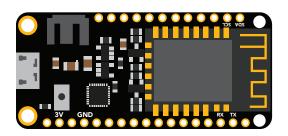

Wi-Fi Hydroponics Kit Datasheet V 2.0

Atlas Scientific does not make consumer electronics.

This equipment is intended for electrical engineers. If you are not familiar with electrical engineering or embedded systems programing, this product may not be for you.

This device was developed and tested using a Windows computer. It was not tested on Mac, Atlas Scientific does not know if these instructions are compatible with a Mac system.

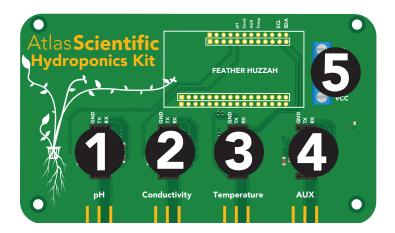
IP64 (dust and water splash proof)


Operating principle

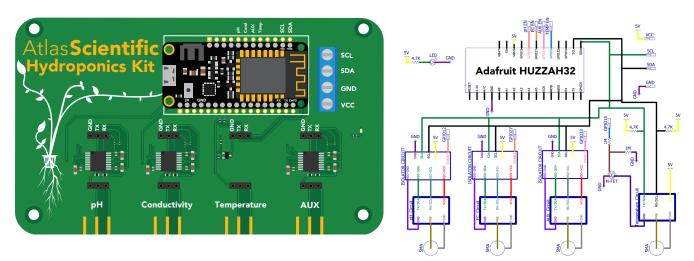
The Wi-Fi hydroponics kit has been designed to provide the engineer with a simple way of remotely monitoring and controlling a hydroponics system's chemistry. Sensor data is uploaded to ThingSpeak [™], a free, cloud-based data acquisition and visualization platform. The Wi-Fi hydroponics kit has also been designed to be easily modified by the engineer. Feel free to change the sensors or functionality of the device to meet your specific needs.

Overview

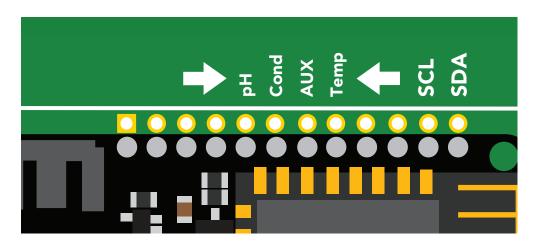
CPU


The Wi-Fi hydroponics kit is controlled using an Adafruit HUZZAH32 as its CPU. The HUZZAH is programmed using the Arduino IDE and uses an onboard ESP32 as its Wi-Fi transmitter. <u>Adafruit HUZZAH32 datasheet.</u>

Sensor ports


The Wi-Fi hydroponics kit PCB has 5 sensor ports. Three of the ports are electrically isolated. The isolated ports are marked pH, Conductivity, and AUX. The isolated ports are needed to take noise-free electrochemical readings. Because the sensing element of a temperature sensor is never in direct contact with the water, electrical isolation is not needed for temperature sensing.

The AUX port can be used to add an additional sensor of your choice. The terminal block marked Port 5 has been designed to connect one or more dosing pumps to the device. However, the port could also be used to connect a gas sensor.



PCB

The overall design of the PCB is quite simple. The CPU is powered and programmed through the panel-mount USB connector. The CPUs USB pin supplies the board's power bus with 5V.

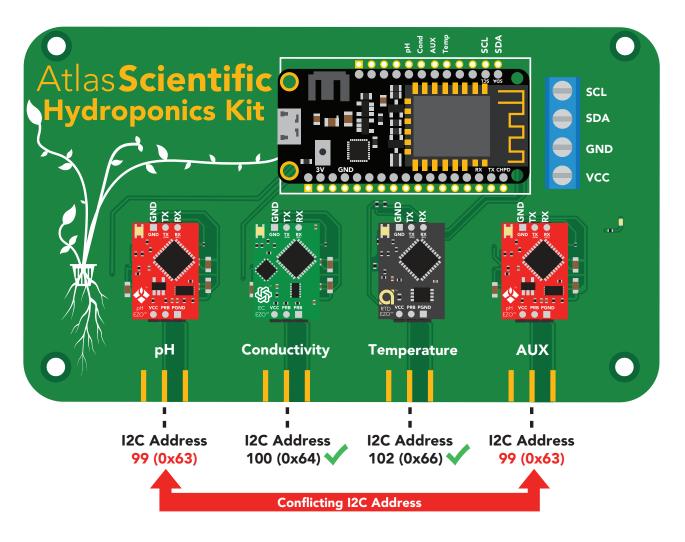
Each of the four main sensor ports have an enable pin, which must be set correctly to power the sensor. The enable pins are found here:

The first three pins (pH, Cond and Aux) must be set low to power on the sensor. The last pin (Temp) must be set high to power on the sensor.

Truth table

Pin	Adafruit Huzzah32 GPIO	State	Sensor Power
рН	12	LOW	ON
Cond	27	LOW	ON
Aux	33	LOW	ON
Temp	15	HIGH	ON

Sensor port 5 (the terminal block) does not have an enable pin and can not be turned off.

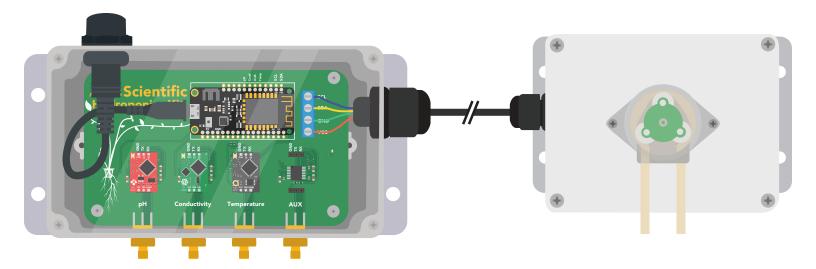

Data protocol

The CPU communicates with all peripheral sensors using the I2C data protocol. All data lines are directly connected to the CPUs I2C port. Using a different data protocol with this circuit board is not possible.

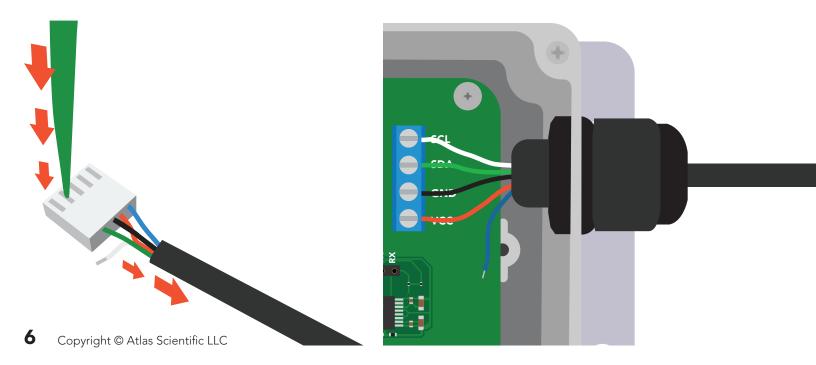
It is important to keep in mind that all Atlas Scientific components default to UART mode. When adding a new Atlas Scientific component to the kit, it must first be put into I2C mode. Refer to the component's datasheet for instructions on how to switch it over.

Adding more of the same sensor or component type

Adding additional components of the same type, such as an additional pH or conductivity sensor, is not hard to do. As mentioned above, you must set the device to I2C mode, and you must make sure that its I2C address is not the same as the already existing component.



This table lists the default I2C address of components commonly added to this kit.


Device	I2C Address	Device	I2C Address
EZO pH	99 (0x63)	EZO EC	100 (0x64)
EZO ORP	98 (0x62)	EZO RTD	102 (0x66)
EZO DO	97 (0x61)	EZO PMP	103 (0x67)

Dosing pump

An optional external dosing pump can be added to the Wi-Fi hydroponics kit. Using the <u>SGL-PMP-BX</u> is the simplest way to add on a dosing pump.

A stand-alone EZO-PMP can be used instead of the expansion pump kit; however, you must manually put the pump in I2C mode and remove the data cable connector.

Uploading sensor data to the cloud

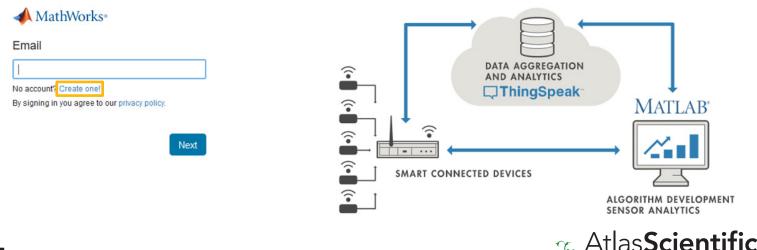
The Atlas-Scientific Wi-Fi hydroponics kit has been designed to upload sensor data to ThingSpeak[™], a free, cloud-based data acquisition and visualization platform. You will be required to set up a free account with ThingSpeak[™] to upload and visualize the data. With a free account, you can upload data once every 15 seconds. A paid account lets you upload data once per-second; look <u>here</u> for more info about various ThingSpeak[™] services.

Atlas Scientific has no business relationship with ThingSpeak[™]; we just like how it works. If you want to use a different service, modify the device as you see fit.

Setting up your Wi-Fi kit

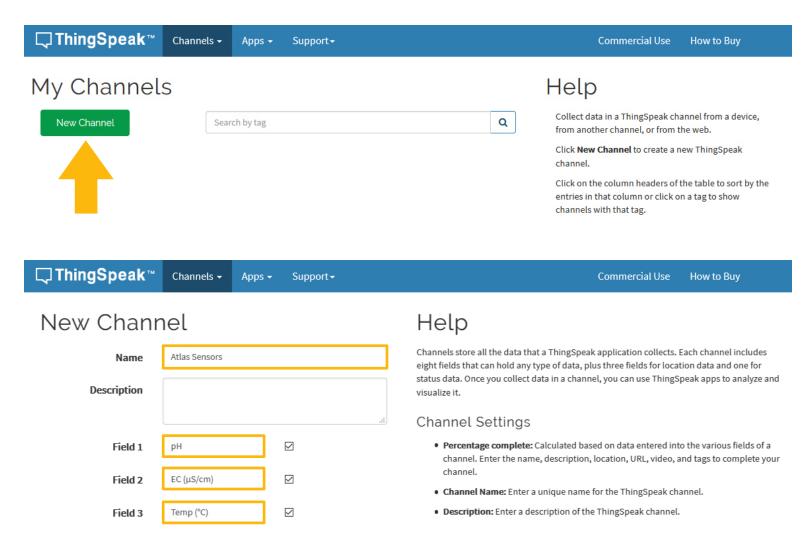
Step 1 Setup a ThingSpeak Account

Because the sensor data is stored / viewed on ThingSpeak, you will need to setup a ThingSpeak account. Create your ThingSpeak account by clicking <u>HERE</u>.


ThingSpeak[™] Channels Apps Support→

Commercial Use How to Buy

To use ThingSpeak, you must sign in with your existing MathWorks account or create a new one.

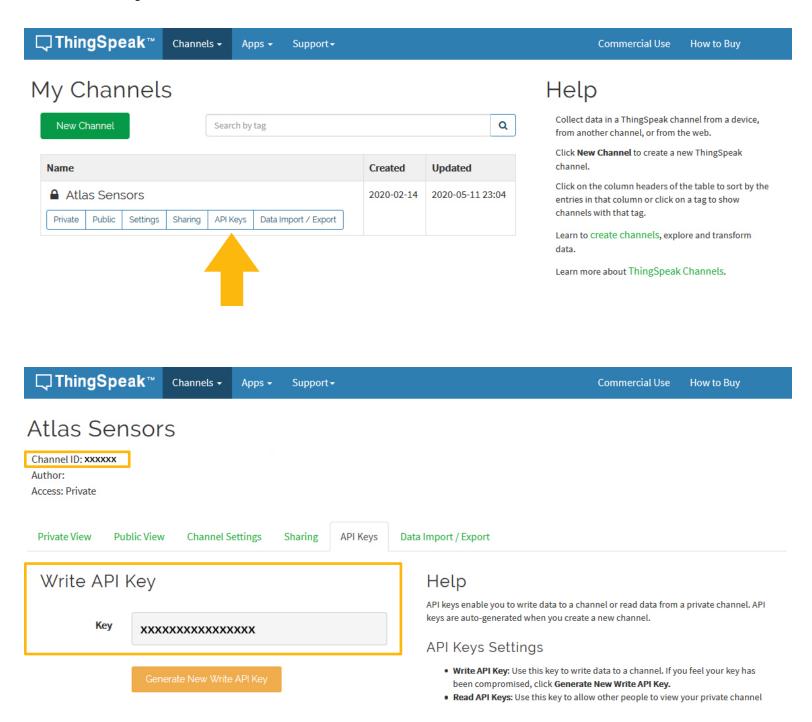

Non-commercial users may use ThingSpeak for free. Free accounts offer limits on certain functionality. Commercial users are eligible for a time-limited free evaluation. To get full access to the MATLAB analysis features on ThingSeak, log in to ThingSpeak using the email address associated with your university or organization.

To send data faster to ThingSpeak or to send more data from more devices, consider the paid license options for commercial, academic, home and student usage.

Step 2 Create a Channel

Your data is uploaded to ThingSpeak through a 'Channel.' Select New Channel

Fill out the highlighted boxes. (Be sure to click on the checkboxes to enable **field 2** and **3**) For reference, this is what we entered.


Name Atlas Sensors Field 1 pH Field 2 EC (µS/cm) Field 3 Temp (°C)

Scroll to the bottom of the page and click Save Channel.

Step 3 Get ThingSpeak API keys

After you saved your channel settings, you will be redirected to your channel page. Click on **API keys**.

Be sure to save your **Channel ID** and **Write API Key** we are going to need these, in the next few steps.

Step 4 Make sure your Arduino IDE libraries are up to date

A Make sure you have the correct path for the Esp32 Library

In the IDE, go to **File > Preferences**

Locate the **Additional Boards Manager URLS** text box.

Preferences		×
Settings Network		
Sketchbook location:		
C:\		Browse
Editor font size: 12 Interface scale: Au Theme: Defau	n Default	
 Display line numbers Verify code after upload Check for updates on startup Use accessibility features 	Enable Code Folding Use external editor Save when verifying or uploading tps://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json	
	OK	Cancel

Make sure this URL is in the textbox

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json Click **OK**.

B Update the esp32 board

In the IDE, go to Tools > Board > Boards Manager

File Edit Sketch To	ols Help			
	Auto Format	Ctrl+T		
hydroponics k	Archive Sketch			
	Fix Encoding & Reload	01.010		
enum reading	Manage Libraries	Ctrl+Shift+I	EVICES, READ RESPONSE };	
//step 1 tell	Serial Monitor	Ctrl+Shift+M		
//step 2 cons	Serial Plotter	Ctrl+Shift+L		
//step 4 tell //step 3 cons	WiFi101 / WiFiNINA Firmware Updater		g we just received	
enum reading	Board:		Boards Manager	
	Upload Speed: "115200"	;	Δ	
bool polling	CPU Frequency: "80 MHz"	;	Arduino AVR Boards	
bool send_to_	Flash Size: "4MB (FS:2MB OTA:~1019KB)"	3	Arduino Yún	
int return_co	Debug port: "Disabled"	2	Arduino Uno	
	Debug Level: "None"	3	Arduino Duemilanove or Diecimila	
uint32_t next const unsigne	IwIP Variant: "v2 Lower Memory"	3	Arduino Nano	
unsigned int	VTables: "Flash"	3	Arduino Mega or Mega 2560	
	Exceptions: "Legacy (new can return nullptr)"	;	Arduino Mega ADK	
const unsigne	Erase Flash: "Only Sketch"	;	Arduino Leonardo	
const unsigne	SSL Support: "All SSL ciphers (most compatible)"		Arduino Leonardo ETH	
const unsigne	Port	;	Arduino Micro	
	Get Board Info		Arduino Esplora	
void setup()	Programmer: "AVRISP mkll"	,	Arduino Mini	
pinMode(EN_	Burn Bootloader		Arduino Ethernet	
pinMode (EN EC,				1

Boards Manager	
Type All v esp32	
esp32 by Espressif Systems version 1.0.5 INSTALLED Boards included in this package: ESP32 Dev Module, WEMOS LoLin32, WEMOS D1 MINI ESP32. More Info	,
Select version V Install	Update Remove
	Close

In the search bar of the Boards Manager, lookup **esp32.** Update to the most recent version if you don't already have it.

(Version 1.0.5 in not the most recent version)

C Download the ThingSpeak library for Arduino

Click <u>HERE</u> to download the latest version of the ThingSpeak library.

Don't unzip it!

Import the .ZIP file into your Arduino IDE. To import the .ZIP file go to **Sketch > Include Library > Add .ZIP Library**

File	Edit	Skete	ch Tools Help									
	0		Verify/Compile	Ctrl+R								
-	<u> </u>		Upload	Ctrl+U								
hy	/drop	0	Upload Using Programmer	Ctrl+Shift+U								
			Export compiled Binary	Ctrl+Alt+S								
	m re				-	OMPEN	ISATE,	REQUE	ST_DE	VICES, READ	_RESPONSE };	
//s	_		Show Sketch Folder	Ctrl+K	ng						1	
	tep		Include Library					\triangle				
//s //s	tep tep		Add File			Man	age Lib	raries		Ctrl+Shift+I		
	-					Add	.ZIP Lib	orary				

D Add the EZO I2C Library

To download the Ezo_I2c library file, click <u>HERE</u>.

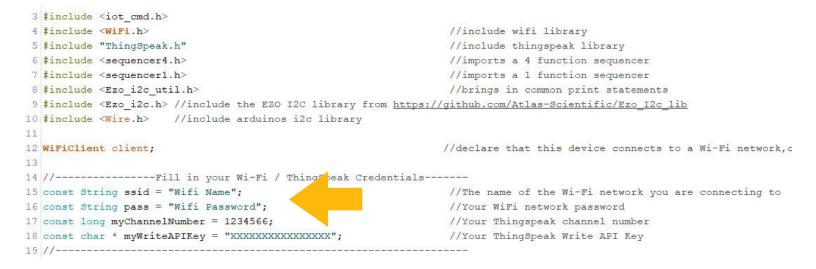
양 master → 양 1 branch ⊙ 0 tags				Go to file	<u></u>	ode 🝷
Atlas-Scientific removed redundant exa	mples, aquaponics kit has pump code by c		Clone PS GitHub CLI			?
Examples	removed redundant examples, aquapon	ht	ttps://github.c	com/Atlas-Scient	tific/	
Ezo_i2c.cpp	added the get_address() method to the	Use	Git or checkout wit	h SVN using the wel	b URL.	
🗋 Ezo_i2c.h	added the get_address() method to the	r+1	Onen with City	Uub Dealstein		
Ezo_i2c_util.cpp	Created libraries for common functions	Ψ	Open with Git	Hub Desktop		
🖺 Ezo_i2c_util.h	Created libraries for common functions	6	Download ZIP			
	Initial commit				2 yea	ars ago
README.md	Update README.md				18 da	ys ago

Don't unzip it!

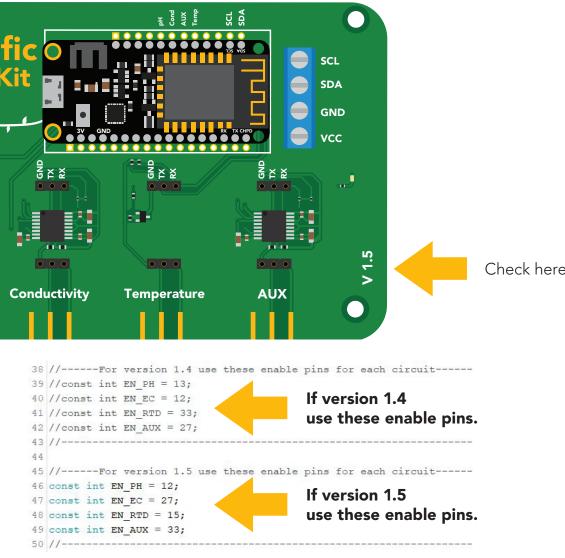
Import the .ZIP file to your Arduino IDE. To import the .ZIP file go to **Sketch > Include Library > Add .ZIP Library**

Step 5 Flash the Hydroponics meter with the correct code

A Select, open and adjust the code you want to use for your Wi-Fi Kit


File> Examples> EZO_I2C_lib-master> Examples> IOT_kits> hydroponics_kit

New Ctrl+N							
Open Ctrl+O							
Open Recent	>						
Sketchbook	>						
Examples	▲	ifi hydropo	onics kit that us	ses the Adafruit huzzah32 as its computer.			
Close Ctrl+W	LittleFS	>					
Save Ctrl+S	NetBIOS	>					
Save As Ctrl+Shift	S Preferences	>	//:	include wifi library			
	SD	>	//:	include thingspeak library			
Page Setup Ctrl+Shift	P SD_MMC	>	//:	imports a 4 function sequencer			
Print Ctrl+P	SimpleBLE	>	//:	imports a 1 function sequencer			
Preferences Ctrl+Com	SPI	>	//1	brings in common print statements			
	SPIFFS	, C library :	from <u>https://git</u> l	hub.com/Atlas-Scientific/Ezo_I2c_lib			
Quit Ctrl+Q	Ticker	,2c library					
1	Update	>					
2 WiFiClient cl:		>	//de	eclare that this device connects to a Wi-F:	i net		
3	WebServer						
4 //	WiFi	ingSpeak C:	redentials	-			
5 const String s	si (WiFiClientSecure	í.	//!	The name of the Wi-Fi network you are conne	ecti		
6 const String p	as		//:	Your WiFi network password			
7 const long my	hai	//Your Thingspeak channel number					
8 const char * r	YW: Examples from Custom Libraries	XXXXX"; //Your ThingSpeak Write API Key					
9 //	ACROBOTIC SSD1306	>		-			
0	Adafruit BME280 Library	>					
1 Ezo_board PH =	E: Adafruit BME680 Library	, //create a	, //create a PH circuit object, who's address is 99 and name is "PH"				
2 Ezo_board EC =	E: Adafruit BuslO	, //create a	, //create an EC circuit object who's address is 100 and name is "EC"				
3 Ezo_board RTD	= 1 Adafruit ESP8266	> //create a	//create an RTD circuit object who's address is 102 and name is "RTD"				
4 Ezo_board PMP		> //create a	an PMP circuit of	bject who's address is 103 and name is "PM	P"		
5	Adafruit HTU21DF Library	>					
6 Ezo_board dev:	ceAdafruit LiquidCrystal	//an array	y of boards used	for sending commands to all or specific be	oard		
7 PH,	Adafruit SHT31 Library	>					
8 EC,	Adafruit Si7021 Library	>					
9 RTD,	atlas_gravity	>					
0 PMP	EspSoftwareSerial						
1 };	Ezo_l2c_lib-master	Examples	l2c_lib_examples	>			
2	F 1 1 1		IOT kits	aquaponics_kit			
3 Ezo_board* de:	Au. MCUFRIEND kbv); //used t	Products				
4	-	217		hydroponics_kit			
5 //gets the ler	-	>lly so we a	Projects	hydroponics_kit_with_DO add new boards	s		
6 const uint8 t		<pre>>vice list)</pre>	Sequencer_lib_exam				
	ThingSpeak	>		legacy_hydroponics_kit_with_DO			
	INCOMPATIBLE	>		legacy_pool_kit			
	\Box			pool_kit			



B Fill in your Wi-Fi / ThingSpeak credentials

Fill in your Wi-Fi name and Password, along with the Channel ID and Write API Key to the code. (see step 3)

C Choose enable pins

Check here to see which version you have.

D Setting up your pump

If you do not have a pump attached, you can just skip this part. The code is rather

self explanatory. You set what parameters will trigger the pump to engage.

57 //parameters for setting the pump output

58	#define PUMP_BOARD	PMP	//the pump that will do the output (if theres more than one)
59	#define PUMP_DOSE	-0.5	//the dose that the pump will dispense in milliliters
60	#define EZO_BOARD	EC	<pre>//the circuit that will be the target of comparison</pre>
61	#define IS_GREATER_THAN	true	//true means the circuit's reading has to be greater than the comparison value,
62	#define COMPARISON_VALUE	1000	//the threshold above or below which the pump is activated

Step 6 Setting up the HUZZAH board

A Set the target CPU to flash

Tools> Board> ESP32 Arduino > Adafruit ESP32 Feather

File Edit Sketch Tools Help

THE L	uit Sketch	Tools ricip			
Ø	0	Auto Format Archive Sketch	Ctrl+T		
hy	droponics	Fix Encoding & Reload Manage Libraries	Ctrl+Shift+I		
1	//This	Serial Monitor	Ctrl+Shift+M	i hydroponics kit	that uses the Adafruit }
2		Serial Plotter	Ctrl+Shift+L		
3	#inclu			-	
4	#inclu	WiFi101 / WiFiNINA Firmware Updater			//include wifi libra
5	#inclu	Board: "Adafruit ESP32 Feather"		Boards Manager	//include thingspea)
6	#inclu	Upload Speed: "921600"		Arduino AVR Boards	//imports a 4 functi
7	#inclu	Flash Frequency: "80MHz"	1	ESP32 Arduino	
8	#inclu	Partition Scheme: "Default"		ESP8266 Boards (3.0.1)	ESP32 Wrover Module
9	#inclu				ESP32 Pico Kit
10	#inclu	Port		library	TinyPICO
11			1		S.ODI Ultra v1
12	WiFiCl	Get Board Info		_	MagicBit
13	100000000000	Programmer	:	>	Turta IoT Node
14	//	Burn Bootloader		gSpeak Credential	TTGO LoRa32-OLED V1
15	const a	String ssid = "Wifi Name";			TTGO T1
16	const a	String pass = "Wifi Passwor	d";		TTGO T7 V1.3 Mini32
17	const 2	long myChannelNumber = 1234	566;		TTGO T7 V1.4 Mini32
18	const o	char * myWriteAPIKey = "XXX	xxxxxxxx	XXXX";	Adafruit ESP32 Feather
19	11				SparkFun ESP32 Thing
20					SparkFun ESP32 Thing Plus
21	Ezo boa	ard PH = Ezo_board(99, "PH");	//create a PH circ	u-blox NINA-W10 series (ESP32)
		ard EC = Ezo board(100, "EC		//create an EC cir	Widora AIR
	_	ard RTD = Ezo board(102, "R			
	_	and DMD - Free board/102 "D		//areate an DMD ai	Electronic SweetPeas - ESP320

B Adjust CPU Settings

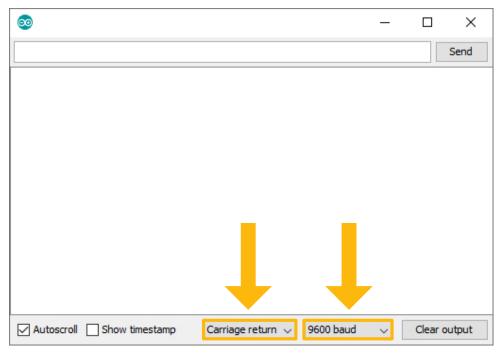
Make sure the CPU settings on the Adafruit HUZZAH32 are correct. To adjust the CPU settings, click **Tools**.

For reference, this is what Atlas Scientific set the CPU settings to. (your options may not be exactly the same, just try and match them as closely as possible. Don't forget to set the correct com port for your device.)

File E	dit Sketch	Tools Help	13
		Auto Format	Ctrl+T
_		Archive Sketch	
hyd	roponics_k	Fix Encoding & Reload	
1	#include	Manage Libraries	Ctrl+Shift+I
2	#include	Serial Monitor	Ctrl+Shift+M
3	#include	Serial Plotter	Ctrl+Shift+L
4	#include		
5	#include	WiFi101 / WiFiNINA Firmware Updat	er
6	#include	Board: "Adafruit ESP32 Feather"	>
7	#include		>
8	#include		
9		Flash Frequency: "80MHz"	>
10	WiFiClie	Partition Scheme: "Default"	>
11		Core Debug Level: "None"	>
12	//	Port: "COM8"	>
13	const St	Get Board Info	
14	const St		
15	const 10	Programmer	>
16	const cl	Burn Bootloader	

C Compile and upload

hydroponics_kit | Arduino 1.8.13
File Edit Sketch Tools Help
File Edit Sketch Tools Upload


Compile and upload the code.

Step 7 See the readings

Open your Arduino serial monitor.

(You must have the serial monitor set to the com port from the Adafruit HUZZAH32.)

Set to carriage return and 9600 baud.

The Wi-Fi Hydroponics Meter will always attempt to connect to ThingSpeak on bootup.

0				<
			Send	ł
RTD: 25.90 PH: 4.49	EC: 146.40			
RTD: 25.91 PH: 4.49	EC: 146.40			
RTD: 25.91 PH: 4.49	EC: 146.30			
RTD: 25.91 PH: 4.49	EC: 146.30			
RTD: 25.91 PH: 4.49	EC: 146.30			
RTD: 25.91 PH: 4.49	EC: 146.30			
sent to thingspeak				
RTD: 25.90 PH: 4.49	EC: 146.40			
RTD: 25.91 PH: 4.49	EC: 146.40			
RTD: 25.91 PH: 4.49	EC: 146.30			
RTD: 25.91 PH: 4.49	EC: 146.30			
RTD: 25.91 PH: 4.49	EC: 146.30			
RTD: 25.91 PH: 4.49	EC: 146.30			
sent to thingspeak				
RTD: 25.90 PH: 4.49	EC: 146.40			
RTD. 25 91 PH. 4 49	FC 146 40			
Autoscroll Show timestamp	Carriage return $ \smallsetminus $ 9600 baud	\sim	Clear output	t

If it cannot connect to your Wi-Fi you will see this:

00								×
								Send
RTD: 25.76	PH:	4.49	EC:	143.20				
RTD: 25.76	PH:	4.49	EC:	143.20				
RTD: 25.76	PH:	4.49	EC:	143.20				
RTD: 25.76	PH:	4.49	EC:	143.00				
connecting	to w	ifi						
RTD: 25.76	PH:	4.49	EC:	143.00				
RTD: 25.76	PH:	4.49	EC:	143.00				
RTD: 25.76	PH:	4.49	EC:	143.00				
RTD: 25.76	PH:	4.49	EC:	142.80				
connecting	to w	vifi						
RTD: 25.76	PH:	4.49	EC:	143.20				
RTD: 25.76	PH:	4.49	EC:	143.20				
RTD: 25.76	PH:	4.49	EC:	143.20				
RTD: 25.76	PH:	4.49	EC:	143.00				
connecting	to w	vifi						
RTD: 25.76	PH:	4.49	EC:	143.00				
RTD: 25.76	PH:	4.49	EC:	143.00				
RTD: 25.76	PH:	4.49	EC:	143.00				
RTD: 25.76	PH:	4.49	EC:	142.80				
Autoscroll Show timestamp			Carriage return \smallsetminus	9600 baud	~	Clear	output	

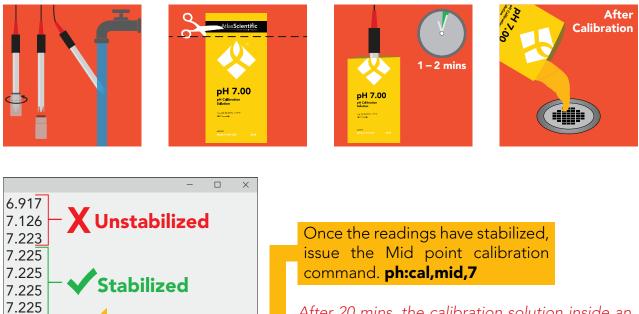
Entering the **poll** command will stop the Wi-Fi Hydroponics Meter from uploading the readings to thingspeak, while you debug your Wifi problems.

Step 8 Sensor Calibration

Atlas Scientific created a list of calibration commands that are built into the library. Type in **help** to see a list of commands.

0			×
			Send
> help			
Atlas Scient:	ific I2C hydroponics kit		
Commands:			
datalog	Takes readings of all sensors every 15 sec send to thingspeak		
	Entering any commands stops datalog mode.		
poll	Takes readings continuously of all sensors		
ph:cal,mid,7	calibrate to pH 7		
ph:cal,low,4	calibrate to pH 4		
ph:cal,high,	10 calibrate to pH 10		
ph:cal,clear	clear calibration		
ec:cal,dry	calibrate a dry EC probe		
ec:k,[n]	used to switch K values, standard probes values are 0.1, 1	l, an	nd 10
ec:cal,clear	clear calibration		
For Kl probe:	s, these are the recommended calibration values:		
ec:cal,low	,12880 calibrate EC probe to 12,880us		
ec:cal,hig	h,80000 calibrate EC probe to 80,000us		
rtd:cal,t	calibrate the temp probe to any temp value		
	t= the temperature you have chosen		
rtd:cal,clea:	r clear calibration		
Autoscroll S	Show timestamp Carriage return 🗸 9600 baud 🗸	Clear	output

A The poll command


Send the command **poll**; This will let you see the readings once per second and it will stop uploading to ThingSpeak while you calibrate.

When calibrating pH, you must always calibrate to pH 7 first.

Remove the soaker bottle and rinse off the pH probe. Remove the top of the pH 7.00 calibration solution pouch. Place the pH probe inside the pouch and let the probe sit in the calibration solution until the readings stabilize. This will take about 1 - 2 mins.

After 20 mins, the calibration solution inside an open pouch is no longer considered accurate.

Dispose of the unused solution, after calibration.

Rinse off the probe and repeat this process for both **pH 4.00** and **pH 10.00**.

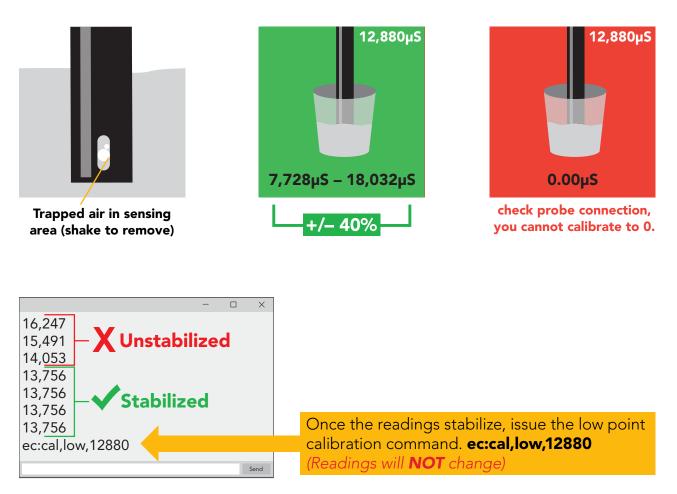
Send

C Calibrate Conductivity

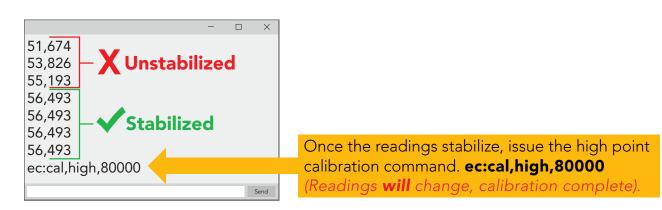
ph:cal,mid,7

Setting the Conductivity probe type

If your probe \neq K 1.0 (default), then set the probe type by using the **ec:k,n** command. (where n = K value of your probe)


Example, if you have a K 0.1 conductivity probe issue the command ec:k,0.1

When calibrating Conductivity, you must always calibrate a dry probe first.



Make sure that the probe is dry before issuing this command, **ec:cal,dry**

Once the dry calibration has been completed, place the probe into a small cup of the low point calibration solution. Shake the probe to make sure you do not have trapped air bubbles in the sensing area. You should see readings that are off by **1 – 40%** from the stated value of the calibration solution. Wait for readings to stabilize.

Rinse off the probe before calibrating to the high point. Pour a small amount of the high point calibration solution into a cup. Shake the probe to remove trapped air. Again, the readings may be off by 1 - 40% Wait for readings to stabilize.

D Calibrate Temperature

Calibrating the PT-1000 temperature probe is not required. However, if you want to, a simple method to calibrate the probe is to place the PT-1000 into boiling water. Then issue command **rtd:cal,t**

100 °C

Calibration Complete

100.5 °C


-152

Step 9 Almost done!

Once you are finished with calibration, issue the **datalog** command to resume taking a reading every 15 seconds and uploading it to thingspeak.

To see the data on your phone, download the ThingSpeak app.

Setup Complete!

