I²C[™] Real-Time Clock/Calendar

Low cost and feature rich, with memory and battery switchover

MCP7941X Features

Real-Time Clock/Calendar (RTCC)

- Alarm counter down to the second
- Programmable alarm or clock output
- Digital trimming for higher accuracy

User Memory

- Battery-backed SRAM: 64 bytes
- EEPROM: 1 Kbit
- Unique ID: 64 bits of protected EEPROM

Low Power

- Minimum operating and backup voltages:
 - Vcc = 1.8V,
 - VBAT = 1.3V
- Typical operating and backup currents:
 - Icc < 400 µA @ 3V
 - IBAT < 700 nA @ 1.8V
- Battery Switchover with Timestamp

Industry-Standard Pinout

- 8-pin packages

- As crystal frequency drifts, would you like to keep accurate time by loading a calibration value?
- If system power is lost, would you like to know how long power has been off?
- Do you have size and cost constraints that would benefit from the embedded memory?
- Is your MAC Address programming inefficient and could benefit from a preprogrammed device?

Block Diagram

Pin Functions

Name	Pin	Pin Functions
X1	1	Xtal/Input
X2	2	Xtal/Output
VBAT	3	Battery Backup
Vss	4	Ground
SDA	5	Serial Data I/O
SCL	6	Serial Clock
MFP	7	Interrupt*/Clock Output
Vcc	8	Supply Voltage

Microchip Technology Incorporated

Design Requirements/Solutions

Design Deguinements	RTCC as Part of the Solution		
Design Requirements	RTCC Feature	Issue/Solution	
Continuous clock operation to monitor power failures	Battery Switchover and Power-Fail Timestamp	 When main power fails or is turned off Time is logged when Vcc switches to VBAT Time is logged again when Vcc is restored MCU reads RTCC registers to determine timeframe 	
Accurate time over temperature	Digital Trimming	 As crystal frequency drifts, software can compensate MCU reads temperature sensor data MCU uses data to adjust RTCC trim constants Also called Software Temperature Compensation 	
Calibration parameters and system status stored	EEPROM and SRAM	 Important data needs to be saved in non-volatile memory – EEPROM and battery backed SRAM available 	
Ethernet or wireless interface	Unique ID with MAC Address	 MAC Address is necessary for network interface Factory programmed device saves time and cost EUI-48 or EUI-64 are standard IEEE unique identifiers Customer supplier ID can be programmed 	
Maximize battery life needed for main power	Multifunction Output (IRQ/CLK)	 Minimize the power drawn from the main battery Place the MCU in Sleep mode or turn it off Use RTCC alarm out to wake MCU or turn power on 	

RTCC Development Environment

RTCC PICtail[™] Plus daughter boards plug into compatible development systems.

Part Number	Development Tool	Description
AC164140	MCP7941X PICtail Plus Daughter Board	Daughter board for evaluation of I^2C^{TM} general purpose RTCC.
DM240001	Explorer 16 Development Board	Evaluate the PIC24F, dsPIC33 and PIC32MX operation with RTCC.
DM183032	PICDEM [™] PIC18 Explorer Board	Evaluate PIC18 MCU operation with RTCC.
DM240311	XLP 16-bit Development Board	Evaluate 16-bit XLP MCU operation with RTCC.
DV164122	PICkit™ Serial Analyzer	Communicate directly with I ² C port on RTCC PICtail™ board.

Visit our web site for additional product information and to locate your local sales office.

Microchip Technology Inc. • 2355 W. Chandler Blvd. • Chandler, AZ 85224-6199

Microcontrollers • Digital Signal Controllers • Analog • Memory • Wireless

Information subject to change. The Microchip name and logo, the Microchip logo, PIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. PICDEM, PICkit and PICtail are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. All other trademarks mentioned herein are property of their respective companies. © 2010, Microchip Technology Incorporated. All Rights Reserved. Printed in the U.S.A. 10/10

