

Maxim > Design Support > Technical Documents > Tutorials > Real-Time Clocks > APP 5791

Keywords: real-time clock (RTC), counter chain

Tips for Writing Bulletproof Real-Time Clock Control Code

Mar 28, 2014

Abstract: With the use of proper device initialization and code sequencing, accurate timekeeping and clock alarm operations become a more manageable task.

Introduction

When we read a clock, as we have all done since childhood, our eyes 'take a snapshot' of the present displayed values. Someone has already gone through the effort to reorient that display for your readability. When the microprocessor needs to access the real-time clock, the 'snapshot' of the latest register values must be reoriented into a sequence of time counts that we are more familiar with.

With the use of proper device initialization and code sequencing, accurate timekeeping and clock alarm operations become a more manageable task.

Device Initialization

Upon the first power application to a new clock component, the sequence of required I/O instructions may vary, based upon that specific component. Refer to the device specification for register structuring. As a general guideline, and assuming power is stable and the I/O port is operational, it is recommended to:

- 1. Enable writing to the chip (if a software write-protection option exists)
- 2. Enable the 32kHz RTC oscillator (if not auto-started)
- 3. Define the hardware interrupt output configuration(s) (as applicable)
- 4. Load initial counter values

Enable Writing to the RTC: This unique function was added to some component designs (for example, the DS1305) to prevent inadvertent clock changes. Refer to the product specification for the write-protect (WP) bit explanation.

Enable RTC Oscillator: On some legacy designs (such as DS12887, DS1307), the RTC oscillator does not auto-start at first power-up. This operational feature was intended to prevent battery consumption during transit/storage, and must be enabled through I/O. Designs with an active-low EOSC bit in the Control register include a built-in oscillator auto-start function, executed upon the first power application. In some other designs like DS1685, it may also be necessary to identify the crystal load capacitance setting for proper oscillator operation.

Check 'OSF': Some RTC components contain an oscillator stop flag (OSF), allowing the user to monitor oscillator operation via periodic I/O. Upon initial power application, OSF will be set. After enabling the oscillator, clear OSF, and then periodically verify that the OSF bit remains Logic 0.

OSF may become Logic 1 based upon any of these conditions:

- 1. Initial application of power
- 2. Voltages on VCC and VBAT are insufficient to maintain oscillator operation
- 3. active-low EOSC bit was set to 1, stopping the oscillator

4. External influences upon the crystal (leakage, coupling, etc.)

Define Interrupt Output(s): Depending upon the specific component and the desired application, definition of the output functions should now be executed to prevent unintended signals from being sent to the microprocessor. Component programming options for real-time alarm(s), watchdog interrupt, square-wave output frequency, etc., should be selected to establish the desired pin/signal conditioning.

In devices with real-time alarms, every alarm register should initially be written to 00h (if binary-coded decimal (BCD)) or FFh (if binary) to prevent any inadvertent matching/interrupt generation. The alarm registers are not factory-initialized, and the associated alarm flags can appear at any time the alarm register contents match the real-time count.

Load Initial Counter (Time) Values: Again referring to the product's specification and register map, the order of counter loading or reading should be executed *from least significant count to the most significant count.* Figure 1 illustrates the counter orientation and carry functions for a typical BCD-formatted real-time clock component.

Figure 1. RTC counter chain.

Whenever writing to the RTC, any write to the least significant counter byte resets the internal 1Hz chain, allowing the user one full second before any timekeeping counter bits subsequently increment. This 1Hz reset action, as well as synchronization techniques, are explained in further detail in the Time Synchronization section.

To facilitate ease of use, the registers are oriented in ascending weight and address order for your programming convenience.

BCD Format	Binary (Seconds)
Hundredths of a Second (if so equipped)	00h -> FFh = 0 -> 255.
Seconds	00h -> FFh = 256> 65535.
Minutes	00h -> FFh = 65536> 16777215.
Hours	00h -> FFh = 16777216> 4294967295.
Day of Week	
Date	
Month	
Year	
Century (if so equipped)	

Time Synchronization

To some users, the simple act of setting the clock (writing to the RTC) may accomplish the timekeeping accuracy goals for the real-time clock in that application. Depending upon the care taken when initializing our device, an initial clock-set error of a few seconds may be considered acceptable when weighed against the execution of the other tasks controlled by that application.

In other applications, it may be desired to synchronize the real-time clock with a known time standard, like WWV¹. As previously mentioned, writing to the least significant counter byte resets the 1Hz countdown chain. **Figure 2** illustrates how to reset the 1Hz countdown chain using an I²C Write sequence to the SECONDS register of a DS1340. The slave address byte (D0h), register address (00h), and 'updated Seconds value' (03h), are being transmitted to the component. Two

representative examples of an asynchronous 1Hz square-wave output are shown to illustrate the resulting adjustment.

Figure 2. I/O-initiated clock synchronization (I²C format shown).

On the slave's acknowledgement of the data byte (27th rising edge of SCL), the slave simultaneously 1) pulls SDA low to ACK receipt of the data byte, 2) the 1Hz countdown chain is reset, and 3) the new Seconds value (03h in the Figure 2 example) is transferred into the Seconds register.

On the first 1Hz SQW waveform, the 1Hz signal was Logic 1 when the ACK occurred. SQW is immediately pulled low. *Precisely 0.5 seconds after the ACK, the SQW output transitions high.* Precisely 1.0 second after the ACK, SQW is pulled low, indicating 1 second has elapsed since the write completed. Reading the Seconds register now results in a content of 04h.

On the second 1Hz SQW diagram, the 1Hz signal was Logic 0 when the ACK occurred, so the SQW signal remains low until *precisely 0.5 seconds after the ACK, where the 1Hz output will transition high.* Precisely 1.0 second after the ACK, SQW is again pulled low, indicating 1 second has elapsed since the write completed. Reading the Seconds register now results in a content of 04h.

For products with 3-wire or SPI I/O, the equivalent trigger to the 27th SCL rising edge in Figure 2 is the next-occurring transition of either SCLK or Chip-Enable (CE or active-low CS, whichever input pin naming convention was used).

For products with Phantom I/O, the equivalent trigger to the 27th SCL rising edge in Figure 2 is the termination of the 72nd write cycle in the serial data packet (including the 64-cycle pattern recognition).

For products with Byte-Wide I/O, the equivalent trigger to the 27th SCL rising edge in Figure 2 would be the termination of a write cycle to the Seconds register.

Using Time-of-Day Alarms

On devices with one or more real-time alarm circuits, the user can request either periodic or non-periodic interrupt events to occur at some predetermined time. Alarms can be set up to 30 days in advance of the desired event.

Programming of the alarms suggests use of a few simple rules:

- 1. Initialize all alarm registers to a known state one time (alarms are not POR-reset)
- 2. Never change Real-Time Clock register settings when an alarm circuit is enabled
- 3. Never change Alarm register settings when that alarm circuit is enabled
- 4. Clear the associated Alarm Flag before enabling that alarm (or you may create a premature interrupt)

The most common periodic interrupt is a 'daily alarm', set to activate at 5:30AM, fully independent of the calendar content. To ignore the DAY/DATE register, we will utilize an alarm mask.

```
Control = 04h;oscillator on, define active-low INT/SQW output function,alarms off;0 secondsAlarm1 MINUTES = 30h;0 secondsAlarm1 HOURS = 45h;30 minutesAlarm1 DAY/DATE = 80h;alarm mask set to match on 'Hours, Minutes & Seconds'Status = 00h;clear both alarm flagsControl = 05h;now enable Alarm1 (AlIE=1)
```

At the next occurrence of 5:30AM, the active-low INT/SQW pin will assert.

To clear the interrupt, leaving the alarm enabled for the following morning at the same time, clear the associated Alarm Flag (A1F).

To clear the interrupt and disable any future alarms, clear the associated Alarm Enable (A1IE).

When the associated alarm is disabled, those alarm registers can be used for general-purpose data storage.

Conclusion

Component initialization procedures, when properly sequenced, should include definitions for all of the RTC's hardware functionality required for stable system operation. If desired, the real-time clock can also be synchronized to an external time base, and a procedure for that synchronization has been outlined. Additionally, optional use of real-time clock alarms has been included, focusing upon the order of execution of I/O instructions.

References

1. WWV is the call sign of the United States National Institute of Standards and Technology's (NIST) HF-band radio station in Fort Collins, Colorado.

Related Parts		
DS1243	64K NV SRAM with Phantom Clock	Free Samples
DS1244	256k NV SRAM with Phantom Clock	Free Samples
DS1248	1024K NV SRAM with Phantom Clock	Free Samples
DS1251	4096K NV SRAM with Phantom Clock	Free Samples
DS1254	2M x 8 NV SRAM with Phantom Clock	

DS12885	Real-Time Clocks	Free Samples
DS12887	Real-Time Clocks	Free Samples
DS12887A	Real-Time Clocks	Free Samples
DS12C887	Real-Time Clocks	Free Samples
DS12C887A	Real-Time Clocks	Free Samples
DS12R885	RTCs with Constant-Voltage Trickle Charger	Free Samples
DS12R887	RTCs with Constant-Voltage Trickle Charger	
DS1302	Trickle-Charge Timekeeping Chip	Free Samples
DS1305	Serial Alarm Real-Time Clock	Free Samples
DS1306	Serial Alarm Real-Time Clock	Free Samples
DS1307	64 x 8, Serial, I ² C Real-Time Clock	Free Samples
DS1315	Phantom Time Chip	Free Samples
DS1318	Parallel-Interface Elapsed Time Counter	Free Samples
DS1337	I ² C Serial Real-Time Clock	Free Samples
DS1338	I ² C RTC with 56-Byte NV RAM	Free Samples
DS1339	I ² C Serial Real-Time Clock	Free Samples
DS1339A	Low-Current, I ² C, Serial Real-Time Clock	Free Samples
DS1339B	Low-Current, I ² C, Serial Real-Time Clock for High-ESR Crystals	Free Samples
DS1340	I ² C RTC with Trickle Charger	Free Samples
DS1341	Low-Current I ² C RTCs for High-ESR Crystals	Free Samples
DS1342	Low-Current I ² C RTCs for High-ESR Crystals	Free Samples
DS1343	Low-Current SPI/3-Wire RTCs	Free Samples
DS1344	Low-Current SPI/3-Wire RTCs	Free Samples
DS1347	Low-Current, SPI-Compatible Real-Time Clock	Free Samples
DS1371	I2C, 32-Bit Binary Counter Watchdog Clock	Free Samples
DS1372	I2C, 32-Bit, Binary Counter Clock with 64-Bit ID	Free Samples
DS1374	I ² C, 32-Bit Binary Counter Watchdog RTC with Trickle Charger and Reset Input/Output	Free Samples
DS1375	I ² C Digital Input RTC with Alarm	Free Samples
DS1388	I ² C RTC/Supervisor with Trickle Charger and 512 Bytes EEPROM	Free Samples
DS1390	Low-Voltage SPI/3-Wire RTCs with Trickle Charger	Free Samples
DS1391	Low-Voltage SPI/3-Wire RTCs with Trickle Charger	Free Samples
DS1392	Low-Voltage SPI/3-Wire RTCs with Trickle Charger	Free Samples
DS1393	Low-Voltage SPI/3-Wire RTCs with Trickle Charger	Free Samples
DS1394	Low-Voltage SPI/3-Wire RTCs with Trickle Charger	Free Samples

DS1500	Y2K-Compliant Watchdog RTC with NV Control	Free Samples
DS1501	Y2K-Compliant Watchdog Real-Time Clocks	Free Samples
DS1511	Y2K-Compliant Watchdog Real-Time Clocks	Free Samples
DS1553	64kB, Nonvolatile, Year-2000-Compliant Timekeeping RAM	Free Samples
DS1554	256k Nonvolatile, Y2K-Compliant Timekeeping RAM	Free Samples
DS1556	1M, Nonvolatile, Y2K-Compliant Timekeeping RAM	Free Samples
DS1557	4Meg, Nonvolatile, Y2K-Compliant Timekeeping RAM	Free Samples
DS1558	Watchdog Clocks with NV RAM Control	Free Samples
DS1629	Digital Thermometer and Real-Time Clock/Calendar	Free Samples
DS1642	Nonvolatile Timekeeping RAM	Free Samples
DS1643	Nonvolatile Timekeeping RAM	Free Samples
DS1644	Nonvolatile Timekeeping RAM	Free Samples
DS1646	Nonvolatile Timekeeping RAM	Free Samples
DS1647	Nonvolatile Timekeeping RAM	Free Samples
DS1670	Portable System Controller	Free Samples
DS1672	I ² C 32-Bit Binary Counter RTC	Free Samples
DS1673	Portable System Controller	Free Samples
DS1677	Portable System Controller	Free Samples
DS1678	Real-Time Event Recorder	
DS1682	Total-Elapsed-Time Recorder with Alarm	Free Samples
DS1683	Total-Elapsed-Time and Event Recorder with Alarm	Free Samples
DS1685	3V/5V Real-Time Clock	Free Samples
DS1687	3V/5V Real-Time Clock	Free Samples
DS17285	3V/5V Real-Time Clocks	Free Samples
DS17287	3V/5V Real-Time Clocks	Free Samples
DS1742	Y2KC Nonvolatile Timekeeping RAM	Free Samples
DS1743	Y2K-Compliant, Nonvolatile Timekeeping RAMs	Free Samples
DS1744	Y2K-Compliant, Nonvolatile Timekeeping RAMs	Free Samples
DS1746	Y2K-Compliant, Nonvolatile Timekeeping RAMs	Free Samples
DS1747	Y2K-Compliant, Nonvolatile Timekeeping RAMs	Free Samples
DS17485	3V/5V Real-Time Clocks	Free Samples
DS17487	3V/5V Real-Time Clocks	Free Samples
DS17885	3V/5V Real-Time Clocks	Free Samples
DS17887	3V/5V Real-Time Clocks	Free Samples
DS3231	Extremely Accurate I ² C-Integrated RTC/TCXO/Crystal	Free Samples

DS3231M	±5ppm, I ² C Real-Time Clock	Free Samples
DS3232	Extremely Accurate I ² C RTC with Integrated Crystal and SRAM	Free Samples
DS3232M	±5ppm, I ² C Real-Time Clock with SRAM	Free Samples
DS3234	Extremely Accurate SPI Bus RTC with Integrated Crystal and SRAM	Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/support For Samples: http://www.maximintegrated.com/samples Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 5791: http://www.maximintegrated.com/an5791 TUTORIAL 5791, AN5791, AN 5791, APP5791, Appnote5791, Appnote 5791 © 2013 Maxim Integrated Products, Inc. Additional Legal Notices: http://www.maximintegrated.com/legal