# **Application Note**

# UV-A Sensor (Peak Responsivity: 355nm, Detection Range: 220nm~370nm)



UV-A Sensor is Gallium Nitride-based materials with Schottky Photodiode UV-A sensors detect a UVA wavelength(220nm~370nm) and used in UVA lamp monitoring. UV-A sensors detect UV Index under sun light.

- Package Type
   The durability of the package should be good in order to detect UVA wavelength.
- According to the package type, UV sensors can be used selectively with applications.

| Package<br>Type | Picture of products | Detection Range   | Viewing angle(°) | Applications                                                 |
|-----------------|---------------------|-------------------|------------------|--------------------------------------------------------------|
| COB 2418        |                     | 240nm~370nm       | 120              | Compact equipment,                                           |
| SMD 3528        | C                   | 24011111~57011111 | 100              | mobile phone, wide<br>Viewing angle sensing                  |
| TO-46           | 100                 |                   | 60               |                                                              |
| TO-39           |                     | 220nm~370nm       | 60               | Metal material of<br>TO-CAN type and<br>general applications |
| TO-5            |                     |                   | 100              |                                                              |

Fig. 1 Package Type



### 2. Type of UV chips

- The larger the chip size the higher output value(Photo current).

| Output Value       | Standard Chip                              | Large Chip | Ultra Large Chip |  |
|--------------------|--------------------------------------------|------------|------------------|--|
| Picture of UV chip |                                            |            |                  |  |
| Chip Size (mr)     | 0.4 × 0.4                                  | 1.4 × 1.4  | 3.4 × 3.4        |  |
| Active area (mm')  | 0.076                                      | 1.536      | 6.894            |  |
| Photo current      | 161nA                                      | 3.1µA      | 15.6µA           |  |
| riioto curient     | ※ Optical source : 1mW/cm², 352nm UVC Lamp |            |                  |  |

Fig. 3 Type of UV chips

- The small electric current that flows through UV sensor when no photons are entering the device.



Fig. 4 Dark current of UVA sensor (Log scale)

| Parameter    | Max. | Unit | Test Conditions |
|--------------|------|------|-----------------|
| Dark current | 1    | nA   | Vr = 0.1V       |

# 4. Responsivity



Fig. 5 Relative Responsivity

| Parameter                    | COB & SMD PKG  | TO CAN PKG   |
|------------------------------|----------------|--------------|
| Peak Wavelength(nm)          | 355            | 355          |
| Spectral Detection Range(nm) | 240~370        | 220~370      |
| Material of window           | Si Encapsulant | Quartz glass |

The reason of difference of responsivity curve and detection area is the difference in material window of UV sensors.

- UV Sensor output values have two ways, as current or voltage for the UV response
- GH series are voltage output component, and the Op-Amp is mounted therein.

| Output value                                     | C          | Current Output                      | Voltage Output                  |  |
|--------------------------------------------------|------------|-------------------------------------|---------------------------------|--|
| Model                                            | SD, GD ser | ries (SMD, TO-CAN PKG)              | GH series                       |  |
| Feature                                          | (          | Current Output                      | Amplified Voltage Output        |  |
|                                                  | SMD PKG    | Anode (+)                           | (Vcc)                           |  |
| Direction of electrode<br>and<br>Pin information | COB PKG    | Anode (+) Cathode (+)               | (Vout)<br>(GND)                 |  |
|                                                  | TO-CAN     | Anode e2.510.05 Cathode             | 5.1±0.2<br>8.1±0.20<br>9.1±0.20 |  |
| Structure                                        | +          | - = -                               | + + + = +                       |  |
|                                                  | Chip       | Case UV sensor of<br>current output | · ·                             |  |

Fig. 6 Classification by output value

### 6. Application circuit



Fig. 7 Application circuit

| Part No.                                                                              | Model and Value | Function                  | Remark                                                                                                        |
|---------------------------------------------------------------------------------------|-----------------|---------------------------|---------------------------------------------------------------------------------------------------------------|
| UV Sensor                                                                             | UVA Sensor      | UV Sensing                | Anode connects to ground                                                                                      |
| MCP6241 (Vcc = 1.8 ~5.5V)  Op-Amp  LMC6081 (Vcc = 4.5 ~ 15V)  OPA237 (Vcc = 2.7 ~36V) |                 | Amplification             | Input Offset Current < 1nA                                                                                    |
| Capacitor (C1)                                                                        | 1nA             | Decreasing input noise    | Decrease the value for<br>fast response (e.g. 100pF)<br>Increase the value for<br>reducing errors (e.g. 10nF) |
| Capacitor (C2) 0.1μF                                                                  |                 | Stabilization of power    | Internal voltage of<br>capacitor > Vcc                                                                        |
| Resister (R1, 2, 3) R1=0Ω, R2=X, R3=6.8MΩ                                             |                 | Decide the output voltage | Gain: R3 × (1+R1/R2)                                                                                          |

| 7. Application of the UV lamps                   |                                                  |                                                                   |                   |  |
|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|-------------------|--|
| Internal pressure                                | Type of lamp                                     | Applications                                                      | Available product |  |
| Low<br>Pressure UV                               | Cleaning Lamp                                    |                                                                   | All UVA Sensors   |  |
| Lamp                                             | Organic matter decomposition Lamp                | decomposing TOC and COD in water                                  | All UVA Sensors   |  |
| (Under 1kg/cm')                                  | sterilization UV Lamp                            | sterilization UV Lamp Sterilizing water and air                   |                   |  |
| Middle                                           | Medium Pressure Mercury Lamp Coating, Ink curing |                                                                   |                   |  |
| Pressure UV                                      | Iron Iodide Metal Halide Lamp                    | Coating, Ink and adhesive curing                                  |                   |  |
| Lamp<br>(2~3kg/cm²)                              | Ga Iodide Metal Halide Lamp                      | Ga Iodide Metal Halide Lamp Film processing, Shadow mask, etching |                   |  |
| High Pressure UV<br>Lamp<br>(Under<br>5~10kg/m²) | Short Arc High Pressure<br>Mercury Xe Lamp       | Spot UV analysor, UV stepper                                      | (Using Diffuser)  |  |

# 8. Products Table

| OUTPUT  | Model No.    | PKG Type        | Chip Size<br>(mr) | The minimum<br>detectable quantity<br>of light | Output Value** |
|---------|--------------|-----------------|-------------------|------------------------------------------------|----------------|
|         | GUVA-C22SD   | COB 2418        |                   | 0.1μW/cm²                                      | 113nA          |
|         | GUVA-S12SD   | SMD 3528        |                   |                                                |                |
| Current | GUVA-T11GD   | TO-46           | 0.4 × 0.4         |                                                | 161nA          |
|         | GUVA-T13GD*  | TO-46           |                   |                                                |                |
|         | GUVA-T31GD   | TO-46 (3 Leads) |                   |                                                |                |
|         | GUVA-T11GD-L | TO-46           | 1.4 × 1.4         | 0.01µW/cm²                                     | 3.1 µA         |
|         | GUVA-T21GD-U | TO-39           | 3.4 × 3.4         | 0.001µW/cm²                                    | 15.6µA         |
| Voltage | GUVA-T21GH   | TO-5            | 0.4 × 0.4         | 0.1 <i>µ</i> W/cm²                             | 1.88V          |

- \* GUVA-T13GD and GUVA-T11GD are same package type. But direction of electrode is opposite.
- \*\* Optical source power : 1mW/m\*, 352nm UVA Lamp

  \*\*\* The maximum detectable quantity of light : 100mW/m\* (Please contact us when optical source power is over 100mW/m\*)

# 1) ESD (Electro-Static Discharge)

- ESD and surge voltage can cause damage to UV sensor.
- It is recommended that using antistatic wrist strap or antistatic gloves when handing the UV sensors.

# 2) Preventing moisture penetration

- If moisture is absorbed into the inside of the device, occur expansion and vaporization during
- the soldering process. This phenomenon can give damaged to optical properties and appearance of UV sensors.
- UV sensors are packaged in aluminium moisture barrier bags and put in silica gel.

- If not insulated the cap of TO-CAN package type, it's cause malfunction to the device.
- · Storage conditions : Temperature 5~30℃, please keeping the condition of moisture is less than RH 65%.
- Soldering Conditions : Max. 260°C (Temperature), Max. 10sec. (Time)