding to the requirement.

TITLE:	Specification for	SUSUMU CO.,LTD	SPEC.NO:	Rev. No.
	Resistor networks RM2012			4

	ed diss	*								~						-				
	resisto	_						ature	in e	xcess	of 85	°C, th	ne m	naxin	um l	load s	shall	be o	derate	ed in
acc	ordanc	e with	the fo	ollow	ving (curve	•													
														·····					1]
	100					_							N				_			
											_								-	
ion				-				-									1			-
sipati															\mathbf{h}					
Percent of the rated dissipation									Area											
rate	50									omme ation	nded					\mathbf{N}		:	-	1
of the									oper	acion								:		1
ent c																				-
Perc																				
	0																	1	Ν	
	0	-55				0				50			85	100)				155	
								Ambi	ent te	mperat	ure(°C)									
							<u>Fig.</u>	2 1	Derat	ting c	ırve									
I	The d.c When t he rate	he rate d volta	ed vol ge.						-	ement			he 1	imiti		emer	nt vo	oltag	e sha	ıll b
I	When t he rate	he rate	ed vol ge.				E: R:	Rate Rate	ed vo ed res		volta			imiti 7) 2)		emer	nt vo	oltag	e sha	ill b
۲ t	When t he rate E=√	he rate d volta R×I	d vol ge.	ltage	W		E: R:	Rate Rate	ed vo ed res	ement Itage sistan	volta		he] (\ (Ω	imiti 7) 2)		emer	nt vo	oltag	e sha	ill b
t 1. . <u>4. Lim</u>	When t he rate E=√ <u>iting e</u> 25 V <u>ximum</u>	he rate d volta R×F	d vol ge. <u>-</u> ht voli	tage	W		E: R:	Rate Rate	ed vo ed res	ement Itage sistan	volta		he] (\ (Ω	imiti 7) 2)		emer	nt vo	oltag	e sha	.11 b
t 1. . <u>4. Lim</u>	When t he rate $E=_{v}$ <u>iting e</u> 25 V	he rate d volta R×F	d vol ge. <u>-</u> ht voli	tage	W		E: R: P:	Rate Rate	ed vo ed re: ed dis	ement Itage sistan ssipati	volta ce on	age, t	he] (۷ (۲ (۷	imiti () 2) V)	ng el					
t . <u>4. Lim</u> . <u>5. Ma</u> :	When t he rate $E=_{v}$ iting e 25 V ximum 50 V	he rate d volta r R×F lemer	d vol ge. <u>o</u> <u>oad v</u>	tage volta	W ge	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb	ement ltage sistan ssipati	volta ce on	age, t	he ا (۷ (۲ (۷	imiti ?) ?) √)	ng el	has be	een d	esigne	ed to a	
t . <u>4. Lim</u> . <u>5. Ma</u> . <u>6. Cat</u> (1) Upj	When t he rate $E=_v$ <u>iting e</u> 25 V <u>ximum</u> 50 V <u>egory</u> per cate	he rate d volta $\overline{R \times H}$ <u>lemer</u> <u>overl</u> <u>tempe</u> egory t	ed vol ge. <u>o</u> <u>oad v</u> empe	tage volta re ra ratur	W ge inge re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb usly, d +15	ement ltage sistan ssipati	volta ce on	age, t	he ا (۷ (۲ (۷	imiti ?) ?) √)	ng el	has be	een d	esigne	ed to a	
t . <u>4. Lim</u> . <u>5. Ma</u>	When t he rate $E=_v$ <u>iting e</u> 25 V <u>ximum</u> 50 V <u>egory</u> per cate	he rate d volta $\overline{R \times H}$ <u>lemer</u> <u>overl</u> <u>tempe</u> egory t	ed vol ge. <u>o</u> <u>oad v</u> empe	tage volta re ra ratur	W ge inge re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb	ement ltage sistan ssipati	volta ce on	age, t	he ا (۷ (۲ (۷	imiti ?) ?) √)	ng el	has be	een d	esigne	ed to a	
t . <u>4. Lim</u> . <u>5. Ma</u> . <u>6. Cat</u> (1) Upj	When t he rate $E=_v$ <u>iting e</u> 25 V <u>ximum</u> 50 V <u>egory</u> per cate	he rate d volta $\overline{R \times H}$ <u>lemer</u> <u>overl</u> <u>tempe</u> egory t	ed vol ge. <u>o</u> <u>oad v</u> empe	tage volta re ra ratur	W ge inge re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb usly, d +15	ement ltage sistan ssipati	volta ce on	age, t	he ا (۷ (۲ (۷	imiti ?) ?) √)	ng el	has be	een d	esigne	ed to a	
t . <u>4. Lim</u> . <u>5. Ma</u> . <u>6. Cat</u> (1) Upj	When t he rate $E=_v$ <u>iting e</u> 25 V <u>ximum</u> 50 V <u>egory</u> per cate	he rate d volta $\overline{R \times H}$ lemer <u>loverl</u> tempe egory t	ed vol ge. <u>o</u> <u>oad v</u> empe	tage volta re ra ratur	W ge inge re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb usly, d +15	ement ltage sistan ssipati	volta ce on	age, t	he ا (۷ (۲ (۷	imiti ?) ?) √)	ng el	has be	een d	esigne	ed to a	
t . <u>4. Lim</u> . <u>5. Ma</u> . <u>6. Cat</u> (1) Upj	When t he rate $E=_v$ <u>iting e</u> 25 V <u>ximum</u> 50 V <u>egory</u> per cate	he rate d volta $\overline{R \times H}$ lemer <u>loverl</u> tempe egory t	ed vol ge. <u>o</u> <u>oad v</u> empe	tage volta re ra ratur	W ge inge re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb usly, d +15	ement ltage sistan ssipati	volta ce on	age, t	he ا (۷ (۲ (۷	imiti ?) ?) √)	ng el	has be	een d	esigne	ed to a	
t . <u>4. Lim</u> . <u>5. Ma</u> . <u>6. Cat</u> (1) Upj	When t he rate $E=_v$ <u>iting e</u> 25 V <u>ximum</u> 50 V <u>egory</u> per cate	he rate d volta $\overline{R \times H}$ lemer <u>loverl</u> tempe egory t	ed vol ge. <u>o</u> <u>oad v</u> empe	tage volta re ra ratur	W ge inge re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb usly, d +15	ement ltage sistan ssipati	volta ce on	age, t	he ا (۷ (۲ (۷	imiti ?) ?) √)	ng el	has be	een d	esigne	ed to a	
t . <u>4. Lim</u> . <u>5. Ma</u> . <u>6. Cat</u> (1) Upj	When t he rate $E=_v$ <u>iting e</u> 25 V <u>ximum</u> 50 V <u>egory</u> per cate	he rate d volta $\overline{R \times H}$ lemer <u>loverl</u> tempe egory t	ed vol ge. <u>o</u> <u>oad v</u> empe	tage volta re ra ratur	W ge inge re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb usly, d +15	ement ltage sistan ssipati	volta ce on	age, t	he ا (۷ (۲ (۷	imiti ?) ?) √)	ng el	has be	een d	esigne	ed to a	
t . <u>4. Lim</u> . <u>5. Ma</u> . <u>6. Cat</u> (1) Upj	When t he rate $E=_v$ <u>iting e</u> 25 V <u>ximum</u> 50 V <u>egory</u> per cate	he rate d volta $\overline{R \times H}$ lemer <u>loverl</u> tempe egory t	ed vol ge. <u>o</u> <u>oad v</u> empe	tage volta re ra ratur	W ge inge re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb usly, d +15	ement ltage sistan ssipati	volta ce on	age, t	he ا (۷ (۲ (۷	imiti ?) ?) ?) ?)	ng el	has be	een d	esigne	ed to a	
t . <u>4. Lim</u> . <u>5. Ma</u> . <u>6. Cat</u> (1) Upj	When t he rate $E=_v$ <u>iting e</u> 25 V <u>ximum</u> 50 V <u>egory</u> per cate	he rate d volta $\overline{R \times H}$ lemer <u>loverl</u> tempe egory t	ed vol ge. <u>o</u> <u>oad v</u> empe	tage volta re ra ratur	W ge inge re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb usly, d +15	ement ltage sistan ssipati	volta ce on	age, t	he ا (۷ (۲ (۷	imiti ?) ?) ?) ?)	ng el	has be	een d	esigne	ed to a	
t. .4. Lim .5. Ma .6. Cat (1) Upj (2) Lov	When t he rate $E=_v$ <u>iting e</u> 25 V <u>ximum</u> 50 V <u>egory</u> per cate	he rate d volta $\overline{R \times H}$ lemer <u>loverl</u> tempe egory t	ed vol ge. <u>o</u> <u>oad v</u> empe	tage volta re ra ratur	W ge inge re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb usly, d +15 -55	ement oltage sistan ssipati	nperatury the t	age, t	he] (V (Ω (V	imiti ?) ?) ?) ?)	ng el	has be	een d	esigne	ed to a	
t 5.4. Lim 5.5. Ma 6.6. Cat (1) Upj	When t he rate $E=_{v}$ iting e 25 V ximum 50 V egory per cate ver cat	he rate d volta $\overline{R \times H}$ lemer <u>loverl</u> tempe egory t	ed vol ge. <u>oad v</u> <u>oad v</u> empe empe	tage volta re ra ratur eratur	W ge nge re re	/here	E: R: P:	Rate Rate	ed vo ed res ed dis f amb usly, d +15 -55	ement ltage sistan ssipati	nperatury the t	age, t	he] (V (Ω (V witcature	h a re limits	ng el	has ba approp	een d	esigne	ed to a	opera

6/11

7. Performance

See Table 1.

The test method shall be as specified in IEC 60115-1 or JIS C 5201-1.

No.	Item	Table 1 Conditions	Specificat	ion	
1	Resistance and tolerance	Refer to IEC 60115-1 (JIS C 5201-1), Sub-clause 4.5.	Not exceed the sp tolerance on rated in para.6.1.	resistance	
2	Temperature characteristic of resistance	Resistance shall be measured under standard atmospheric conditions. When the temperature reaches and is maintained at 100 °C higher than the temperature of standard atmospheric conditions, resistance shall be measured again. Refer to IEC 60115-1 (JIS C 5201-1), Sub-clause 4.8.	Not exceed the sp temperature coeff resistance in para.	icient of 6.1.	
3	Overload	A d.c. or a.c. r.m.s. voltage of 2.5 times the rated voltage shall be applied for 5 sec. For other procedures, refer to IEC 60115-1(JIS C 5201-1), Sub-clause 4.13.	Change in resistarAbsolute $\pm (0.1\%)$ Ratio $\pm 0.05\%$ Without damage bover (spark, arcing or breakdown etc.	-0.01Ω) oy flash g), burning	
4	Substrate bending test	Pressurizing jig: Fig.12 in IEC 60115-1(JIS C 5201-1), Sub-clause 4.33. The amount of bend: 3mm Test board A shall be used. For other procedures, refer to IEC 60115-1(JIS C 5201-1), Sub-clause 4.33.	Change in resistarAbsolute $\pm (0.05\%)$ Ratio $\pm 0.05\%$ Without mechanicsuch as breaks.	5+0.01Ω)	
5	Resistance to soldering heat	 (1) Solder bath method Preheat 100~110°C 30 s. Temperature 270±5°C 10±1 s. (2) <u>Reflow soldering method</u> Peak temperature 260±5°C 10 sec. or less Temperature 220°C over 60 s. max. Limited reflow times: two times. The temperature shall be board surface temperature. (3) <u>Soldering iron method</u> Bit temperature 350±5°C Time 3+1√0 s. For other procedures, refer to IEC 60115-1(JIS C 5201-1), Sub-clause 4.18. 	Change in resistar Absolute $\pm (0.05\%$ Ratio $\pm 0.05\%$ Without mechanic damage.	5+0.01Ω)	
6	Solderability	Temperature of solder $235\pm5^{\circ}C$ (Solder alloy: Sn-37Pb) $245\pm5^{\circ}C$ (Solder alloy: Sn-3Ag-0.5Cu) Duration of immersion 2 ± 0.5 s. For other procedures, refer to IEC 60115-1(JIS C 5201-1), Sub-clause 4.17.	A new uniform coating of solder shall cover minimum of 95% of the surface being immersed.		
7	Solvent resistance	Immersion cleaning At normal temperature : 300 s. Using Isopropyl alcohol.	Without distinct d appearance.	amage in	
LE:		SUSUMU SPEC.NO:			
.ге;	Specificati Resistor networ	CO.,LTD	0-4019	Rev. No. 4	

	Conditions	Specification			
Rapid change of	The resistor shall be subjected to 5 continuous	Change in resistance			
temperature	•	Absolute	$\pm (0.1\% + 0.01 \Omega)$		
		Ratio	$\pm 0.05\%$		
		Without	mechanical damag		
	,		reaks and distinct		
		damage i	n appearance.		
			n resistance		
(Rated load)		Absolute	$\pm (0.1\% + 0.01 \Omega)$		
		Ratio	$\pm 0.05\%$		
	repeatedly for 1000 +48/0 nrs.		mechanical damag		
	For other procedures, refer to IEC 60115-1(IIS C	in appearance.			
Endurance		Change i	n resistance		
(Temperature	*		$\pm (0.1\% + 0.01 \Omega)$		
Humidity Bias)			$\pm 0.05\%$		
·					
	min repeatedly for 1000 +48/0 hrs.		in appearance.		
Endurance at		Change	n registeres		
			$\pm (0.1\% + 0.01 \Omega)$		
		hanaaaaaaaaaaaaaaaa	$\pm 0.05\%$		
T		j			
		Without mechanical damage			
	(Temperature	1) $-55\pm3^{\circ}$ C: 30 min2) Standard atmospheric conditions: $2\sim3$ min3) $+125\pm2^{\circ}$ C: 30 min3) $+125\pm2^{\circ}$ C: 30 min4) Standard atmospheric conditions: $2\sim3$ minFor other procedures, refer to IEC 60115-1(JIS C5201-1), Sub-clause 4.19.EnduranceTemperature: $85\pm2^{\circ}$ C(Rated load)Subjected to a voltage cycle consisting of rated d.c. voltage application of 1 hr 30 min and rest of 30 min repeatedly for 1000 +48/0 hrs.For other procedures, refer to IEC 60115-1(JIS C 5201-1), Sub-clause 4.25.EnduranceTemperature: $85\pm2^{\circ}$ C(TemperatureHumidity: $85\pm5\%$ RHHumidity Bias)Subjected to a voltage cycle consisting of 10% rated d.c. voltage application of 1 hr 30 min and rest of 30 min repeatedly for 1000 +48/0 hrs.For other procedures, refer to IEC 60115-1(JIS C 5201-1), Sub-clause 4.37.For other procedures, refer to IEC 60115-1(JIS C 5201-1), Sub-clause 4.37.Endurance at upper categoryThe specimen shall be placed in the test chamber at 155\pm2^{\circ}C with no load for 1000 +48/0 hrs.	1) $-55 \pm 3^{\circ}$ C: 30 minRatio2) Standard atmospheric conditions: $2 \sim 3$ minWithout is3) $+125 \pm 2^{\circ}$ C: 30 min: uch as b4) Standard atmospheric conditions: $2 \sim 3$ minis uch as b4) Standard atmospheric conditions: $2 \sim 3$ minis uch as bFor other procedures, refer to IEC 60115-1(JIS C: $5201-1$), Sub-clause 4.19.Change iEnduranceTemperature: $85 \pm 2^{\circ}$ CChange i(Rated load)Subjected to a voltage cycle consisting of rated d.c. voltage application of 1 hr 30 min and rest of 30 min repeatedly for 1000 +48/0 hrs.Mithout is mappeatFor other procedures, refer to IEC 60115-1(JIS C 5201-1), Sub-clause 4.25.Change iEnduranceTemperature: $85 \pm 2^{\circ}$ CChange i(TemperatureHumidity: $85 \pm 5\%$ RHAbsolute RatioHumidity Bias)Subjected to a voltage cycle consisting of 10% rated d.c. voltage application of 1 hr 30 min and rest of 30 min repeatedly for 1000 +48/0 hrs.Without is mappeatFor other procedures, refer to IEC 60115-1(JIS C 5201-1), Sub-clause 4.37.Subjected to a voltage cycle consisting of 10% rated d.c. voltage application of 1 hr 30 min and rest of 30 min repeatedly for 1000 +48/0 hrs.Without is mappeatFor other procedures, refer to IEC 60115-1(JIS C 5201-1), Sub-clause 4.37.Change iEndurance at upper category emperatureThe specimen shall be placed in the test chamber at 155 $\pm 2^{\circ}$ C with no load for 1000 +48/0 hrs.Absolute AbsoluteFor other procedures, refer to IEC 60115-1(JIS C For other procedures, refer to IEC		

 TITLE: Specification for	SUSUMU CO.,LTD	SPEC.NO:	Rev. No.
			4

- 9.3. Chip mounting
- (1) When chip are mounted on the PC board, the protection coat of resistors must not be scratched. If it will be scratched, it will make performance for moisture inferior.
- (2) In case that resistor will be soldered by soldering iron, heating shall be done on the land, and soldering iron must not hit on the resistor itself.
- (3) In case that resin coating or resin seal will be made for a PC board after chip mounting, do washing and drying it enough before coating or sealing. If ion bear or moisture will be sealed in resin coating, it will make performance for moisture inferior sometimes.

For resinous use, it is necessary to set up enough the curing conditions. As it get improper for the condition, change of a resistance value are large and are a case.

- (4) When resin coating will be used, it is necessary to confirm a curing condition and so on fully in advance and to set it up. When a curing condition becomes inappropriate, a change in the resistance value may grow big.
- (5) According to shape, material, and pressure of clamping in chip mounting machine, there is the case that crack will be appeared on resistor. Control a shock energy for clamping resistor under 7×10⁻⁴ J. With a shock energy around clamping that says here, it is suited to a potential energy, in case that iron block of 25g is
- dropped naturally to the resistor placed on iron plate for the height of 2.8mm.(6) The glue to fix a resistor on the PC board around chip mounting, it is needed high insulation resistance and great performance or moisture. And it is needed that these characteristics are not inferior in using temperature range and a hot spot temperature to be acting.

9.4. Using and Handling

(1) Use under the special environment

- Performance and reliability are fully researched in advance, and it must be confirmed when a use part under the special environment is used with the special environment. There is the following thing in the special environment.
- [1] Water, salt water, oil, the inside of acid, alkali, the liquid such as an organic solvent or the place where it reaches it
- [2] The place where direct sunlight hits it, an exposure in the open air, the inside of the dust
- [3] The condensation

[4] The place where harmful gas (in such cases as the sea breeze, HCl, Cl₂, SO₂, H₂S, NH₃, NO_x) is abundant

Water or ion quality sometimes reaches even a resistance body and an electrode by the protection material of the resistor being eroded gradually under the above environment. Then, investigation confirmation is necessary because resistance value may change due to the chemical reaction such as electrolysis.

- (2) Use under the high temperature environment When components are used under the high temperature environment, load electric power must be reduced based on the reduction curve prescribed in every kind.
- (3) Protect the edge and protection coat of resistors from mechanical stress.
- (4) Handle with care when PC board is divided or fixed on support body, because bending of PC board after chip mounting will make mechanical stress for resistors.
- (5) Resistors shall be used within rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generation of heat, and increase resistance value or breaks.
- (6) In case that resistor is loaded a rated voltage, it is necessary to confirm temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (7) Observe Limiting element voltage and maximum overload voltage specified in each specification.
- (8) If there is a possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, It is necessary that operating condition shall be set up before use, because performance of thin film resistor is affected by a large shock voltage.

9.5. Others

Refer to EIAJ RCR-2121B – Technical Report if Japan Electronics and Information Technology Industries Association "Guideline of notabilia for Fixed resistor for use in electronic equipment (Safety Application Guide for fixed resistors for use in electronic equipment)"

10. Normative reference

JIS C 5201-1:2011 Fixed resistors for use in electronic equipment-Part 1: Generic specification "

TITLE:	Specification for	SUSUMU CO.,LTD	SPEC.NO:	Rev. No.
	Resistor networks RM2012			4