HMI Solution &

Iairi e(Graphic Products

" GraphLight

Technical Support

lairifec

CHAPTER 1: PRESENTATION OF THE TRAINING......cccceciiiittiiiienneiiensieiienieiiensieiisnsieissnsiessasssssssssssssnssssssnssssssnnsns 3

A. THE HIMIEEXAMPLE ...cetuiieitie ettt e e teee e et eeetae e ettt e e e et e e e aaa e e eataeessanasasnnsesatansssanasssnnssessnnesssnneesssnnsessnneeessnneesnnen 3
CHAPTER 2: THE HARDWARE......cceutiiittiiiitieiiieneiiiieneieiieneieiiensetisssesssnsessanssessssssessansssssansssssnssssssnsssssanssssssnnnns 5

A. THE GRAPHLIGHT BOARD IS COMPATIBLE WITH RS232 AND CAN 2.0B PROTOCOLS ..vvvvvevevernrnrernrnsnsssssssssssssssssssssssssssnnnns 5

B. THE INTELLIGENT DISPLAY GRAPHLIGHT RS232 OR CANZ.0Buuuuuuuuuurernrursrnrnrsrsrerensrnnsssrsssrsrsssrsssssrsnsrsssssrsrsssmsrsssnees 6
CHAPTER 3: THE FIRIMIWAREcceuueittteneitennncerennertensessenssessenssesssnssesssnssessanssesssnssesssnsssssansssssnssssssnsssssansssssannsns 7

A. COMMUNICATION PROTOCOL FOR THE HIMII BOARDccoiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee ettt a s 7

B. MANAGEMENT OF THE COMMAND CACHE MEMORY «.uuieieieieeeieeeieeeeeiesesesesesesesesesesesesesssesesesesesesssssesesesssssssssesesesssesens 8

C. SAFETY OF THE PROTOCOL «.evvvtvuuueeeerrrrssuieeeeesssessseesessssssssnsaesessssssssnnaesessssssssnesessssssssssesessssssssnseesessssssssnnessesssssnnnns 8

D. ERROR MANAGEMENT ...uuuuteesesesesesesesesese e es e sssasnsnsnsnsnsssnsnsssnsnsssssssssesesssesesasssssesesesesssesesesesesssnsnseseseseees 8

E. MAIN COMMANDS FOR THE MANAGEMENT OF THE GRAPHLIGHT BOARD AND ITS DISPLAY ...ceeieieieieieieeeieieieieeeeeeeeeenseseseenns 10
CHAPTER 4: THE GRAPHIC PROJECT ...cceuuiitteencrrennneerennsesrenssesrenssessenssessenssessenssesssnssessnnsssssnnssessnnssesannssessnnssssanne 11

A. THE GRAPHIC DESIGN 1.vvvvuvuussnsnsnnnn 11

B. THE SOFTWARE PROGRAM GRAPHGCONVERTER .1vvvuvvusussnns 12
CHAPTER 5: PROGRAIMIMINGccuueettruneerennncerennseerenssessenssessenssessenssesssnssesssnssssssnssesssnssssssnssessnnssesansssessnnssssanne 15

A. THE API (APPLICATION PROGRAMMING INTERFACE) ..vvveeeiurreeeeitreeeeetreeeeeteeeeessreeeeeseeeessseeeessseeeessseesensseseenseeeenssnnes 15

B. THE IMAIN PROGRAMuuuuuuuuununueunnesnnnsssesssnsnsssnsnsssnssnnnnnnnn 16
CHAPTER 6: THE COORDINATES OF THE DISPLAYccuctiitueiiiieneieiiennieniensiesienssssssnssesssnssssssnsssssansssssnsssssssssssssnne 17

A. THE GENERAL PRINCIPLE 1vvvuuuuuvusssnsnnne 17

B. LANDSCAPE" OR " PORTRAIT" FORMAT ...uutttetiieeeieiiittrreeeeeeeieitrteeeeeessesssaaeeesesesessatssseesseesssbasseessessassssssesseeesesssrees 17
CHAPTER 7: MANAGEMENT OF THE 2 GRAPHIC LAYERScteeuettetnertennerreneereensereenssereenssessssssessnsssesssnssssenns 19

A. DEFINITION OF THE GRAPHIC LAYERS ... usesesesesesesesesesesesasasasasesssssesssssasssesssssssssssssssssssssssesssssssesssssssessseseseseses 19

B. SELECTION OF A GRAPHIC LAYER ...ceterererereeeeeeeeeeeeeeeeeseeeeeseersrsessesssessssessesseeresssesssesssseesereserereeeeeserersreserererererererereren 19

C. DISPLAYING A GRAPHIC LAYER. ... uuuuurnnnennesesesesesasesesesssssesasasesasssssssssssasssasssesssssssssssssssasesesasssssssssssssssssssesssesesesns 20

D. MAIN COMMANDS FOR THE MANAGEMENT OF THE GRAPHIC LAYERS . eeteieieieieieieieieeeieseieeesesesesesesesesesesesesesssnsesssnsesnenns 20
CHAPTER 8: THE ACTIVE COLORS AND DRAWING TOOLSccceuierremnerrennrerrennereensereensesesnssessssssessssssesssnssesenns 21

A. AACTIVE COLORS .evvvvvevererereeeeereeeeeeeeeeeeeeseeesssseesssesesesesesesereseessessseseseseseseseresseesesessesesrsrseeseeseesreerereeesererereeerererererens 21

A. THE ALPHA CHANNEL 1vvvvvuuuvsssnne 21

B. DRAWING TOOLS «.uuuuuuuennnennniesesesesesasesesesesasasesassssnsssnsnsnsnsssssssssesssesesssesssesssssesssssssssssesssssesssssssesesesesessseseseseeees 22

C. IMIAIN DRAWING COMMANDS ... eesesesesesesesesesasesssssssesasasasasssssesssesssssasssssssssssssasasssnsesesasesssssssesesssesesssesesessses 23

D. EXAMPLES ...t e e e e e e e e e e e e e e e e s e aeeaaeaeaaaaaaaeaaaeaeaeaeaeaeaerareeeaaeeaeanaerereras 23
CHAPTER 9: DYNAMICALLY DISPLAYING TEXT AND IIMAGES.......ccccceetttunierienniertenniernenssersanssessanssesssnssesssnsssssnns 24

C. IVIANAGENMENT OF IMAGES 1vvuuueeeererursuueseeeeresssneeeeeessssssnaesessssssssnaesesssssssssmesessssssssnaesessssssnsneeessssssssnneeeeessssssnnns 24

D. IVIANAGENMENT OF TEXT 1evvvuuuueseeererursnunesesessssssnnneseesssssssnnesesssssssssssesessssssssnmesessssssssnsesessssssssneeessssssssnnneeeesssssnnnns 26

E. EXAMPLES ...eieetvtttieeeeeeeeetttiieeeeesetesaaueseeesssssasenseeesssssannnseeessssssnnnasesssssssannseseessssssnnneeessssssssnnseesesssssnnnneeeeessssnnnns 29

F. MAIN COMMANDS TO DISPLAY TEXT AND IMAGES. ... ueeereeesesesesesesesesesesesssesesssssssssssesesssssesssssesssesssssssssssessssssssseseseseses 30
CHAPTER 10: THE TOUCHSCREENccccciitteeiienneeienneetennestensesssnssessenssesssnssssssnssssssnsssssanssssssnsssssnnsssssnnsssssnne 31

A. ACTIVATING OR DEACTIVATING THE TOUCHSCREEN ..vvvvverererrerereeereeereeereeeeereesssrssssssesssssersrsssssrsssssssssrsrsssrsrsrsssrssesererens 31

B. THE DIFFERENT TYPES OF FEEDBACK OF THE TOUCHSCREENuuuuuuuuusssssssnsssssssnsssnsssssnsssssnsssssssssssssssssssnsnsssssssnsssnssnnsnsnne 31

C. DEFINITION OF THE TOUCH ZONES OF AN HIMII SCREENvvvuuuieeeeeretttiiieeeeeertstnnieeeeeersssssnaeeessssssnsneseesssssssnnnseeeessssssnnns 34

D. IMIANAGING THE TOUCH ZONES ...cetetvtttuneeeeereeesaneeseeersssssnnaeseesssssssnnaesesssssssssnmesessssssssnmesessssssnsnesessssssssnneeeeessssssnnns 35

E. IMAIN COMMANDS TO MANAGE THE TOUCHSCREEN ... ttttuiettteeettieesttieeetaueeesssneessaneessnneasssnnaessnneesssnneesssneeessnneessnns 36
CHAPTER 11: THE HMI EDITOR OF GRAPHCONVERTER....c.citttuiettemnertennertennserrenssereenssesssnssesssnssesessssesssnssssenne 37
CHAPTER 13: CONCLUSION......c.cetttuieretnnirrennseerensseeressseesenssessssssessssssssssnssesssnsssssssssesssnsssesssnsssssssssesanssssssnnnsssenne 44

lairifec

CHAPTER 14: TECHNICAL SUPPORTcuuiiiiiiiiiisiinnnieiesisiissnssistesisssssssesesissssssssssessssssssssssasessssssssssssssessans 45

First of all, thank you for your interest in our HMI solution!

It is the goal of this training that you master very quickly our HMI solution for all products of the “GraphLight”
family.

Throughout the step-by-step creation of our HMI example, you will get to know about the technical characteristics
of your HMI board, learn in an easy and efficient way the graphic commands and the way they function, and last
but not least learn about the way of configuring, creating, and compiling your graphic project by making use of the
software program GraphConverter.

From theory to practical terms: After each chapter, outlining in detail a precise point of the way your HMI board
functions, you will have the possibility to practice the programming through numerous examples in C language.
You can therefore directly put into practice your new knowledge and familiarize yourself with the programming of
your HMI.

The training is based upon a StarterKit, identical to the one you use. All StarterKits of the “GraphLight” family
contain an HMI board, connected to a LCD display with touch panel, as well as all necessary connecting cables in
order to directly start the development of your HMI without needing to worry about the “hardware”.

The graphic project delivered with your StarterKit contains all graphic elements, in the resolution you have chosen,
which make up the HMI example used for the training. Throughout the entire document we will work with the
WQVGA format (480 x 272 pixel, “landscape” format) for the HMI example.

The main HMI screen of the training project displays a rectangle with 2 touch buttons “SKIP” and “SKIP_BACK”
which allow to switch forward or backward the five HMI screens of the project. In the lower left corner 2 touch
buttons “PLUS” and “MINUS” allow to adjust the backlight of the LCD. The HMI screen also contains a text zone to
display the title of the shown interface and several colored “lights” which indicate the index of the shown
interface.

(The HMI screen example is shown on the following page)

lairifec

l IHM de formation : Ecran Principal

IMG_IHM_LOADING

In the lower right corner, a “VIDEO” button is situated which allows to skip to a second HMI screen, showing the
videos of the two connected cameras.

This second HMI screen contains two buttons to choose the picture should be shown in the central window, a

“CLOSE” button which allows to go back to the main HMI screen, as well as the two buttons allowing to adjust the
backlight.

l IHM de formation : Ecran photos

STARTEC's building

lairifec

The architecture of an HMI board of Clairitec allows for an “all-in-one” integration into your application since it
contains all necessary hardware and software components to interact with your mainboard and a LCD display of
your choice.

The RS232 GraphlLight board contains two RS232 communication ports (1 PCand 1 TTL).
THE CAN GraphlLight board contains one R$232 communication port (PC) and one CAN 2.0B port.

The two types of models are equipped with a USB2.0 port, dedicated for the upload of the graphic library and of
the pre-defined HMI screens into the internal memory of the HMI board. Updates of the firmware are uploaded

through the USB connection as well.

The GraphlLight based hardware contains all necessary signals to steer TFT RGB displays with a maximal resolution
of 480 x 272 pixel, their LED backlight and their resistive or capacitive touchscreen

No additional components need to be installed from your side, only the connectivity might need some adaption
from your part.

The GraphlLight board can be powered either with +5V or with +6 to +36V.

l Synoptique de connexion de la carte GraphLight

Graphiight
R$232 ou CAN2.0B

Afficheur 1CD

GraphlLight support two graphical layers, one background page and one layer page with an Alpha layer that allows
transparency.
These 2 graphic pages cover the entire resolution of the selected screen.

The color depth is 4096 colors formatted in RGB 4: 4: 4, the Alpha layer of the layer page is 4 bits, allowing 16
levels of transparency, (0 = 100% transparent, 16 = 0% transparent, (or completely opaque)).

lairifec

The Intelligent Display GraphLight contains the Iron Graph HMI board (RS232 or CAN2.0B), a LCD display with
touchscreen. All components are integrated into a casing with connectors to connect the Intelligent Display to your
mainboard or to your computer, the latter for the communication with GraphConverter.

l Synoptique de connexion de I' Afficheur Intelligent GraphLight

e, Alficheur Tntelli
e Graphlight R$232/CAN2.0B

lairifec

The firmware is identical for all HMI board of the “GraphLight” family. This document takes the GraphLight board
itself as an example. The specific characteristics of other boards could be outlined in a different, product-specific
training at a later point in time.

The communication with the HMI board takes place through “Escape” sequences, send from your mainboard to
the HMI board via serial connection RS232 or CAN.

I Protocole de Communication

Votre applicatif Moteur graphique
“métier” de TronGraph

Exécution de
la commande

Interprétation
de la séquence

An “Escape” sequence is a series of characters which is received and interpreted by GraphLight as a command.
Every command is initialized by the code ASCII “ESC” (ESCape being 27 in decimal), followed by the code ASCII of
the command.

The frame protocol is slightly different between a RS232 hub and a CAN 2.0B hub, but the principal function
remains the same in both cases.

General protocol of a RS232 command:

A command is carried out through a sequence of bytes, the number being dependent on the type of command.

Byte 1 Byte 2 Byte 3 Byte N
Ascii Escape Code Ascii Command Code optionl s Code option N
Code

The board makes essentially use of the “ESC” character and of the automatic counting of the received characters
to execute the corresponding command.

General protocol of a CAN command:

A command is carried out through a sequence of frames, the number being dependent on the type of command. A
frame is no longer than 8 bytes.:

IamI

Byte 1 Byte 2 Byte 3 Byte 8
Index, (of the base Ascii code of the Data 2 oy Data 7
0), of the CAN command/or 1%
frame data of the frame

index+1

Here, the board in CAN mode waits for the 1% byte which corresponds to the index, number of the frame.
In the case of a “mono-frame” command, the index is always 0.

In the case of a command with multiple frames which are part of the same command:

At the reception of a new command, index = 0 => Byte 2 = number of the command.

For the following frames index = n+1 => byte 2 = 1%t data of the following frame completing the command.
This means:

Index = 0 => Byte 1 = Code of the new command (ASCII character).

Index = n => Bytel = Datal of the frame number n

The number “n” allows GraphlLight to verify the order of reception of the frames constituting a command.
Byte 2: ASCII character of the command if index = 0, 1t data of the frame “n” completing the command
Byte 3 - Byte 8: Data “arguments” of the command.

B. Management of the command cache memory

The cache memory of 8192 bytes allows to pile up the produced commands at the frequency of the host, while the
graphic engine of GraphlLight treats them based on the necessary time of execution.

After each treated command, the content of the respective command is automatically erased form the cache
memory.

In the case of the cache memory being fully charged/overloaded, only the commands which have been completely
compiled are executed while the others are left aside.

The HMI board automatically sends an alarm code when the cache memory reaches the level of 1000 bytes, as well
as another alarm code when the cache is full.

In the case of a very important number of commands being produced, it is necessary to query the register of the
cache memory status in order to reassure oneself that enough memory is available in the cache (command “ENQ”
for GraphlLight).

When the cache memory exceeds 8132-1000 bytes, the HMI board automatically sends the error codes “0x63”
(critical limit reached), then “Ox64” when the cache memory is full.

C. Safety of the protocol

If characters are lost (incomplete command), the HMI board does not treat this command. In any type of situation,
the board will not block itself.

Attention: The protocol is only secured for favoring the speed of display. All electric precautions need to be taken
into consideration for the transmission of information of the HMI boards of Clairitec. Great precaution need to be
taken with regard to the supported transmission length: using reinforced cables and/or connectors or shortening
the distance in case of rapid transmission speed (530000 Bauds for R$232, 500KBds for CAN). Consult the technical
documentation of GraphLight for more details.

D. Error management

GraphlLight receives and treats your commands, but the HMI board might also send you code to indicate an error.

lairifec

RS232 protocol:

0x54: Reset code

Byte automatically send after the initialization phase to indicate to the Host that the GraphLight
board is ready to receive commands.
This code also allows to warn the Host of an unexpected reset, requiring an update of the HMI

(management of the HMI screens).

Format of the ERROR frame: This frame is automatically send once an error has been detected.

e Prototype:
Bytel Byte2 Byte3 Byted Byte5 Byte6
ERROR ERROR ERROR ERROR
OxFF Error type CODE CODE CODE CODE
(MSBH) (MSBL) (LSBH) (LSBL)

e Description:

OxFF: Fixed code
Error type: Type of the error
In the current version, GraphLight only gives out R$232 errors or “Buffer Escape”

TYPEERROR_ESCAPEBUFFER =5
TYPEERROR_rs232 =6

Byte3 > Byte6 : Error CODE (32 bits)
e Error codes:
TYPEERROR_RS232 (in decimal)

RS232_0OK =0

RS232_TXE_TIMEOUT =1 //1 character has not been send out in the appropriate time
ERROR_BREAK =80 // Break or Overrun,

ERROR_FRAMING =81 // Framing upon the arrival of the stop bit

ERROR_CMDE_1 =82 // ESC of the command expected but not detected
ERROR_CMDE_2 =83 // the command does not exist or two ESC one after the other
ERROR_TACTILE =85 // Error touchscreen

BUFFER_200_BYTES =99

BUFFER_FULL =100

TYPEERROR_ESCAPEBUFFER (in decimal)

CMDEESC_WRONG =1 // Faulty command (lack of the index=07?)
CMDEESC_INCOMPLETE =2 // Index error or lack of the character ZERO for a PutString,
CMDEESC_THRESHOLD_ALAMR=3 // Only 1000 bytes of memory left in the cache memory
CMDEESC_BUFFER_FULL=4 // chache memory full

CMDEESC_BUFFERSEND_FULL=5, //cache memory (for sending) full

lairifec

CMDEESC_ERR=6

CAN Protocol:

// Escape command OK, but error in the execution of the command

(error detailed in ENUM_CODEERR_GRAPHIC).

Reset frame, automatically send after a reset of the HMI board.

e Prototype:
Bytel Byte2 Byte3 Byte4d Byte5 Byte6 Byte7 Byte8
Speed Option (% ID ID ID reading ID reading ID reading ID reading
Command Command registers registers control (+ control (+
(MSB) (LSB) (MSB) (LSB) (MSB) (LsB)
e Description:
Speed: Indicates the speed of communication.
Option: Indicates the programmed options (example control frame active or not).
Byte3 > Byte8 : ID of the 3 types of messages.
Error code frame automatically send after a reset of the HMI board.
e Prototype:
Bytel Byte2 Byte3 Byte4d Byte5 Byte6 Byte7 Byte8
ID Command | ID Command | OxFF Error type ERROR ERROR ERROR ERROR
(LSB) (MSB) CODE CODE CODE CODE
(MSBH) (MSBL) (LSBH) (LSBL)

e Description:

ID Command: Allows to determine the faulty unit (in the case of several units in a network).
OxFF: Fixed code
Error type: Type of error

TYPEERROR_CAN =4

TYPEERROR_ESCAPEBUFFER =5

Byte5 —>Byte8 : Error CODE (32 bits)

E. Main commands for the management of the GraphLight board and its display

ESC ‘V’ Put the HMI board into standby mode

ESC ‘W’ Software reset of the HMI board and the display

ESC ‘e’ Activate or deactivate the management of the “status” registers
ENQ Read the status of the cache memory for the commands

ESC ‘K’ Adjust the brightness level of the display

ESC ‘k’ Turn-on or turn-off the backlight

lainifec

I Création du projet graphique de I''HM
Tichiers du projet graphique

“GraphicProject.gxp”

Design Graphique GraphConverter

“GraphicProject.h”

IMG_LOGO_CLAIRITECJPG

\ 1 - IMG_MAIN_SCREEN_OFFJPG —

| 2 - IMG_VIDEO_SCREEN_OFF.
‘3 IMG_BKLGHT_MOINS.PY -
‘4 IMG_BKLGHT_PLUS.PNG

| 5 -IMG_CAM1 ONPNG |0 - Arial_30

| 6 -IMG_CAM2.ONPNG |1 - Century Gothic_40
Calibri_30
Verdana_28
Times New Roman_38
Calibri_25

[RIF ST

Every HMI project begins with the specification of the navigation elements and the sequence of HMI screens as
well as their organization.

After the usage has been defined, the next step is to create the different graphic elements of your interface by
using a software program for graphic design.

This way, all visual elements, from the background of the HMI screens to the navigation elements such as icons
and buttons, also taking into account the choice of colors and text fonts, are created and reviewed by a graphic
designer. Afterwards, the elements are selected, compiled, and uploaded into the internal memory of the
GraphLight HMI board by using the PC program GraphConverter.

What we call a “graphic project” is the entity of necessary files for GraphlLight to display the graphic elements
(images and texts) on the display you have chosen. We will now see how to generate these files by creating a
project and a graphic library with GraphConverter.

lairifec

GraphConverter is the software program delivered with our HMI boards. It allows you to configure your project
and to create your graphic library and set the menus of your HMI.

I GraphConverter

The software program GraphConverter is compatible with all HMI boards of Clairitec. However, it needs to know
the specific characteristics of the board used, such as the communication protocol, speed of transmission, size of
the internal memory, color depth, compatible picture formats, type of display used (with or without touchscreen,
QVGA, VGA, WVGA, etc...resolution), the standard settings for the calibration of the touchscreen, etc.

All this information is contained in the “driver” files. The most standard ones are already installed when installing
GraphConverter. Some are modifiable in GraphConverter. There is a driver file for each type of HMI board (for
example, the driver “GraphLight_RS232.lib”contains all transmission speeds possible with this HMI board).

This files is therefore very important because it allows you, once your project has been configured in
GraphConverter, to program GraphLight by uploading the binary file of the graphic data and configuration data
(HEX file), generated by GraphConverter.

J Le fichier Pilote

e Fichier Pilote :
“Graphlight_RS232.1ib"

GraphConverter 3.0

Données graphiques compilées (“.Hex”)
Donnees IHM cumpllees (“.Hse”)

Iamf

Advantages of the driver file:

» The client configures his project by making use of the proposed data (flash memory size, communication type
with the host (RS 232 or CAN), transmission speed of the communication, type of display, etc.).

» The driver file adapts itself: its structure allows easy updates without a modification of the code of
GraphConverter (for example adding a new display reference). Moreover, it always stays compatible will
former, current, and future HMI boards of Clairitec.

2. Creation of the graphic library

GraphConverter is not only used to configure your project, but also to create your graphic library which is making
up your HMI. This graphic library is then uploaded into the internal memory of the HMI board.

With only a few mouse clicks you create your graphic library by selecting on your computer the text fonts and
images you would like to use for your HMI.

The text font are encoded by GraphConverter to be compatible with the HMI boards. You can work with any type
of text font as long as it is in the TrueType format (.TTF).

For the GraphLight HMI board, pictures can be in .PNG or .BMP format. The maximum resolution of the images
depends on the used display.

Note: Consult the user manual of GraphConverter for more detailed information about the creation of your graphic
library with GraphConverter.

3. The graphic project files

All necessary files to configure your HMI board and manage your graphic library are automatically generated by
GraphConverter upon saving your graphic project.

Your graphic project is composed out of a data file (.gxp), a compiled data file (.hex) and a header file (.h) for your
application in C language. A folder “Pictures”, in which all pictures making up your graphic library are stored, is also
created upon saving your graphic project.

» The GXP file ("project_name_GraphConverter.gxp") :
The GXP file is the file which you open with GraphConverter. It is composed out of three groups, defining the entity
of the graphic part of your HMI project.

The two main groups are the text fonts and images which you have chosen to use in your HMI. Each of these
graphic objects is attributed a number (which is also its position number in the memory of GraphLight) and a name
(a system name for the text fonts and the file name for the images).

(Note : Consult the documentation of your HMI board for more details about the organization of the text fonts and
images in the allocated internal memory of the HMI board)

The third group of data saved in the GXP file concerns the configuration of the hardware: display orientation,
reading mode of the touchscreen, transmission speed with the host, etc.

» The binary HEX file ("project_name_GraphConverter.hex"):

The HEX file is the binary file which contains all the data from the GXP file in compiled form. It is this file which is
uploaded into the internal memory of the HMI board.

lairifec

» The H file ("project_name_GraphConverter.h"):
The H file (header file) is a file which is generated by GraphConverter and which you include into your application
in C language')). It defines the names and numbers of the text fonts and images which make up your HMI. The
numbers, attributed by GraphConverter, are used in the commands to display texts or images.

In order to explore GraphConverter, we invite you to open the GXP file :

» From the provided USB stick, copy the folder "

" to your PCY,

» Open GraphConverter and click on "Open Project..."

> Select the file "GRL_RS232_WQVGA.gxp™" in the folder " GRL_RS232_WQVGA™" which you have
just copied, and click on "Open".

» Once the project has been opened, click on the tabs "Fonts Selection" and "Pictures Selection" to
open the interface for the text font and picture selection and to see the entity of graphic objects
which make up your training project HMI.

» For a quick view of the configuration of the training select "Project Parameters" in the "Tools"
menu of GraphConverter.

NB : If you wish, you can also already open the H file®® generated by GraphConverter in order to get to know
its structure. In any case, we will get back to this file in the next chapter.
» Open the folder "GraphConverter/GRL_RS232_WQVGA™" on your PC.

» Open the file "GRL_RS232_WQVGA.h'"" with any type of text editor.

Notes :) For the CAN version, replace « RS232 » by « CAN » in the name of the folders, files and repertories.

& GraphConverter also contains an HMI Editor. You use in your application in C language the header file .h, generated by this Editor. Chapitre
12 : L'éditeur d'IHM de GraphConverter explains the HMI Editor.

4. Upload of the graphic project into the internal memory of GraphLight

» Once you have created and saved your graphic library in GraphConverter, you have to upload the project
configuration and data into the memory of GraphLight before starting to program.

Make sure that your StarterKit has been well connected to your PC by using an USB cable, and that you have
well uploaded the graphic project associated to your HMI into the internal memory of GraphlLight by the use
of GraphConverter :

» Open the file "GRL_RS232_WQVGA.gxp™" with GraphConverter,

» Click on the blue button "Upload" on the top right corner in the GraphConverter menu. A window
opens in which you can select the binary file to be uploaded.

» Start the upload. The project configuration and graphic data will be uploaded into the internal
memory of the HMI board.

- Once the upload has been finished, you can close GraphConverter.

Note : ¥ For the CAN version, replace « RS232 » by « CAN » in the name of the folders, files and repertories.

Now that you have configured your HMI board and all the necessary data has been uploaded into it, we will see
how to use this data and information to display and program your HMI.

lairifec

The programming indicates to GraphLight what to display depending upon user interaction or information send
from the main application.

The programming of the code to steer your HMI is done in your main application. There is thus no special
competence to acquire to program your HMI and you can directly start to program in the environment to which
you are used to.

For our training, we have chosen program our training project HMI in Microsoft Visual Studio Express 2010
(which can be downloaded here). This program is used to program your HMI and simulates your main
application.

We will now open the training project:

» Copy the folder "Exemples\GraphLight\RS232\CodeSource\IRG_TrainingProject " from the USB stick
of Clairitec to your PC.

» Open Visual C++ and select "Open a project..."

» Select "IRG_TrainingProject.sIn" in the folder which you have just copied and then click on "Open".

Upon execution, our program opens a window which allows you to chose the COM port upon which the
USB/RS232 adapter cable! to your HMI board is connected. Click on the button "START IHM" and see how the
main HMI screen of the training project HMl is displayed on the LCD display of your StarterKit.

We invite you to discover the training project HMI by testing its different buttons.

Notes :) For the CAN version, replace « RS232 » by « CAN » in the name of the folders, files and repertories.
@)For the CAN version, us the USB/CAN adapter.

We will now explain you which are the necessary files for the programming of your HMI.

As we have seen before, the communication with the HMI board is realized through the sending of “Escape”
sequences from your main application through a serial RS232 connection.

We have developed a set of 28 “ESCAPE” commands which allow you to build and steer your future HMI from your
main application, starting from the display of images and texts and going to the management of the touchscreen
and the backlight of the display.

Today, most of the main applications are programmed in C or C++. Therefore, we have developed a library of C
functions based upon the “ESCAPE” commands in order to facilitate the programming of your HMI application.
Each C function corresponds to an “ESCAPE” command.

In total, 28 functions are provided which allow you to communicate with the graphic engine of GraphLight and to
steer your HMI from your application:

The functions for the general management of the HMI board
The functions for the management of the graphic layers

The functions for the management of the touchscreen

The functions for the color management

The functions for the drawing of geometric forms

YV VVYVYVYYVY

http://www.microsoft.com/fr-fr/download/details.aspx?id=34673

lairifec

» The functions for the display of images
» The functions for the usage of text fonts

On the USB stick, delivered with the StarterKit, you will find the directory
“Exemples\GraphLight\API_Libraries\GraphLight\GRL_Library_Files” in which you find all the commands in C
language.

The files contain the declarations of constants which define the options and arguments of the commands:
» "GRL_GraphicEngine_Library.h ".
» "GRL_RS232_GraphicEngine_Library .c ", (for a usage in R$232 mode)
» "GRL_CAN_GraphicEngine_Library .c", (for a usage in CAN mode)

Before starting to program your HMI, you will first have to integrate these files into your application.

You will also have to integrated the files listed below into your application, since they contain the declaration
of RS232 or CAN functions, necessary for your hardware drivers (these files are to be adapted according to
your mainboard).

« \GRL_Library_Files\HardWareLayer_Files\UART_RS232_Driver\”
» "UART_Driver_RS232.c"
» "UART_Driver_RS232.h"
“\GRL_Library_Files\HardWareLayer_Files\CAN_Driver\”
» "Driver_CAN.c"
> “Driver_CAN.h"

We now invite you to take a look at the content of these 4 files for the API (application programming
interface) in your Visual C++. Project.

B. The main program

The main program are the functions which steer your HMI application. As we have seen above, this program
contains all of the functions which allow you to indicate to GraphLight what to display in response to touchscreen
events or in response to information input from your main application.

Most of the functions of the programming library, in particular the functions to display images and texts, use as
parameters the reference data, compiled and uploaded into the internal memory of GraphLight by
GraphConverter (HEX file).

In order to make the access to this reference data easier for you, GraphConverter creates automatically header
files which contain the declaration of the number and name of the images and text fonts of the graphic project, as
well as their coordinates (position) on the interface.

By integrating these files into your project, you automatically have all the references to the images and text fonts
at your disposal.

lairifec

The main program of the training HMI has as a double objective to simulate your main application and to
give you a programming example of an HMI. You find the source code of this program in the folder:

» " CodeSource\IRG TrainingProject / IRG_TrainingProject_Main.cpp".

There you find the declaration of the necessary header files as well as the code of the different functions,
steering the HMI and using the commands of the API.

Now that you have seen how to integrate the files, necessary for the programming of your HMI, into your
application, we will now see each function of the API in more detail. You will learn how to work with the two
graphic layers, how to define and activate the touchscreen zones, and how to dynamically display images and text.

The coordinates on the display are given in pixel and are determined in relation to the left-upper coin of the
display, whose coordinates are X=0 and Y=0.

Jl Disposition des coordonnées

Les valeurs des coordonnées s’expriment en pixels.

nY

x =479,y =271

Exemple d’un afficheur 480 x 272 pixels
(WQVGA, format Paysage)

The display of our training HMI has 480x272 pixel (WQVGA), in landscape format. The value of the
coordinates therefore varies from 0 to 479 (from left to right), and from 0 to 271 (from top to bottom).

Each LCD display has a certain display format for which it has been designed, either landscape or portrait format.
The visual characteristics of the display are optimized for this format by the manufacturer (vision angle, visible
surface in relation to the mechanical surface,...). This format is called the “native format” of the display.

The HMI boards of Clairitec allow to modify this format: you can display in “portrait” format on a “landscape”
display and the other way around.

lairifec

When you modify the format, texts as well as all coordinates (of texts, images, primitive drawings, touch zones) are
automatically adapted by GraphConverter.

When the display format is modified, the HMI board considers the display to be turned 90° clockwise (90° to the
right).

Example of a WQVGA display with native landscape format, modified to display in portrait format.

Native display format :

480 Pixels
)) TITLE
Starting point :
X=0,Y=0
272 Pixels
4
WOQVGA, native LANDSCAPE format
Format modified to display in portrait mode:

Rotation +90° “clockwise” through the HMI board: n

New starting point, created Original starting

by the HMI board: point

X=0,Y=0 -

TITLE

WOQVGA, switched to PORTRAIT format

lairifec

A graphic layer is like a page on which you place the graphic elements composing your HMI.

For GraphlLight, you have 2 graphic layers at disposition: a background layer and a foreground layer. On these two
layers you can place images, display texts or draw geometric forms. The dimensions of these two graphic layers is
depending on the resolution of the display. For example, when displaying on a WQVGA screen, the dimension of
the layers will be 480x272 pixel.

Each of these two layers is available to be “written” upon, but only the foreground layer manages transparence.
You can display the two layers individually and chose which one to display over the other (you could display the
background layer over the foreground layer). The background layer is called this way because it does not manage
transparence, it is always opaque (non-transparent). If you display the background over the foreground layer (with
the command GX_SetViewPage), the foreground layer will be completely hidden.

This feature could be useful for hiding the foreground layer, with a lot of graphic elements placed upon it, while it
is loading.

When the foreground layer is displayed over the background layer, the background layer can be seen through all

transparent surfaces. In this case, the graphic engine superposes and unites the two graphic layers, as shown in
the schema below:

Il Les pages graphiques

Page de Fond Page de Calque Affichage
(Modifiable) (Maodifiable) (Non modifiable)

+ Page 2 Fusion des deux

(Foreground) pages graphiques

In order to use a graphic layer and place graphic elements upon it, you will first have to select it by using the
command GX_SetWorkPage ().

J La fonction GX_SetWorkPage()

GX_SetWorkPage (unsigned char numMsg, ==p RESERVED, toujours égal 4 0,

unsigned char typePage); == 0 pour sélectionner PAGE_FOND,
1 pour sélectionner PAGE_CALQUE.

The graphic layer selected with this command becomes the one used for writing. All the display commands (display
images, texts, etc.) which you send are applied to this layer. The selected layer is therefore the active one, the one
used for “writing”.

lairifec

Note : GX_SetWorkPage () selects the active layer on which you would like to display elements. This command does
not modify the order of the graphic layers (which layer is displayed over the other), defined with the command
GX_SetViewPage (). No matter which graphic layer is displayed over the other, the one selected for “writing” is the
one which stays activated.

The function “GX_SetViewPage” allows to display either the background layer or the foreground layer, merged
with the background one:

J La fonction GX_SetViewPage ()
GX_SetViewPage (unsigned char numMsg, wsfp RESERVED pour I'option CAN, toujours égal 2 0,
unsigned char option, wsl> RESERVED, toujours égal 3 0,

unsigned char numPage); wsp 0 pour passer PAGE_FOND au premier-plan,
1 pour passer PAGE_CALQUE au premier-plan.

This command visually displays the selected layer: it gets displayed over the other.

During the merging of the two layers to create the final “look”, the graphic elements placed upon them are placed
one over another.

l| Affichage des pages graphiques
Page de Fond . Page de Calque . GX_SetViewPage . Affichage

Page 2 Activation de la page de Fond La page de Fond s’affiche
en mode “visible”: elle passe par-dessus la page de Calque.

ou A
\ au premier plan.

(Foreground)

GX_SetViewPage Fusion des deux

(Foreground) pages graphiques

Activation de la page de Calque La page de Calque s’affiche
en mode “visible”: elle passe par-dessus la page de Fond.
au premier plan.

GX_SetWorkPage Select one of the graphic layers as active one (‘writing mode’) (invisible on
ESC ‘p’ the screen)
I(:;(c_‘SstWewPage Display one of the graphic layers on the screen

lairifec

You can select the color of the foreground for the drawing objects (text, line, rectangle, pixel) or of the background
for texts.

ILes couleurs actives

Couleur d’avant-plan, appliquée aux outils
de dessin et aux textes.

Couleur d’arriére-plan, appliquée

Backcolor uniquement pour le fond des textes.

GraphlLight has a capacity of 4096 colors on the two layers. The foreground layer allows to create 16 levels of
transparence (0 : transparent, 15 : opaque). Its format is (a, R, G, B) : 4 :4 :4:4.

The format of the background image, which does not manage transparence, is RGB 16 bits 4:4:4. This means that
the value for red, blue and green are 4bits.

When you program a 32-bit color (aRGB 8: 8: 8: 8), it will automatically be transformed into 16-bit 4: 4: 4, on the
background page, and in the 4: 4: 4: 4 the layer page.

Images converted by GraphConverter for Graphlight are converted to 4096 colors with the alpha channel
preserved for .png images

The color depth of 4096 may seem low when compared to the 16 million colors of today's computer screens. But it
must suffice for 90% of industrial HMI, especially for small areas such as screens 2"5 to 4"3 to which is dedicated
GraphlLight.

However, it is possible to display photos or gradients in the images, as shown by the example of the training,
although for some gradations where the color variation is too small, it is sometimes necessary to reduce the
number of colors of the image using an image processing software adapted with algorithms such as error diffusion.

To program a color through your program, the format of the active colorsis a, R, V, B:

- o or Alpha layer (0 to 255 or 0x00 to OxFF),
—>Red (0 to 255 or 0x00 to OxFF),

—>Green (0 to 255 or 0x00 to OxFF),

-Blue (0 to 255 or 0x00 to OxFF).

GraphlLight automatically converts according to the format of the active page.

In order to work with different parts of an image separately and to put them one over another in order to create
animated HMIs (“On/Off” buttons, sliders, gauges, counters, etc.), we use the alpha channel in order to turn pixels
on the foreground layer transparent. This means that a transparent pixel (value 0 on the alpha channel) on the
foreground layer will let you see the pixel of the background layer instead.

lairifec

As we have done for the API (application programming interface) files, we now invite you to look in more
detail at the definition of the basic colors of the training HMI, found in the following file:

» "GRL_GraphicEngine_Library.h".

For example:

#define COLOR_BLACK OxFF, 0x00, 0x00, 0x00 (or: 255, 0, 0, 0)
#tdefine COLOR_WHITE OxFF, OxFF, OxFF, OxFF

#tdefine TRANSPARENCE 0x00, 0x00, 0x00, 0x00

In addition to the basic colors of your project, found in the file "GRL_GraphicEngine_Library.h", found in the
you can choose your own colors in your graphic software and add their definition to your application.

Note: In all diagram, which follow, the zones on the foreground layer where the pixel are transparent are indicated
by the color magenta. We use the terminology “transparent color” for the pixels whose a layer is turned to 0.

This function determines the active foreground color (forecolor) or background color (backcolor) for all commands
which follow and which make use of this function (drawing functions and text functions):

J La fonction GX_SetColor ()

GX_SetColor (unsigned char numMsg, w=p- RESERVED pour I'option CAN, toujours égal 2 0,
unsigned char typeColor, w=jp» 0 pour définir FORE_COLOR, 1 pour définir BACK_COLOR,
unsigned char a msp Couche Alpha (0 a 255, uniquement sur la page de Calque),
unsigned char R, wslp Couleur Rouge (0 2 255),
unsigned char V, msp Couleur Verte (0 3 255),
unsigned char B); w=- Couleur Bleue (0 a 255).

In the API (Application Programming Interface) you will find all commands associated with the drawing tools.
Thanks to this interface, you can draw filled or empty rectangles, circles, lines and single pixels in the forecolor
which you have previously selected by using the command GX_SetColor.

Since all drawing tools work on the same principle, we will only present you the function GX_FullRect (), which you
will probably using the most:

J La fonction GX_FullRect ()

GX_FullRect (unsigned char numMsg, wm)> RESERVED pour I'option CAN, toujours égal 2 0,
unsigned char posX1, ws=)> Coordonnées en X de départ (de 0 A résolution écran-1),
unsigned char pos Y1, = Coordonnées en Y de départ (de 0 a résolution écran-1),
unsigned char posX2, Coordonnées en X d’arrivée (de 0 a résolution écran-1),

unsigned char posY2),' Coordonnées en Y d’arrivée (de 0 a résolution écran-1).

lairifec

GX_SetCol .
ESC_‘(?’ olor Select the active color of the foreground and background.
:E;;(EFEIf Fill the entire screen with the active foreground color.
X Pixel
gsg,s;t el () Draw a pixel at X,Y in the active foreground color.
X_Li
ESE'Il)':e 0 Draw a straight line (y = ax + b) in the active foreground color.
X_Circl . . .
¢ _Flrc e() Draw a circle in the active foreground color.
ESC‘C
GX_Rect . .
ESC_‘R’C 0 Draw a rectangle in the active foreground color.
GX_FullRect
ESC_‘rl" ect() Draw a filled rectangle in the active foreground color.
GX_OpacityFullRect () Draw a filled rectangle in the active foreground color and adjustable
ESC ‘B’ opacity.

We will now take the knowledge about the graphic layers, the active colors, the alpha channel, and the drawing
tools, which you have just acquired, and apply it to the example below:

l Exemple de programmation : pages graphiques, gestion des couleurs et outils de dessin.

GX_SetWorkPage GX_SetWorkPage GX_SetViewPage Affich
(Background) (Foreground) (Foreground) Lt L

Sélection de la couleur gris clair Remplissage de la page de Calque Activation de la page de Calque Les dessins sur la page de Calque
et remplissage de la page de Fond avecla” leur" de T parence . en mode “visible”. s’affichent par-dessus la page de
avec dessin d’un rectangle plein, Dessin d’un carré plein de 300px Elle passe au premier-plan. Fond en gris clair, qui apparait sous

de cdté de la couleur Cyan. les zones remplies de la “couleur” de
Dessin d’un cercle de 150px de Transparence.
couleur Rouge.
Sélection de la couleur Blanche pour
dessiner deux droites passant par le
centre de I’écran.

aux dimensions de I’écran.

Code C++:

GX_SetWorkPage (PAGE_FOND);

GX_SetColor (RESERVED, FORE_COLOR, COLOR_GREY);
GX_FullRect (RESERVED, 0, 0, 479, 271);

GX_SetWorkPage (PAGE_CALQUE);
GX_SetColor (RESERVED, FORE_COLOR, TRANSPARENCE);
GX_FullRect (RESERVED, 0, 0, 479, 271);

GX_SetColor (RESERVED, FORE_COLOR, COLOR_CYAN);
GX_FullRect (RESERVED, 250, 90, 550,190);

GX_SetColor (RESERVED, FORE_COLOR, COLOR_WHITE);
GX_Line (RESERVED, 0, 240, 479, 240);

GX_Line (RESERVED, 240, 0, 240, 271);

GX_SetViewPage (PAGE_CALQUE);

lainifec

We will now see how to use the two graphic layers and the alpha channel for dynamically displaying text and
images of your HMI.

In most cases, the background layer is used to display the static parts of your HMI, this means the background
image of your interface with all graphic elements in their static version “OFF”.

The foreground layer allows you to place and remove, over the static layer, texts and graphic elements in the
version “ON” in a dynamic way.

By displaying the foreground layer over the background layer, the dynamic elements get displayed and removed in
front of the background layer, therefore creating a dynamic HMI.

As we have seen, the background layer is used to display the interface in its static position “OFF”. Most of the time
we will be displaying the background image with all graphic elements in “OFF” position.

The foreground layer is used to display the dynamic elements, this means the graphic elements which should
visually change their appearance (into “ON” position”) when a certain situation is produced, for example the
touching of touch zone.

For example, when a user is touching the button “SKIP” of our traning HMI, the button should get displayed in

“ON” position in order to indicate that it has been touched. When the user releases the button, the button should
visually go back into “OFF” position.

l images statiques et images dynamiques

NN AN AN AN

L’utilisateur relache le bouton “SKIP”.
En effacant I'image du bouton “ON”,
I'image statique du fond réapparait avec
le bouton dans sa version OFF.

Appui de I'utilisateur sur le bouton

“SKIP” qui s’affiche en position “ON” :

c’est une image dynamique placée
sur la page de Calque.

In order to realize this effect, we will explain you below how to display and remove images in a dynamic way by
making use of the two graphic layers.

lairifec

To display an image, you first need to select the graphic layer on which you would like to work (GX_SetWorkPage).
Afterwards, you use the function GX_Putlmage () which takes as parameters the number of the image as well as
its coordinates (position) on the display.

J La fonction GX_Putimage()

GX_Putimage (unsigned char numMsg, ==p- RESERVED pour I'option CAN, toujours égal 0,
unsigned char numimage, == Numéro de I'image dans le projet graphique (défini dans le .h),
unsigned char option, w=)> RESERVED, toujours égal 3 0,
unsigned char posX, wm=» Valeur de Ia coordonnée en X de I'image (exprimée en pixel),
=

unsigned char posY); Valeur de Ia coordonnée en Y de I'image (exprimée en pixel).

When we take again the example of the button “IMG_SKIP”, the following steps are taken in order to display the
button by making use of the two graphic layers:
I Afficher des images

GX_SetWorkPage
(Background)

GX_SetWorkPage . GX_SetViewPage .
(Foreground)

(Foreground) Affichage

) & (IMG BACKGROUND OFF

«««««

GX_Putimage GX_Putimage
(IMG_BACKGROUND_OFF, 0,0) (IMG_SKIP_ON, 182, 73)

The dynamic elements, being placed on the foreground layer, can be “removed” by making use of the transparent
channel. This “color”, when paying applied to the pixels of the foregorund layer, turns the pixels transparent.

We will now use this characteristic in order to erase the pixels of an image which has been displayed. We will
replace them by transparent pixels by drawing a filled rectangle with transparent “color” on top of the image on
the foreground layer:

Il Effacer des images : GX_ FulIRec’r ()

GX_SetWorkPage
(Foreground)

GX_SetViewPage
(Foreground)

Affichage

GX_SetColor(255,0,255)
GX_FullRect(382,73,473,165)

lainifec

To display text, you first need to select the graphic layer on which you would like to work. Afterwards, you will use
the function GX_PutString (). This function takes as parameters the number of the text font you would like to use,
its coordinates (position) on the display, the actual text to display, as well as several parameters regarding the text

options.

§ La fonction GX_PutString()

GX_PutString (unsigned char numMsg, welp- RESERVED pour I'option CAN, toujours égal a 0,
unsigned char numFont, s> Numéro de Ia police dans le projet graphique (défini dans le .h),
unsigned char underline, 9 Made souligné : 0 pour non souligné, 1 pour souligné,
unsigned char option, 9> RESERVED, toujours égal a 0,
unsigned char background, == Fond du texte : 0 pour pas de fond, 1 pour fond sous le texte,

unsigned char bkgrdOpacity, w=p- Opacité du fond de texte : valeurs de 02 7 (de 0% a 100% opaque),
unsigned char alignmentAuto,==p- Texte avec alignement automatique, (0=>NON, 1=>0UI)

uns:gned char pDSX ’ "> Valeur de la coordonnée en X ou numéro de zone de centrage *,
unsigned char posY, m=p> Valeur de la coordonnée en Y de Ia police (exprimée en pixel),
unsigned char *string); == Chaine de caractére du texte a afficher.

*See the command GX_SetTextZone below for more details about this option.

The value of the coordinates of a text, (option alignementAuto=NON), is indicated in pixel and takes as a reference
the upper-left corner of the display:

ll Coordonnées du texte

Texte “IMG_IHM_LOADING" guma: IYICH 31V ¥ yl___QA_l;}_[[_\{Qa
(posX = 106, posY =8) ; S

Exemple d’un afficheur 480 x 272 pixels (WQVGA, Format “Paysage”)

*However, an additional command called GX_SetTextZone () allows to choose the alignment of the text. Each text
zone is defined with a number, as well as the alignment options.

lainifec

To display a text with a specific alignment, you first need to create a text zone. Afterwards, you use the function
GX_PutString with the argument alignmentAuto=0UI. Instead of entering the coordinates posX and posY, you need
to put the number of the text zone, in which you would like to display the text, at the place of posX.

J La fonction GX_SetTextZone()

GX_SetTextZone (unsigned char numMsg, RESERVED pour I’option CAN, toujours égal 3 0,
unsigned char numZone, Numéro de Ia zone de texte pour Ia commande Gx_PutString,
unsigned char norizontalAlignment, Programme le centrage horizontal, (a gauche, au centre, a droite),
unsigned char verticalalignment, Programme le centrage vertical, (en haut, au milieu, en bas),
unsigned char debug, Permet d’afficher en couleur le contour de Ia zone,
unsigned char option, RESERVED, toujours égal 2 0,
unsigned short posX1, Valeur de Ia coordonnée X1 du rectangle de Ia zone (en pixel),
unsigned short posY1, Valeur de Ia coordonnée Y1 du rectangle de Ia zone (en pixel),
unsigned short posX2, Valeur de Ia coordonnée X2 du rectangle de Ia zone (en pixel),
unsigned short posY2); Valeur de Ia coordonnée Y2 du rectangle de Ia zone (en pixel)

Once the characteristics of the text zone have been defined (alignment of the text and dimensions), you only need
to send the command GX_PutString with the argument posX = numZone. The text will be aligned in the zone.

Note: If the text is longer or bigger that the dimensions/surface of the text zone, the text will be displayed at posX1
(text longer than the zone), and/or posY1 (text font is bigger in height than the text zone).

When you use the text in “Background ON” mode, (with a background color or transparence), the backcolor will fill
out the entire surface of the text zone.

Example of text being displayed in a text zone with horizontal and vertical alignment:

l Coordonnées du texte via zone de texte

Zone de Texte N°1
(x1,y1, x2,y2, VCENTER, HCENTER)

Texte “"IMG_IHM_LOADING"
(posX =1, AutoAlignment=ON)

Exemple d’un afficheur 480 x 272 pixels (WQVGA, Format “Paysage”)

Once a text zone has been defined, it stays like this unless you define another one using the same number
numZone with the command GX_SetTextZone.

It is necessary to send as much commands to define text zones as the number of different text alignments wanted
on the display. You can define up to 100 text zones for each graphic layer.

lainifec

In GraphConverter, you select the text font to be used, and you can also save this text font in different styles (size,
bold or in italic).

Afterwards, thanks to various options in the parameters of the function GX_PutString (), you can add effects to
your text:

» With or without background (option "FONT_BACKGROUND_ON" or " FONT _BACKGROUND_OFF"),
» With or without alignment (option « ALIGNMENT_ON » or « ALIGNMENT_OFF »)
» Underlined or not (option " FONT _UNDERLINE_ON" or " FONT _UNDERLINE_OFF"),
» Opacity of the background (option " FONT _OPACITY", adjustable 13 7).
fl Options du texte

GX_SetWorkPage

GX_SetWorkPage . GX_SetColor() . numFont (Foreground) ’ GX_SetViewPage
(Background) . GX_PutStrin;("lronﬁraph") (Foreground)

+ !Folecolor 4 Arial 12 Regular o Z = IronGraph

Backcolor POLICE_BACKGROUND_OFF

= Forecolor == Arial_12_Bold == IronGraph — IronGraph
Backcolor POLICE_BACKGROUND_ON

POLICE_UNDERLINE_ON

+ Forecolor 4 arial 12 malic 4 lronGraph

Backcolor POLICE_BACKGROUND_ON

lronGraph

Forecolor)
L =} Arial_12_Bold_Italic =}« lronGraph — lronGraph

Backcolor
POLICE_BACKGROUND_ON
POLICE_OPACITE = 3

There are two ways of erasing text:

= You can use the function GX_FullRect () to draw a filled rectangle with transparence on top of the text you
would like to erase :

Il Effacer du texte : GX_FullRect()

GX_SetWorkPage GX_SetWorkPage GX_SetViewPage
(Background) . X SatColar() . waniFont . (Foreground) (Foreground)
. POLICE_BACKGROUND_ON
_ & Forecolor - Arial 12 Bold 4 " gy pistring("IronGraph”)
Backcolor o

+

- e —

GX_FullRect ()

lairifec

= |If you want to erase text in order to write another one at the same position (for example the title of the new
picture which is displayed), you can use the function GX_PutString () with the option “FONT
_BACKGROUND_ON". As we have already seen, this command allows to display a text with a certain
background color. This background color of the text will be displayed on top of the old text, therefore
“erasing” the previous text.

ll Effacer du texte : Option “POLICE_BACKGROUND_ON"

GX_SetWorkPage I Font GX_SetWorkPage GX_SetViewPage
(Background) ’ o) . fumbon . (Foreground) (Foreground)
. POLICE_BACKGROUND ON __ ;
_ + | Foracolor Arial 12 Bold o oy _PutString("IronGraph”) = IronGraph
Backcnlur
+ L 4
_ + Forecolor Arial_12_ltalique < POLICE_BACKGROUND_ON = Effacer du texte
Backcnlar GX_PutString("Effacer du texte")
ou ou
_ e Forecolor Arial_12_regular == POLICE_BACKGROUND ON = Effacer du texte
Backcnlnr GX_PutString("Effacer du texte")

Example of the display of a text and a picture on the two graphic layers

IMG_IHM_LOADING

- ’ 7 =
. - -
Affichage sur la page de Fond de Remplissage de la page de Calque avec Activation de la page de
’image“IMG_BACKGROUND_OFF” la couleur de Transparence et affichage Calque en mode visible.
aux coordonnées (0,0). de I’image “IMG_IHM_LOADING” en
(x1,y1) et de son texte en (x2, y2).
Code C:
GX_SetWorkPage(PAGE_FOND); // Selecting of the background layer

GX_Putimage (IMG_BACKGROUND_OFF, 0, 0); // Displaying the static background image of the HMI at
position (0,0)

GX_SetWorkPage(PAGE_CALQUE); // Selection of the foreground layer

GX_SetColor (COLOR_TRANSPARENT); // Selection of the transparent “color”

GX_FullRect (0, 0, 799,479) ou GX_Cls () // Filling the entire foreground layer with this “color”
(transparence)

GX_Putlmage (IMG_IHM_LOADING, x1, y1); // Displaying the image at position (x1, y1)

GX_SetTextZone(1, x2, y2, x'2, y'2, VCENTER, HCENTER) ;//Defining the text zone n°1 with the surface
//x2,y2>x'2,y’2, //horizontal and vertical centering.

GX_PutString ("IHM-EXEMPLE", Alignmentauto_ON, 1, ...); // Displaying the text "IHM EXEMPLE" in the text zone
n°1 with automatic alignment.

GX_SetViewPage(PAGE_CALQUE); // Turning the foreground layer visible.

lairifec

GX_lSe’tTethone Define a text zone with automatic alignment.

ESC ‘Z

E:E?Sl.‘tsmng Display a chain of characters in a defined text font.

E:E:?tlmage Display an image, stored in the internal memory of the HMI board.

lainifec

GraphLight manages the signals, emitted from the touchscreen, to detect when someone touches or (or releases)
a specific point on the display.

By default, the touchscreen is deactivated. The activation or deactivation of the touchscreen is done by using the
command GX_SetTouchScreen (), where the respective parameter (ACTIVATE or DEACTIVATE) is entered.

» Activating the touchscreen means that the circuit of the touchscreen is activated, thus emitting
automatically information about whether the touchscreen is touched.

» Deactivating the touchscreen “cuts” the interface with the touchscreen: GraphLight does not send any

information about the touchscreen anymore. This function is useful for applications where a low energy
consumption is very important.

l La fonction GX_SetTouchScreen () : Mode “périodique”

GX_SetTouchScreen (unsigned char numMsg, w=p RESERVED pour I'option CAN, toujours égal 2 0,
unsigned char etat, »> MARCHE ou ARRET,
unsigned char mode, » MODE_ZONES, MODE_POINT, MODE_DUO (Zones+Point),
unsigned char debug, m=lp 0ou 1, permet I'affichage (=1) des zones tactiles sur I'écran,
unsigned char période == Enumde 024 9 (0 = période de 40ms, ..., 9= période de 1s),
unsigned char offsetX, == Nombre de pixels de recalage en X (de -128 3 +127),
unsigned char offsetY); == Nombre de pixels de recalage en Y (de -128 & +127).

As you can see, this function also allows you to adjust the period of emission regarding the feedback of the
touchscreen (touched or non-touched).

For GraphLight in RS232 mode, this command allows you to also to adjust the content of the frame emitted as
feedback about the status of the touchscreen (parameter “mode”).
GraphlLight emits 1 byte, 4 bytes, or 5 bytes, depending on the mode which has been programmed:
- Mode « Zone », 1 byte, number of the touch zone which has been touched.
- Mode « Point », 4 bytes, coordinates of the point touched.
- Mode « Zone+Point », 5 bytes, containing the number of the zone touched + the coordinates of the point
touched within the zone.

For GraphlLight in CAN mode, the frame emitted as feedback always has the same format (zone + coordinates),
regardless of the type of mode you program in the parameters of the function.

Once the touchscreen has been activated with the respective command, the GraphLight board scans the status of
the touchscreen and gives a periodical feedback about it.

The format of the feedback given about the status of the touchscreen depends on the type of communication
protocol used: R$232 or CAN.

lairifec

The frame is identical, regardless of the feedback mode, programmed in the command GX_SetTouchScreen.
Its DLC is fixed to 5 bytes.

Coordinate X Coordinate X Coordinate Y Coordinate Y
where the where the where the where the
Number of
touchscreen touchscreen touchscreen touchscreen
zone touched
or released has been has been has been has been
touched touched touched touched
(MSB) (LSB) (MSB) (LSB)

l Dalle tactile : Mode de retour “Protocole CAN”
Trame DLC = 5 octets. Trame DLC = 5 octets

! !

A

o o
£ =
] S
N N
E E
3 S
= =

Période : de 40ms a 1s

When “zone” has been chosen as a feedback mode, GraphlLight gives as feedback the number of the touch zone
which has been activated (see the paragraph Définition des zones tactiles d'un écran).

This information is sent with 1 byte:

» Bit7: 0 or 1 (zone touched/not touched)
» Bit 6 to Bit 0: number of the respective touch zone

f Dalle tactile : Mode de retour “Zones”

A Ecriture dans le buffer Ecriture dans le buffer
sur 1 octet. sur 1 octet.

i !

‘
A
v
A

Période : de 40ms a 1s

Note: The “zone” mode is the one used most by our clients. It allows you to define up to 50 touch zones for each
HMI screen, each touch zone representing a touchable element of the user interface (for example a button).

lairifec

When “point” has been chosen as a feedback mode, GraphLight gives as a feedback the coordinates of the touched
point on the display.

This information is sent with 4 bytes:

Byte 1 : Xlsb,
Byte 2 : Xmsb,
Byte 3 : Yisb,
Byte 4 : Ymsb.

YV VYV

l Dalle tactile : Mode de retour “Point”

A Ecriture dans le buffer Ecriture dans le buffer
sur 4 octets. sur 4 octets.

! i

»
»

Période : de 40ms a 1s

Note: The “point” mode is not used very often for touchscreen user interfaces. It can be useful if you would like to
draw single pixels where the touchscreen is touched (for example to simulate a graphic tablet with a pen). In this
case, it is recommended to use a capacitive touchscreen.

When “point” has been chosen as a feedback mode, GraphlLight gives as a feedback the number of the touch zone
which has been activated, as well as the precise coordinates of the touched point on the display.

This information is sent with 5 bytes :

Byte 1: Zone
» Bit7: 0 or 1 (zone touched/not touched)
» Bit 6 to Bit 0: number of the respective touch zone

Byte 2 to 5: Coordinates of the point
> Byte 1:XIsb,
» Byte 2 : Xmsb,
> Byte 3:YViIsb,
> Byte4:Ymsb.

lainifec

l Dalle tactile : Mode de retour “Zones + Point”

Ecriture dans le buffer Ecriture dans le buffer

- sur 5 octets. sur 5 octets.

y

Période : de 40ms a 1s

Note: The “zone + point” mode is used when you would like to display a dynamic element which follows your finger,
for example a cursor to regulate a setting. You first define the zone of your cursor with the “zone” mode and then,
once this zone is touched, you make use of the coordinates of the precise point (x, y) in order to display the image of
your cursor.

When using the “zone” or “zone + point” mode, the touch zones on the different HMI screens will be numbered

and their coordinates will be saved.

A touch zone is a rectangular zone, containing the touchable element. There are as many touch zones as touchable
objects on an HMI screen. Each zone is defined by a number which is used in the feedback (this information taking
1 byte), emitted by GraphLight when a zone is touched or released.

Si vous optez pour le mode de retour "Zones" ou "Zones + Point", vous devez numérotez et définir les coordonnées
des différentes zones tactiles pour chaque écran composant votre IHM.

| Numérotation des zones tactiles : écran principal

Zone numéro 4

Zone numéro 1 mmp.
Zone numeéro 2 mmp

lainifec

The coordinates of the touch zones are those of the rectangular zone, containing the touchable element.

Jl Coordonnées des zones tactiles

(x1,y1)

The command to define a touch zone is the function GX_Set TouchScreenArray (). This function takes as
parameters the number of the zone as well as its rectangular coordinates, defining the touchable area on the
display.

J La fonction GX_SetTouchScreenArray ()

GX_SetTouchScreenArray (unsigned char numMsg, sy RESERVED pour P'option CAN, toujours égal 3 0,

unsigned char numZone, s> Numéro (de 1 a 50) a attribuer a Ia zone, (Ia zone 0 étant
? =% la surface totale de I’écran non définie par un numéro),

== Coordonnées X et Y du point d’origine de Ia zone,

unsigned short X1, }
unsigned short Y1,
unsigned short X2,
unsigned short Y2, }

m=)»- Coordonnées X et Y du point terminal de Ia zone,

unsigned char option)' == Option future, toujours 0 pour le moment.

We invite you to look in more detail at the definitions (numbering and coordinates) of the touch zones of the
training HMI in the following file:

» "GRL_RS232_WQVGA_HMI.h"*

*This file is created by the HMI editor. More details can be found in the chapter Chapitre 12 : L'éditeur d'lHM de
GraphConverter.

It is necessary to send as many commands to define touch zones as there are zones.

You can define up to 50 touch zones for each HMI screen. The zone number 0 is the 51 zone, covering all non-
defined zones of an HMI screen.

A defined touch zone stays valid until the command GX_SetTouchScreenArray is sent again, using the same
number of touch zone.

lairifec

If your HMI has several HMI screens, the numbering (from 1 to 50) starts over again for each HMI screen. For each
HMI screen, the touch zones need to be defined separately by using the command GX_SetTouchScreenArray.

For example, in our training HMI, the second HMI screen “VIDEQO”, also contains 3 touch zones:

l Numérotation des zones tactiles : écran vidéo

Zone numeéro 4 mm)

Zone numeéro 4 mm)

Zone numéro 1 mmp
Zone numeéro 2 mmp

E. Main commands to manage the touchscreen

ESXC_ISt?tTouchScreen Activate or deactivate the touchscreen.
GX_lSe'tTouchScreenArray Define touch zones.

ESC ‘z

Ss)'(c_"l'::tTouchScreen Start the internal touchscreen test.

Note: Thanks to the GraphConverter HMI Editor, it is now easier to define the touch zones that you want to place
on each of your menus.

Indeed, with a few mouse clicks, each of your zones are stored and can be made active or inactive during the
recording of your menus in the graphics card, as well as for all the other elements that make up your complete
HMI.

The next chapter discusses this tool.

lainifec

The HMI editor allows you not only to place the objects of your graphic library on the HMI screens, it also allows
you to define the initial status of all HMI screens which you create, and to save their configuration in the internal
memory of the HMI board.

File Uplosd Tools 2 -

S
Grapnic Livary Project | Pichessselection]| Hh Eor ﬁ;:
| 0 - Arial_30 Deonet ——
1- Century Gothic 40 Edit Add TouchScreen Zone Add Text Zone Add Video Window 7 IRG_RS232 WVGA HMI
2- Calibri 30
3- Verdana 28 SCREENOL Viewer Sassra U
Fo
o ceondt iy = | T
@ o ||| [|| e [) e)]
0 - IMG_LOGO_CLAIRITECJPG ~ * 1- SCREENOL
1 - IMG_MAIN_SCREEN_OFF JPG 2 - SCREENO2
5- IMG_CAM1_ONPNG
6-IMG_CAM2 ONNG
e i
§-IMG_CLOSE_ONP! ST e
9-IMG_IHM_DASHBOARDPNG
10 - IMG_IHM_ESPRESSO.PNG I
11 - IMG_IHM_ESTHETICPNG
12 - IMG_IHM_IRONGRAPH PNG
13 - IMG_IHM_LOADING PNG
14 - IMG_INDEX1_ONPNG
b Menen e
17 - IMG_INDEXA_ON.PNG
20- IMG_SKIP_ONPNG - 3
21 - IMG_VIDEQ_ONPNG 0-Anal_30 L
e
19 - IMG_JHM _IRONGRAPH
= ——
. o ey o 5 0GR e AR e g 68 g 8

The HMI editor allows you to place and position all graphic elements on each of the HMI screens which make up
your user interface.

- Images

- Texts or rather text zones

- Touch zones

- Primitive drawings (rectangles, lines, etc.)

For each of those elements, you chose the available options (color, user mode, dimensions, etc.).

Afterwards you “hide” the elements which you do not want to be visible on the HMI screen upon loading it. This
way, the initial status of the HMI screen is defined and saved in the internal memory of the HMI board. The HMI
editor will create a header file .h which contains all coordinates and selected options of each of the objects placed
on the HMI screen (also the ones which are hidden). This file helps you to write the code of the commands in C
language in order to dynamically display the hidden elements afterwards.

The initial status of the HMI screens is saved in the same way in the HMI boards internal memory as the images
and text fonts of the graphic library. The initial status of each HMI screen is retrieved by the command
GX_PutScreen () which displays the chosen HMI screen (each HMI screen is attributed a number which is used in
this command). This function is explained in more detail below.

lairifec

| 2. The files of the HMI editor project

In the same way as the 3 files to manage all the graphic objects have been automatically created upon saving your
graphic project, the HMI editor of GraphConverter will create three additional files when saving the HMI screens,
created with the editor.

Your graphic project is composed out of a data file (.xml), a compiled data file (.hse), which will be uploaded into
the HMI board, and a header file (.h) for your application in C language.

» The project file (“ProjectName_GraphConverter_HMI_xml"):
This file allows GraphConverter to maintain and re-open your HMI editor project. The name of the file is
automatically attributed once you open the HMI editor and is based on the name which you have chosen for your
graphic library. GraphConverter adds the code “ _HMI_" to the name, and the extension is changed from .gxp to
xml.

Note: An HMI editor project is always linked to a corresponding graphic library.
If you want to create a new HMI editor project with the same graphic library as a basis, it is necessary to create a
new project with a different name.

» The HMI editor header file (“ProjectName_GraphConverter_HMI_h"):
Once you have created your HMI screens with the HMI editor, GraphConverter will save the positions and
characteristics of al graphic elements, touch zones, text zones, etc. By using the .h. file, you can fill in very easily
the parameters of the corresponding API functions.

» The compiled data file (“ProjectName_GraphConverter_HMI_hse”):
This file contains the HMI screens which you have created in form of binary data. As it is the case with the HEX file,
the HSE file is uploaded into the internal memory of the HMI board by GraphConverter.
This file describes all elements in their initial status (visible/invisible, active/inactive). Based on this file, the HMI
board initializes, after the reception of the command GX_PutScreen (), an HMI screen with its two graphic layers
and all elements placed upon them.

3. Displaying an HMI screen

The function GX_PutScreen initializes and displays all graphic objects (touch zones included) of a pre-defined HMI
screen, saved in the internal memory of the HMI board.

The same way as GraphConverter attributes specific numbers to the images and text fonts of the graphic library, it
also numerates the pre-defined HMI screens.

It is this number which is sent as a parameter with the command GX_PutScreen () in order to display an entire HMI
screen.

La fonction GX_PutScreen()
GX_PutScreen (unsigned char numMsg, RESERVED pour I'option CAN, toujours égal 3 0,
unsigned char numScreen); Numéro de I'écran a afficher (de 1 a 100).

If the number of the HMI screen, sent with the command, is not referenced in the internal memory of the HMI
board or if the number lies not within the standards, the HMI borne sends back an error message.

lairifec

| 4. Example of an HMI editor project

As a reminder: Our project example is constituted out of two HMI screens. We have used the HMI editor to place
all the elements of our HMI: images, touch zones, and text zones (with text alignment).

The main screen of the training HMI shows a rectangle with 2 touchable buttons “FORWARD” and “BACKWARD”
which allow to change the background image shown in the middle of the screen. In the lower-left corner, 2
touchable buttons “+” and “-“ allow to adjust the backlight of the LCD. On the upper edge of the HMI screen, a text
zone displays the title of the current interface, while on the lower edge, 5 colored lamps indicate which HMI
screen, out of the 5 in total, is displayed.

N IHM de formation : Ecran Principal

IMG_IHM_LOADING

On the image above, the moment when a user touches the “FORWARD” button is shown. The “FORWARD” button
(image °4 of our project) is therefore lit-up. The text of the HMI screen “IMG_IHM_GRAPHLIGHT” is displayed in
the color and with the alighment previously chosen. The 4" indicator light (orange) is lit-up since the image shown
in the middle of the screen constitutes the 4t one out of the 5 images in total.

The HMI editor has allowed us to place all these dynamic elements, to activate the touch zones which correspond
to the “button” images, to activate the text zone with its automatic alignment option, and to define the text font
to be used.

Once all of these elements had been placed, those ones which should not be displayed by default when loading
the HMI screen with the command GX_PutScreen (), needed to be “hidden”.

ainfec

Following a screenshot of the HMI editor with the HMI screen programmed to its initial status, ready to be

uploaded to the HMI board:

GraphConverter 3 - IRG_RS232

File

VB wN e O

- Graphic Library Project
Selected Fonts

- Arial_19

- Century Gothic_17
- Calibri 22

- Verdana_18

- Courier New_21

- Calibri_18

Selected Pictures.

0 - IMG_LOGO_CLAIRITECJPG

- IMG_MAIN_SCREEN_OFF.JPG
- IMG_VIDEO_SCREEN_OFF.JPG
- IMG_BKLGHT_MOINS.PNG

- IMG_BKLGHT_PLUS.PNG

- IMG_CAM1_ON.PNG

- IMG_CAM2_ON.PNG

- IMG_CLOSE_OFF.PNG

- IMG_CLOSE_ON.PNG

- IMG_IHM1_IRONGRAPH.PNG

Upload Tools ?

- IMG_IHM2_ESPRESSO.PNG
- IMG_IHM3_ESTHETIC.PNG
- IMG_IHM4_VIEWERPNG

- IMG_IHM5_LOADING.PNG
- IMG_INDEX1_ON.PNG

- IMG_INDEX2_ON.PNG

- IMG_INDEX3_ON.PNG

- IMG_INDEX4_ON.PNG

- IMG_INDEX5_ON.PNG

- IMG_SKIP_BACK_ON.PNG
- IMG_SKIP_ON.PNG

- IMG_VIDEO_ON.PNG

| Fonts Selection | Pictures Selection | HMI Editor

Designer
Edit

-SCREENOL Viewer

Add TouchScreen Zone

Add Text Zone

Add Video Window Add Primitive Object ~ ?

IRG_RS232 WQVGA_HMI_

- Edit Screen Object Coordinates

Coordx:]

Coord Y:

~ Edit Text

- Screens List

Project Screens

H ()

1 - SCREENOL
2 - SCREENO2

Memory Size : LcD: [OR

Width (pixels) : Height (pixels) :

The text zone on the foreground layer (red rectangle), the touch zones (green rectangles), placed over the

touchable buttons, as well as the first image in the center are clearly visible.

All other elements should be displayed in a dynamic way (this means getting displayed only upon their activation

through a specific command). For this reason, they have been turned “invisible” /“inactive”.

However, all elements (active or inactive) are saved in the HMI board with their respective characteristics and
coordinates. This allows the retrieval of all necessary parameters for the dynamic way of displaying the hidden

elements by using the respective commands.

Extract of the file GRL_RS232_WQVGA.h for this HMI screen:

(Next page ...)

lainifec

FF o e *
/* - HMI EDITOR HEADER - */
FF o e *

JEE*EX GQUREEN@L *¥**/
f#define SCREEN@1 1

/* FONTS */

/* ZONES OF TEXT MODE */

/* PICTURES */

/* --- PICTURE IMG_MAIN_SCREEN OFF N° @ --- */
#define SCREEN@1_BACKGROUND IMG @ 1,8
#define XY_SCREEN@1_BACKGROUND IMG @ a,e
#define X_SCREEN@1_BACKGROUND IMG @ @
#define ¥_SCREEN@1_BACKGROUND IMG @ @
#define W_SCREEN@1_BACKGROUND IMG @ 48@
#define H_SCREEN@1_BACKGROUND IMG @ 272

/* DRAWING PRIMITIVES */

e FOREGROUND LAYER -------- */
/* FONTS */
/* --- FONT ARIAL 19 N°® @ --- */

f*Colors of tewt*/

F*style*/

/*string of text®/

#define X_SCREEN@1_FOREGROUND TXT @ 128

Etc...

#define BACKCOLOR_SCREEM®1_FOREGROUND TXT @ 8,255, 255, 255
#tdefine FORECOLOR_SCREEM®1 FOREGROUND_TXT @ 255,8, @, @

#define STYLE_SCREEN®1_FOREGROUND TXT @ @,8,8,True,®

#define SCREEN@L FOREGROUND TXT @ "IMG_THM GRAPHLIGHT"
f*Coordinates™/
#define XY _SCREEN@1_FOREGROUND TXT @ 128,9

lainifec

/¥ ZONES OF TEXT MODE */
/¥ --- ZONE OF TEXT N°® @& --- */

#deTine
#deTine
#deTine
#deTine
#deTine
#deTine

SCREEN@1_FOREGROUND ZOT @
X¥_SCREEN@1_FOREGROUND ZOT @
X_SCREEN®1_FOREGROUND_ZOT @
¥_SCREEN®1_FOREGROUND ZOT @
X2_SCREEN@1_FOREGROUND ZOT @
¥2_SCREEN@1 FOREGROUND ZOT @

/¥ PICTURES */

/* --- PICTURE IMG_SKIP_BACK ON
#define SCREEN®1 FOREGROUND IMG 6
#define X¥_SCREEN@1 FOREGROUND IMG 6
#define X_SCREEN@1 FOREGROUND IMG 6
#define Y_SCREEN@1 FOREGROUND IMG 6
#define W_SCREEN®1 FOREGROUND IMG 6
#define H_SCREEN@1 FOREGROUND IMG 6
/* --- PICTURE IMG_SKIP ON
#define SCREEN®1 FOREGROUND IMG 7
#define X¥_SCREEN@1 FOREGROUND IMG 7
#define X_SCREEN@1 FOREGROUND IMG_7
#define Y_SCREEN@1 FOREGROUND IMG_7
#define W_SCREEN®1 FOREGROUND IMG 7
#define H_SCREEN@1 FOREGROUND IMG 7
/* --- PICTURE IMG_BKLGHT PLUS
#define SCREEN@1 FOREGROUND IMG 8
#define X¥_SCREEN@1 FOREGROUND IMG 8
#define X_SCREEN@1 FOREGROUND IMG_8
#define Y_SCREEN@1 FOREGROUND IMG_8
#define W_SCREEN®1 FOREGROUND IMG_8
#define H_SCREEN@1 FOREGROUND IMG_8
/* --- PICTURE IMG_BKLGHT MOINS
#define SCREEN®1 FOREGROUND IMG 9
#define X¥_SCREEN@1 FOREGROUND IMG 9
#define X_SCREEN®1 FOREGROUND IMG O
#define Y_SCREEN®1 FOREGROUND IMG O
#define W_SCREEN®1 FOREGROUND IMG O
#define H_SCREEN®1 FOREGROUND IMG O

. —— et - ————— F— -

Etc...

#define NUM_SCREEN@1 FOREGROUND ZOT @

8
@, HCENTER, VCENTER, False, @
1e@, 18, 338, 40
188
18
338
40

- [T] 1N° 6 --- %/

19,8
7,74

7

74

a1

92|

- [T] 2N° 7 ——- %/

28,8
382,73

382

73

a1

a2

- [T] 3N° 8 --- %/

4,8
34,196

34

196

35

34

- [T] 4N° 9 -—- %/

3,8
32,229

32

229

37

33

P - -

Extract of the code which displays the HMI screen SCREENO1 in its initial status and then displays the text in the

pre-defined text zone.

(Next page ...)

lairifec

// Displaying the HMI screen in its initial status

GX_PutScreen(RESERVED, SCREENO1);

//Setting the background color of the text as defined in the HMI editor

GX_SetColor(RESERVED, BACK_COLOR, BACKCOLOR_SCREEN©1_FOREGROUND_TXT_©);

//Setting the foreground color of the text

GX_SetColor(RESERVED, FORE_COLOR, FORECOLOR_SCREEN©1_FOREGROUND_TXT_©);

//Displaying the text in the pre-defined text zone

GX_PutString (RESERVED,STYLE_SCREEN©1_FOREGROUND_TXT_O,
ALIGNMENT_ON,NUM_SCREEN®1_FOREGROUND_ZOT_ 0,0, (unsigned char*)SCREEN@1_FOREGROUND_TXT_0);

The code in bold and blue indicates the #define which can be found in the .h file, created by the HMI editor.

lairifec

I Synoptique de construction d'une IHM

GraphConverter 3.0

“GraphicProject.Hex”
“GraphicProject_HMI.hse”

Affichage

Interprétation
de la séquence

p T gxp” “GraphicProject HMI.h"
“GraphicProject_HMI.xml"

Votre applicatif
" Metier”

This schema resumes the mechanism of the CLAIRITEC concept.

For more details about the HMI boards, the Intelligent Displays, the command protocol, or the usage of
GraphConverter and the HMI editor, consult the following documents:

- SpecificationHardware.pdf for the documentation about the hardware (dependent on the HMI
board/Intelligent Display used).

- FunctionsInC.pdf for the API (Application Programming Interface) for the C functions.

- RS232_Protocol.pdf for the plain code of the RS232 Escape commands.

- CAN_Protocol.pdf for the plain code of the CAN Escape commands.

- UserManual_GraphConverter.pdf for the way of using GraphConverter and the HMI editor.

Thank you for your attention!

lairifec

| C. Clairitec ‘

CLAIRITEC

11 aven

ue Henri Becquerel

33700 Mérignac

FRANCE

Web site: www.clairitec.com

D. Clairitec’s services

Customer relation service: contact@clairitec.com

Technical support service: support@clairitec.com

s w

All documents and attached files belong to the intellectual property of CLAIRITEC.

It is forbidden by law to break down in any way the original format of the software, to do reverse
engineering, or to modify the software.

It is illegal to modify, adapt, borrow, or to sell and translate the software, neither in its entity nor in parts.
You can install a copy of the software on a hard drive or a similar storing device.

This document stays in exclusive ownership of CLAIRITEC. Any type of reproduction, also in parts, is
formally forbidden without explicit, written agreement of CLAIRITEC.

http://www.clairitec.com/
mailto:contact@clairitec.com
mailto:support@clairitec.com

afaog \

ISO 9001 I

Qualité

AFNOR CERTINCATION

lairifec

11, avenue Henri Bequerel - 33700 - MERIGNAC - FRANCE

Email: contact@clairitec.com
www.clairitec.com

