

Maxim > Design Support > Technical Documents > Reference Designs > Circuit Protection > APP 3912 Maxim > Design Support > Technical Documents > Reference Designs > Hot-Swap and Power Switching Circuits > APP 3912

Keywords: MAX5953A, non-isolated, power IC solution, Powered Device, PD, Power-over-Ethernet (PoE), detection and classification signatures, IEEE 802.3af, Buck converter

REFERENCE DESIGN 3912 INCLUDES: **V**Tested Circuit **V**Schematic **V**BOM **V**Description **V**Test Data

Low-Cost, Complete Power Solution for Powered Devices Includes a 12V Buck Converter

Sep 22, 2006

Abstract: The MAX5953A provides a simple and inexpensive, yet complete, nonisolated power solution for a powered device (PD) in a Power-over-Ethernet (PoE) system. The circuit provides the PD with detection and classification signatures in compliance with the IEEESM 802.3af standard, plus programmable inrush-current control, an integrated power switch, a PWM controller, and integrated high- and low-side switches. The buck step-down converter is capable of > 80% conversion efficiency while delivering 12V at 0.85A.

The circuit of **Figure 1** is the complete powered device (PD) with a DC-DC converter providing up to 0.85A at 12V. Although the MAX5953A contains both high- and low-side switching FETs, the internal low-side FET cannot be configured as a synchronous catch diode. Consequently, the buck converter uses only the high-side FET. Because the current-limiting circuit within the IC operates using voltage-drop information derived from current flow through the low-side FET, this circuit contains no automatic current limiting. The included fuse, F1, provides short-circuit protection at startup.

Figure 1. Schematic of the PD with a 12V, 0.85A buck converter.

The MAX5953A provides the following features:

- 1. TVS diode D1 protects against transient voltage spikes and against reverse-voltage application.
- 2. The circuit operates in three modes depending on the input voltage: PD detection signature, PD classification, and PD power. All voltage thresholds operate with or without the optional diode bridge, while complying with the IEEE 802.3af standard.
 - In PD detection mode, the power source equipment (PSE) applies two voltages at V_{IN} in the 1.4V to 10.1V range with a minimum step of 1V, and records the corresponding current measurements at those two points. The PSE then computes $\Delta V/\Delta I$ to ensure the presence of the 25.5k Ω signature resistor, R1. Most of the MAX5953A's internal circuitry is off, and the offset current is below 10µA.
 - In classification mode, the PSE classifies the PD based on the power consumption required by the PD. Resistor R2 (255Ω) signals the PSE that this PD will operate in Class 3 at a maximum power of 6.49W to 12.95W. Classification current is turned off when the device enters the power mode.
 - When V_{IN} rises above the 38V UVLO threshold, the MAX5953A enters the power mode and gradually turns on the internal MOSFET to limit inrush current.
- 3. When the slow turn-on is complete and $V_{OUT} V_{EE} = 1.23V$, PGOOD goes to open-drain mode. The soft-start capacitor C15 charges from an internal 33µA pull-up current to provide a soft start of the DC-DC converter. The DC-DC converter is prevented from operating until $V_{OUT} = -30V$ (with respect to V+), as set by resistor voltage-divider R6/R7 and the 1.33V DCUVLO threshold.
- 4. Because the Class 3 power limit is 12.95W, the load is limited to 0.85A at 12V with a power conversion efficiency of 80%.

Hot-Swap Circuit Description

The default UVLO turn-on voltage is 38.6V, and the default turn-off voltage is about 30V. The UVLO turn-on and turn-off can be set to any value between 12V and 67V by connecting a resistor voltage-divider between V+ and V_{EE} with tap at UVLO.

Once the UVLO is reached, an internal FET is slowly turned on by charging the FET gate with a 10μ A current. This slow turn-on minimizes charging current of the 100μ F C6. In this circuit, the hot-swap output voltage at OUT falls at a rate of \approx 910mV/ms, and the fall begins \approx 8ms after voltage is applied at the input. See **Figure 2**.

Figure 2. Hot-swap turn-on and ramp timing. CH1 = V_{SS}, CH2 = V_{OUT}

PWM Circuit Description

The DC-DC converter is a typical buck converter that uses the internal high-side FET and an external Schottky catch diode. The operational input range is 30V (set by the resistive-divider at DCUVLO) to 60V. This range corresponds to a step-down ratio of 2.5:1 minimum to 5:1 maximum. The resultant duty cycle is 20% to 40%. The switching frequency is set to 532kHz by R4 and C4 to provide a minimum ON pulse width of \approx 420ns to keep switching losses low.

Soft-start is provided by a combination of timing operations: by limiting the feedback voltage at OPTO to no more than 1.45V above the voltage at C_{SS}, and by charging the capacitor at C_{SS} by an internal 33µA current source. C_{SS} is initially clamped to GND by PGOOD, but PGOOD is released as the hot-swap function is completed when OUT is within 1.2V of V_{EE}. This procedure allows a slow ramp on the feedback signal at startup, slowly increasing the duty cycle to prevent output overshoot. The soft-start feature is apparent by the slope on the OPTO pin at startup (**Figure 3**), and the ramp becomes operational as V_{OPTO} reaches ≈2V, as shown in **Figure 4** under high load and **Figure 5** under low load.

Figure 4. The PWM is controlled by comparing the feedback voltage at OPTO to the RAMP voltage. CH1 = V_{OPTO} , CH2 = V_{RAMP} , I_{LOAD} = 400mA

Figure 5. PWM ramp compared to the feedback voltage at OPTO under a low-current load condition. CH1 = V_{OPTO}, CH2 = V_{RAMP}, I_{LOAD} = 50mA

The controller operates in voltage mode with the voltage feed-forward ramp set by R3 and C3. The OPTO signal is compared with the voltage on RAMP.

Output-Voltage Overshoot at Startup

A soft-start capacitor (C_{SS}) value of 470nF minimizes overshoot to 1% or less, as shown in **Figure 6**. Lower C_{SS} values are only mildly effective in controlling output-voltage overshoot at turn-on, as shown in **Figure 7** where overshoot is 7.7% when C_{SS} = 100nF. Smaller C_{SS} values allow faster startup, but at the expense of increased output overshoot at turn-on.

Figure 6. Startup output-voltage overshoot. CH1 = V_{OUT}, CH2 = V_{CSS}, C_{SS} = 470nF, R_{LOAD} = 30Ω (I_{OUT} = 400mA at 12V), Overshoot ≈ 0

Figure 7. Output-voltage overshoot at startup. C_{SS} = 100nF

Current Limiting

Although the MAX5953 integrates both high- and low-side FETs, the low-side FET is intended for transformercoupled isolated forward or flyback circuits. The high- and low-side FETs are ON simultaneously, and current sensing is normally provided by sensing a voltage drop across the low-side FET. Because the low-side FET is not used, no current sensing is performed in this circuit. A fuse is provided to prevent damage to the MAX5953 and its internal pass FETs when a short circuit occurs. However, the fuse has limited effectiveness in protecting against output short circuits once the DC-DC converter has started. This is because the pass device may fail during the thermal time lag of the fuse.

Load Transients

Figure 8 shows load transients when switching between 1/2 load and full load. A fixed 400mA load is present, and a pulsed 400mA load is added in parallel at the output. If load is pulsed from 0mA to 400mA, as in Figure 8, the load transients increase considerably. However load transients are low, as shown in **Figure 9**, and are nearly independent of DC load current above 50mA.

Figure 8. Load transients at 1/2 load to full load. CH1 = V_{OUT}, CH2 = Δ I_{OUT}, Transients = 1.2%, I_{OUT} = 800mA \rightarrow 400mA \rightarrow 800mA

 $CH1 = V_{OUT}$, $CH2 = \Delta I_{OUT}$, Transients = 5% to 10%, $I_{OUT} = 400$ mA \rightarrow 0mA \rightarrow 400 mA

Conversion Efficiency

The conversion efficiency varies from 71% at 250mA load current to 80.5% at 1A load current. Figure 10 shows that efficiency is > 80% at 850mA full load.

Figure 10. Conversion efficiency at $V_{IN} = 48V$.

Loop Stability

The voltage-mode control loop exhibits two poles at the 4.1kHz LC_{OUT} (L1, C9) resonance and a zero above 4MHz due to the small ESR of C_{OUT}. A type-3 loop compensation is used to allow a unity-gain bandwidth above the LC_{OUT} resonance. Two zeros are set at 2.1kHz (R9, C14) and 4.1kHz (R11, C15) to compensate for the double pole at the LC_{OUT} resonance. Two poles are placed at 20kHz (R9, C13) and 125kHz (R10, C15). The closed-loop Bode plot of the control loop in **Figure 11** shows a 19.4kHz unity-gain frequency with 59° phase margin.

Figure 11. Closed-loop bode plot.

Application

This simple buck converter is most suitable in PD applications where its low-cost nontransformer-coupled structure outweighs the possible circuit failure under applied short-circuit conditions.

MAX5953A Bill of Materials

Qty	Description	Designator	Part Number
1	Capacitor, ceramic, X7R, 68nF, 10%,100V, 1206	C1	TDK C3216X7R2A683K Vishay VJ1206Y683KXB
1	Capacitor, ceramic, X7R, 22µF, 20%,16V, 1812	C10	TDK C4532X7R1C226M
1	Capacitor, ceramic, X7R, 1µF, 10%, 16V, 0805	C11	TDK C2012X7R1A105K
1	Capacitor, ceramic, X7R, 2.2nF, 10%, 25V, 0805	C12	TDK C2012X7R2A222K Vishay VJ0805Y222KXX
1	Capacitor, ceramic, X7R, 15nF, 10%, 25V, 0805	C13	TDK C2012X7R2A153K Vishay VJ0805Y153KXX
1	Capacitor, ceramic, NPO, 150pF, 5%, 50V, 0603	C14	TDK C1608COG1H151J Vishay VJ0805Y151JXA
1	Capacitor, ceramic, X7R, 470nF, 10%, 50V, 0805	C15	TDK C2012X7R2A474K Vishay

			VJ0805Y474KXA
1	Capacitor, ceramic, X7R, 4.7nF, 10%, 25V, 0805	C2	TDK C2012X7R2A472K Vishay VJ0805Y472KXX
1	Capacitor, ceramic, NPO, 100pF, 5%, 50V, 0603	C3	TDK C1608COG1H101J Vishay VJ0805Y101JXA
1	Capacitor, ceramic, NPO, 39pF, 5%, 50V, 0603	C4	TDK C1608COG1H390J Vishay VJ0805Y390JXA
1	Capacitor, ceramic, X7R, 1µF, 10%, 100V, 1210	C5	TDK C3225X7R2A105M
1	Capacitor, al. elec., 100 $\mu F,$ 20%, 80V, SM 10 x 10mm	C6	Panasonic EEV-FK1K1010
1	Capacitor, ceramic, X7R, 2.2µF, 20%, 100V, 1812	C7	TDK C4532X7R2A225M
1	Capacitor, ceramic, X7R, 220nF, 10%, 50V, 0805	C8	TDK C2012X7R1H224K Vishay VJ0805Y224KXX
1	Capacitor, ceramic, X7R, 2.2µF, 20%, 50V, 1210	C9	TDK C3225X7R1H225M
1	Diode, TVS, 64V, SMA	D1	Vishay SMAJ64A
1	Diode Schottky 90V, 1A , SMB	D2	ON Semi MBRS190T3
1	Fuse, 1/2A, 1206	F1	Littlefuse 0433.500
1	Inductor, 68µH, 1A, 10 x 10mm	L1	TDK SLF10145T-680M1R2
1	Resistor, thin film, $25.5k\Omega$, 1%, 0805	R1	
1	Resistor, thin film, 14.3k Ω , 1%, 0805	R10	
1	Resistor, thin film, 4.99k Ω , 1%, 0805	R10	
1	Resistor, thin film, 402Ω, 1%, 0805	R11	
1	Resistor, thin film, 17.4k Ω , 1%, 0805	R12	
1	Resistor, thin film, 2.00k Ω , 1%, 0805	R13	
1	Resistor, thin film, 255Ω , 1%, 1206	R2	
1	Resistor, thin film, 210k Ω , 1%, 0805	R3	
1	Resistor, thin film, 28.0k Ω , 1%, 0805	R4	
1	Resistor, thin film, $3.9k\Omega$, 5%, 0805	R5	
1	Resistor, thin film, $316k\Omega$, 1%, 0805	R6	
1	Resistor, thin film, 14.7k Ω , 1%, 0805	R7	
2	Resistor, thin film, 10.0k Ω , 1%, 0805	R8 R9	
1	IC, Controller, Power device +DC-DC converter TQFN50P700X700X48-EP	U1	MAX5953AUTM+
1	IC, Reference, 1.24V 1% SO-8	U2	TI TLV431ACDBV

Related Parts		
MAX5922	+48V, Single-Port Network Power Switch For Power-Over- LAN	Free Samples
MAX5940	IEEE 802.3af PD Interface Controller for Power-Over- Ethernet	Free Samples
MAX5941	IEEE 802.3af-Compliant Power-Over-Ethernet Interface/PWM Controller for Power Devices	Free Samples

MAX5945	Quad Network Power Controller for Power-Over-LAN	Free Samples
MAX5953A	IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs	Free Samples
MAX5953B	IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs	Free Samples
MAX5953C	IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs	Free Samples
MAX5953D	IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs	Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/support For Samples: http://www.maximintegrated.com/samples Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3912: http://www.maximintegrated.com/an3912 REFERENCE DESIGN 3912, AN3912, AN 3912, APP3912, Appnote3912, Appnote 3912 Copyright © by Maxim Integrated Products Additional Legal Notices: http://www.maximintegrated.com/legal