

MP-2835 Series

Color Series Package

Features

- Thermally Enhanced Package Design
- High flux output
- High current capability
- Compact Package Size
- Pb-free Reflow Soldering Application
- RoHS compliant

Applications

- Horticulture
- Architectural
- Decorative
- Billboard Light
- Industrial

Table of Contents

Product Ordering
Binning Structure 3
Product Characteristics
Characteristics Graphs
Package Dimension16
Solder Profile
Package Dimensions of Reel 19
Packaging and Labeling20

PRODUCT ORDERING AND SHIPPING PART NUMBER NOMENCLATURE

All mid power products are packaged and labeled with part numbers as outlined in below. When shipped, each reel will contain only a single flux and voltage bin. The part number designation is as follows:

2835 Mid Power LED

Mid Power	Package Type	Package Configurator	Color	Radiant Flux	Forward Voltage	Peak Wave- length
MP	2835	1100/1200	MR (Meat Red) DR (Deep Red) FR (Far Red) B (Blue) G (Green)	##	##	##

Example:

The part number MP-2835-1200-B refers to a 2835 mid power emitter with blue light.

PRODUCT SELECTION TABLE

Test condition = $60 \text{ mA} (T_c = 25 \text{ °C})$

	5	Radiant Flux (mW)		
Color	Part Number	Тур.	Min.	
Deep Red	MP-2835-1100-DR	62	50	
Far Red	MP-2835-1100-FR	62	50	
Green	MP-2835-1100-PG	100	90	
Blue	MP-2835-1200-B	115	90	

Test condition = 120 mA (T_c=25 °C)

Color Part Number	Dest Novel ex	Radiant Flux (lm)		
	Part Number	Тур.	Min.	
Meat Red	MP-2835-1100-MR	34	30	

BINNING STRUCTURE

All MP-2835 Series monochromatic LEDs are tested for luminous flux/dominant wavelength and placed into one of the following flux/wave length bins. The binning structure is universally applied across each monochromatic color of the MP-2835 Series product line.

Flux Bins

Bin Code	Minimum	Maximum	Unit
D8	30	32	lm
D9	32	34	lm
E1	34	36	lm

Bin Code	Minimum	Maximum	Unit
6D	34	42	mw
6E	42	50	mw
6F	50	58	mw
6G	58	66	mw
6H	66	74	mw
6L	90	98	mw
6M	98	110	mw
6N	110	122	mw

Forward Voltage Bin

Bin Code	Minimum	Maximum	Unit
А	2.7	2.8	V
В	2.8	2.9	V
С	2.9	3.0	V
В3	1.6	1.8	V
C3	1.8	2.0	V
D3	2.0	2.2	V
E3	2.2	2.4	V
G3	2.6	2.8	V
НЗ	2.8	3.2	V
J3	3.0	3.2	V

BINNING STRUCTURE

All MP-2835 Series monochromatic LEDs are tested for luminous flux/dominant wavelength and placed into one of the following flux/wavelength bins. The binning structure is universally applied across each monochromatic color of the MP-2835 Series product line

Wavelength Bin

Bin Code	Minimum (nm)	Maximum (nm)
B2	450	455
В3	455	460
B4	460	465
GK	510	515
GE	515	520
GF	520	525
R5	635	640
R6	640	645
R7	645	650
R8	650	655
R9	655	660
RA	660	665
RP	725	730
RQ	730	735
RR	735	740

MP-2835 MID POWER OPERATING CHARACTERISTICS-MEAT RED

Optical and Electrical Characteristics (T_c = 25°C)

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Forward Voltage	VF	2.6	2.8	3.2	V	l _f
Reverse Current	lR			10	uA	V _R =5V
View Angle	2θ1/2		120		٥	I _f =120mA
Thermal Resistance	Rth _{j-sp}		21		°C/W	I _f =120mA
Electrostatic Discharge	ESD	1000			V	HBM
Peak Wavelength	λ	635	640	645	nm	I _f =120mA

- Note 1: To prevent damage refer to operating conditions and derating curves for appropriate maximum operating conditions.
- Note 2: Maximum operating case temperature combined with maximum drive current defines the total maximum operating condition for the device. To prevent damage, please follow derating curves for all operating conditions.
- Note 3: Mid power LEDs are designed for operation up to an absolute maximum forward drive current as specified below. Product lifetime data is specified at typical forward drive currents. Sustained operation at absolute maximum currents will result in a reduction of device lifetime compared to typical forward drive currents. Actual device lifetimes will also depend on case temperature. Refer to the current vs. case temperature derating curves for further information.
- Note 4: Caution must be taken not to stare at the light emitted from these LEDs. Under special circumstances, the high intensity could damage the eye.

Absolute Maximum Ratings(T_c = 25°C)

Parameter	Symbol	Rating	Unit
DC Forward Current	I _{FD}	300	mA
Peak Pulse Current (tp ≤ 10ms,Duty cycle = 1/10)	I _{FP}	420	mA
Reverse Voltage	V _R	5	V
Power Dissipation	P _D	960	mW
LED Junction Temperature	T	120	°C
Operation Temperature	Topr	-40 to +105	°C
Storage Temperature	T _{stg}	-40 to +105	°C
Soldering Temperature	T _{sol}	260°C for 10sec	

MP-2835 MID POWER OPERATING CHARACTERISTICS-DEEP RED

Optical and Electrical Characteristics (T_c = 25°C)

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Forward Voltage	VF	1.8	2.0	2.4	V	I _f
Reverse Current	lR			10	uA	V _R =5V
View Angle	201/2		120		٥	I _f =60mA
Thermal Resistance	Rth _{j-sp}		20		°C/W	I _f =60mA
Electrostatic Discharge	ESD	1000			V	HBM
Radiant Flux	Фе	50	63		mW	I _f =60mA
Dominant Wavelength	λ	650	660	665	nm	I _f =60mA

- Note 1: To prevent damage refer to operating conditions and derating curves for appropriate maximum operating conditions.
- Note 2: Maximum operating case temperature combined with maximum drive current defines the total maximum operating condition for the device. To prevent damage, please follow derating curves for all operating conditions.
- Note 3: Mid power LEDs are designed for operation up to an absolute maximum forward drive current as specified below. Product lifetime data is specified at typical forward drive currents. Sustained operation at absolute maximum currents will result in a reduction of device lifetime compared to typical forward drive currents. Actual device lifetimes will also depend on case temperature. Refer to the current vs. case temperature derating curves for further information.
- Note 4: Caution must be taken not to stare at the light emitted from these LEDs. Under special circumstances, the high intensity could damage the eye.

Absolute Maximum Ratings (T_c= 25°C)

Parameter	Symbol	Rating	Unit
DC Forward Current	I _{FD}	200	mA
Peak Pulse Current (tp ≤10ms,Duty cycle = 1/10)	I _{FP}	280	mA
Reverse Voltage	V _R	5	V
Power Dissipation	P_{D}	480	mW
LED Junction Temperature	TJ	115	°C
Operation Temperature	Topr	-40 to +105	°C
Storage Temperature	T _{stg}	-40 to +105	°C
Soldering Temperature	T _{sol}	260°C for 10sec	

MP-2835 MID POWER OPERATING CHARACTERISTICS-FAR RED

Optical and Electrical Characteristics (T_c = 25°C)

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Forward Voltage	VF	1.6	1.9	2.2	V	l _f
Reverse Current	lR			10	uA	V _R =5V
View Angle	201/2		120		0	I _f =60mA
Thermal Resistance	Rth _{j-sp}		20		°C/W	I _f =60mA
Electrostatic Discharge	ESD	1000			V	
Radiant Flux	Фе	50	62		mW	I _f =60mA
Peak Wavelength	λ	725	730	740	nm	I _f =60mA

- Note 1: To prevent damage refer to operating conditions and derating curves for appropriate maximum operating conditions.
- Note 2: Maximum operating case temperature combined with maximum drive current defines the total maximum operating condition for the device. To prevent damage, please follow derating curves for all operating conditions.
- Note 3: Mid power LEDs are designed for operation up to an absolute maximum forward drive current as specified below. Product lifetime data is specified at typical forward drive currents. Sustained operation at absolute maximum currents will result in a reduction of device lifetime compared to typical forward drive currents. Actual device lifetimes will also depend on case temperature. Refer to the current vs. case temperature derating curves for further information.
- Note 4: Caution must be taken not to stare at the light emitted from these LEDs. Under special circumstances, the high intensity could damage the eye.

Absolute Maximum Ratings (T_c= 25°C)

Parameter	Symbol	Rating	Unit
DC Forward Current	I _{FD}	250	mA
Peak Pulse Current (tp ≤10ms,Duty cycle = 1/10)	I _{FP}	350	mA
Reverse Voltage	V_R	5	V
Power Dissipation	P _D	550	mW
LED Junction Temperature	T_{j}	115	°C
Operation Temperature	T _{opr}	-40~+105	°C
Storage Temperature	T _{stq}	-40~+105	°C
Soldering Temperature	T _{sol}	260°C for 10sec	

MP-2835 MID POWER OPERATING CHARACTERISTICS-BLUE

Optical and Electrical Characteristics (T_c = 25°C)

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Forward Voltage	VF	2.6	2.8	3.2	V	l _f
Reverse Current	lR			10	uA	V _R =5V
View Angle	2θ ^{1/2}		120		٥	I _f =60mA
Thermal Resistance	Rth _{j-sp}		22		°C/W	I _f =60mA
Electrostatic Discharge	ESD	1000			V	
Radiant Flux	Фе	90	115	130	mW	I _f =60mA
Dominant Wavelength	λ	450	460	465	nm	I _f =60mA

- Note 1: To prevent damage refer to operating conditions and derating curves for appropriate maximum operating conditions.
- Note 2: Maximum operating case temperature combined with maximum drive current defines the total maximum operating condition for the device. To prevent damage, please follow derating curves for all operating conditions.
- Note 3: Mid power LEDs are designed for operation up to an absolute maximum forward drive current as specified above. Product lifetime data is specified at typical forward drive currents. Sustained operation at absolute maximum currents will result in a reduction of device lifetime compared to typical forward drive currents. Actual device lifetimes will also depend on case temperature. Refer to the current vs. case temperature derating curves for further information.
- Note 4: Caution must be taken not to stare at the light emitted from these LEDs. Under special circumstances, the high intensity could damage the eye.

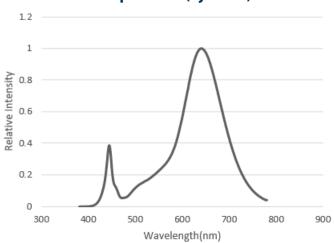
Absolute Maximum Ratings (T_c= 25°C)

Parameter	Symbol	Rating	Unit
DC Forward Current	l _{ED}	250	mA
Peak Pulse Current (tp ≤10ms,Duty cycle = 1/10)	I _{FP}	280	mA
Reverse Voltage	V _R	5	V
Power Dissipation	$P_{\scriptscriptstyle D}$	800	mW
LED Junction Temperature	$ T_{j} $	120	°C
Operation Temperature	Topr	-40 to +105	°C
Storage Temperature	T _{stq}	-40 to +105	°C
Soldering Temperature	T _{sol}	260°C for 10sec	

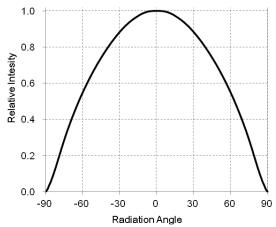
MP-2835 MID POWER OPERATING CHARACTERISTICS-GREEN

Optical and Electrical Characteristics (T_c = 25°C)

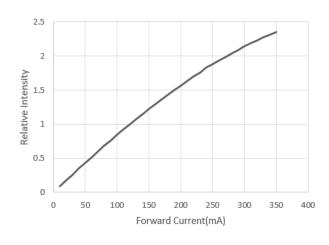
Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Forward Voltage	VF	2.6	2.82	3.2	V	I _f
Reverse Current	lR			10	uA	V _R =5V
View Angle	2θ ^{1/2}		120		٥	I _f =60mA
Thermal Resistance	Rth _{j-sp}		16		°C/W	I _f =60mA
Electrostatic Discharge	ESD	1000			V	HBM
Radiant Flux	Фе	90	100	110	mW	I _f =60mA
Dominant Wavelength	λ	510		525	nm	I _f =60mA

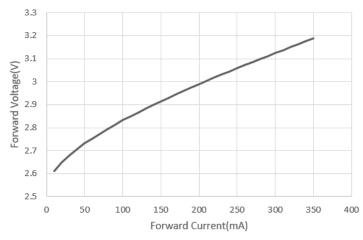

- Note 1: To prevent damage refer to operating conditions and derating curves for appropriate maximum operating conditions.
- Note 2: Maximum operating case temperature combined with maximum drive current defines the total maximum operating condition for the device. To prevent damage, please follow derating curves for all operating conditions.
- Note 3: Mid power LEDs are designed for operation up to an absolute maximum forward drive current as specified below. Product lifetime data is specified at typical forward drive currents. Sustained operation at absolute maximum currents will result in a reduction of device lifetime compared to typical forward drive currents. Actual device lifetimes will also depend on case temperature. Refer to the current vs. case temperature derating curves for further information.
- Note 4: Caution must be taken not to stare at the light emitted from these LEDs. Under special circumstances, the high intensity could damage the eye.

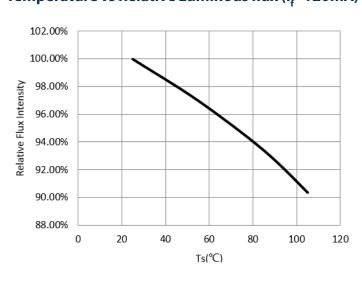
Absolute Maximum Ratings (T_c = 25°C)

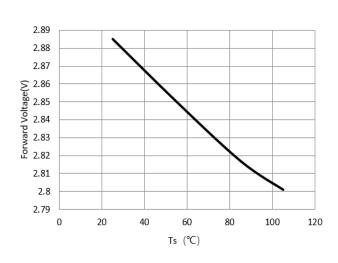

Parameter	Symbol	Rating	Unit
DC Forward Current	I _{FD}	240	mA
Peak Pulse Current (tp ≤10ms,Duty cycle = 1/10)	I _{FP}	260	mA
Reverse Voltage	V_R	5	V
Power Dissipation	P _D	768	MW
LED Junction Temperature	T_{j}	120	°C
Operation Temperature	T _{opr}	-40 to +105	°C
Storage Temperature	T _{sta}	-40 to +105	°C
Soldering Temperature	T _{sol}	260°C for 10sec	

TYPICAL OPTICAL/ELECTRICAL CHARACTERISTICS GRAPHS-MEAT RED

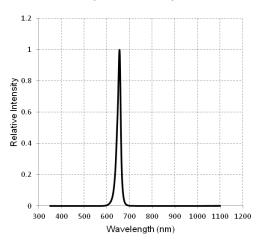



Viewing Angle Distribution (Tj=25°C)

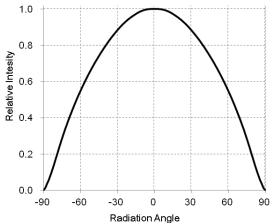

Forward Current vs Relative Intensity (Tj=25°C)


Forward Current vs Forward Voltage (Tj=25°C)

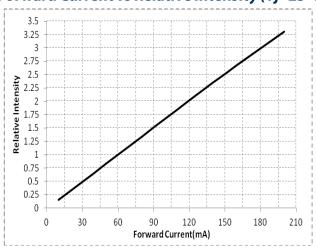
Temperature vs Relative Luminous flux (I,=120mA)

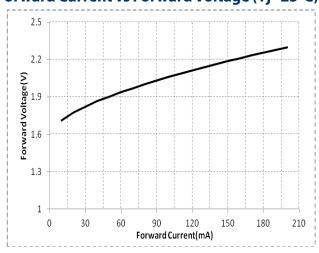


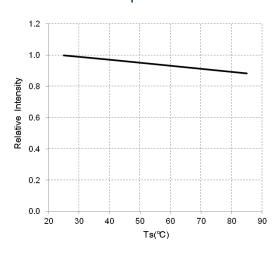
Temperature vs Forward Voltage (I,=120mA)

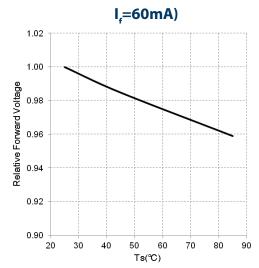


TYPICAL OPTICAL/ELECTRICAL CHARACTERISTICS GRAPHS-DEEP RED

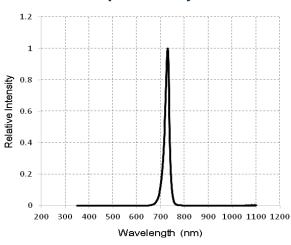

Color Spectrum (Tj=25°C)


Viewing Angle Distribution (Tj=25°C)

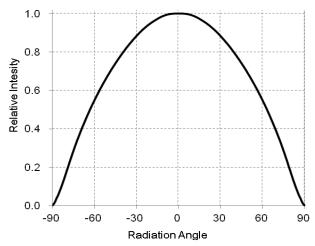

Forward Current vs Relative Intensity (Tj=25°C)


Forward Current vs Forward Voltage (Tj=25°C)

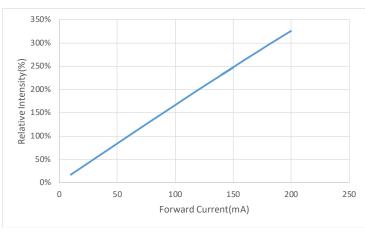
Case Temperature vs Relative Luminous flux (I,=60mA)

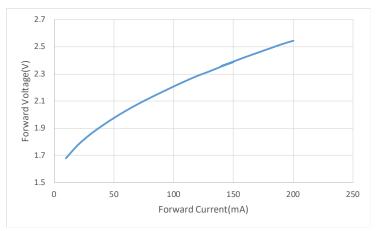


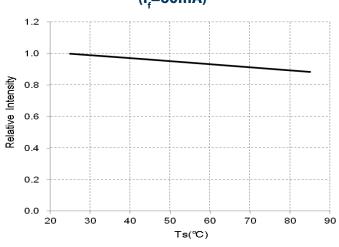
Case temperature vs Relative Forward Voltage (

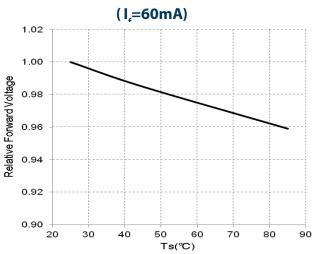


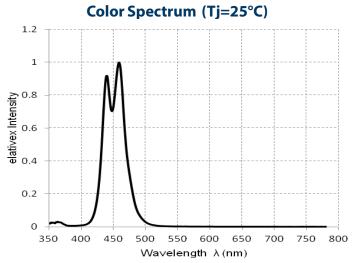
TYPICAL OPTICAL/ELECTRICAL CHARACTERISTICS GRAPHS-FAR RED

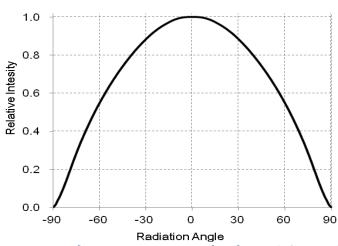


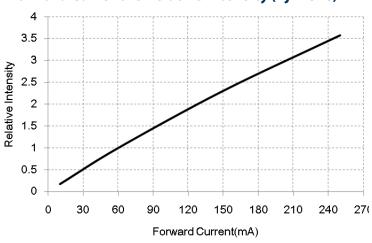

Viewing Angle Distribution (Tj=25°C)

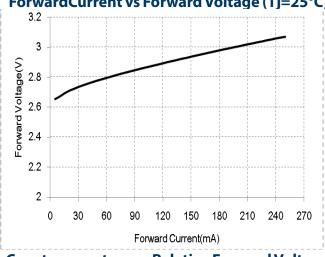

Forward Current vs Relative Intensity (Tj=25°C)

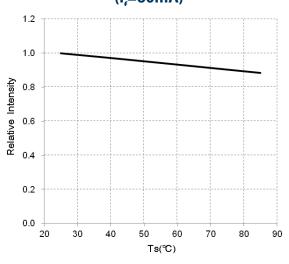

ForwardCurrent vs Forward Voltage (Tj=25°C)

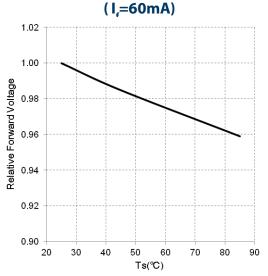

Case Temperature vs Relative Luminous flux (I,=60mA)


Case temperature vs Relative Forward Voltage

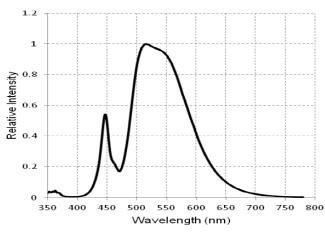

TYPICAL OPTICAL/ELECTRICAL CHARACTERISTICS GRAPHS-BLUE



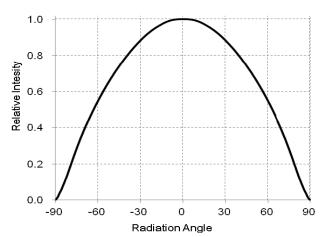



ForwardCurrent vs Forward Voltage (Tj=25°C)

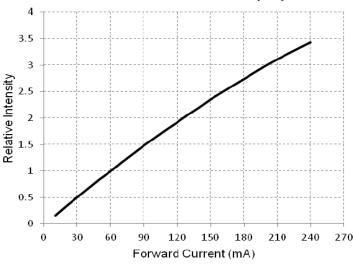
Case Temperature vs Relative Luminous flux (I,=60mA)

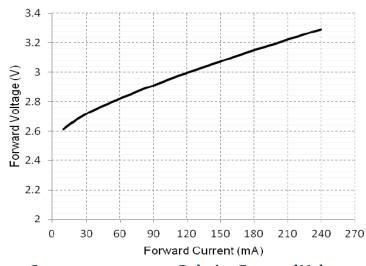


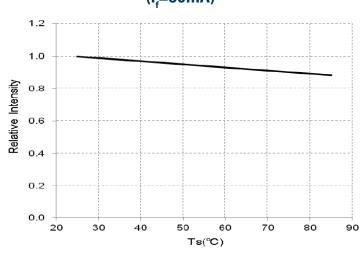
Case temperature vs Relative Forward Voltage

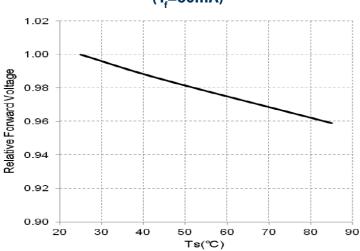


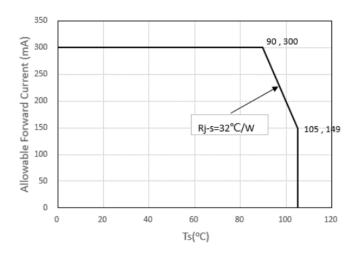
TYPICAL OPTICAL/ELECTRICAL CHARACTERISTICS GRAPHS-GREEN

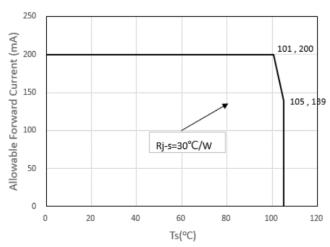


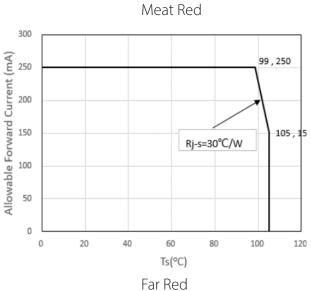

Viewing Angle Distribution (Tj=25°C)

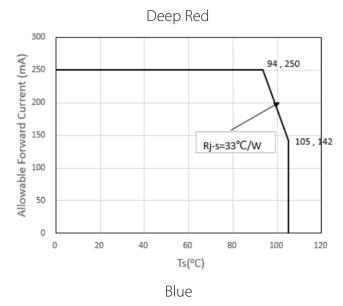

Forward Current vs. Relative Intensity (Tj=25°C)

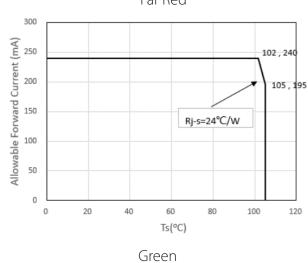

ForwardCurrent vs. Forward Voltage (Tj=25°C)

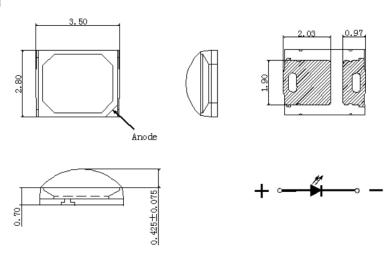

Case Temperature vs Relative Luminous flux (I,=60mA)

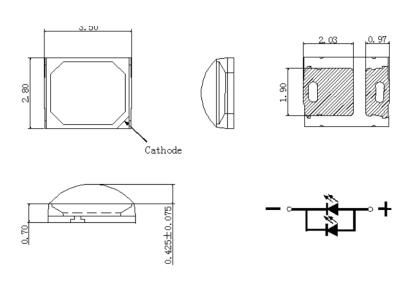



Case temperature vs. Relative Forward Voltage (I_c=60mA)

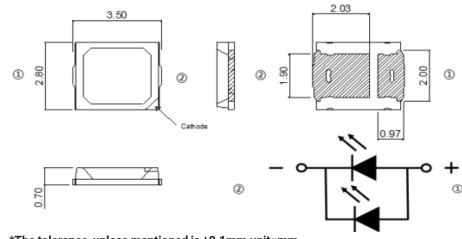



ALLOWABLE FORWARD CURRENT VS SOLEDER POINT TEMPERTURE

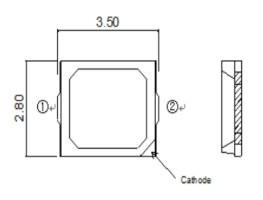


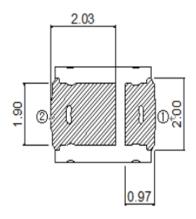


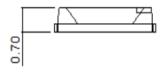
PACKAGE DIMENSION (mm)


Deep Red/FarRed

Blue

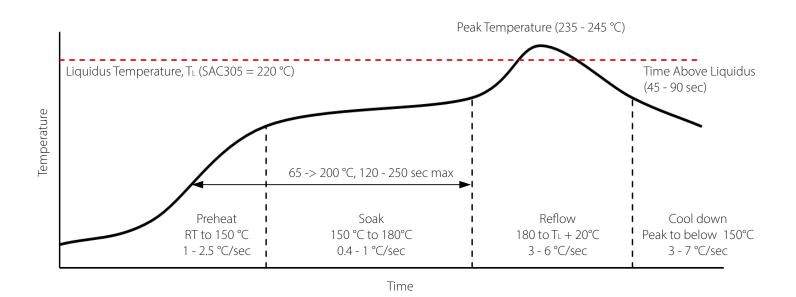

Meat Red




*The tolerance unless mentioned is ± 0.1 mm,unit=mm

PACKAGE DIMENSION (mm)

Green



SOLDER PROFILE

SMT Rework Guideline	Manual Hotplate Reflow	Hot Air Gun Reflow		
Heating Time	< 60 sec			

Note 1: Product complies to Moisture Sensitivity Level 3 (MSL 3).

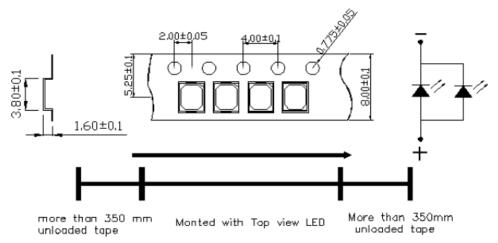
Note 2: The numbers in the table are specific to SAC305. Luminus recommends using an SAC305 solder paste with a no-clean flux for RoHS compliant products

Note 3: During the pick and place process, axial forces on the dome (or window) should not exceed 0.5 Newtons (N).

Note 4: Use of a multi-zone IR reflow oven with a nitrogen blanket is recommended.

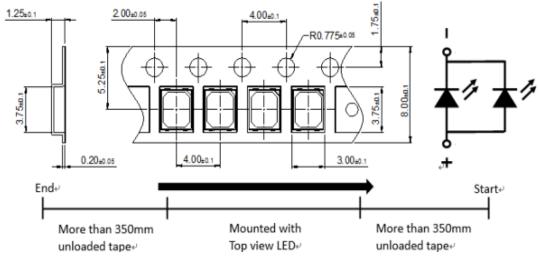
Note 5: Time-temperature profile of the reflow process showing the four functional profile zones are defined in IPC-7801. Temperature is referenced to the center of the PCB.

Note 6: Luminus recommends to use the solder paste data sheet information as a starting point in time-temperature process development.


Note 7: These are general guidelines. Consult the solder paste manufacturer's datasheet for guidelines specific to the alloy and flux combination used in your application. For more information, please refer to:

https://luminusdevices.zendesk.com/hc/en-us/articles/360060306692-How-do-I-Reflow-Solder-Luminus-SMD-Components-

Note 8: For any technical questions about soldering process, please contact Luminus at techsupport@luminus.com.


Package Dimensions of Reel (mm)

Blue

^{*}Quantity:Max 2000pcs/Reel.

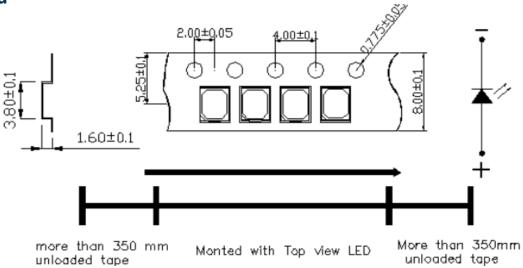
Meat Red

^{*}Quantity:Max 4000pcs/Reel.

^{*}Cumulative Tolerance:Cumulative Tolerance/10 pitiches to be ±0.2mm.

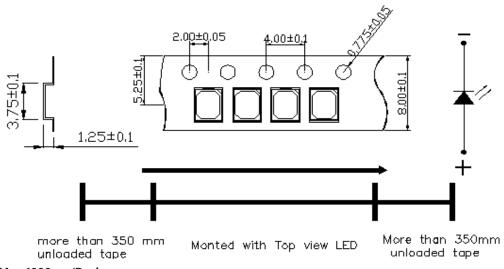
^{*}Package:P/N,Manufacturing data Code No. and Quantity to be indicated on a damp proof Package.

^{*}unit=mm.


^{*}Cumulative Tolerance:Cumulative Tolerance/10 pitiches to be ±0.2mm.

^{*}Package:P/N,Manufacturing data Code No. and Quantity to be indicated on a damp proof Package.

^{*}unit=mm.


Package Dimensions of Reel (mm)

Deep Red/Far Red

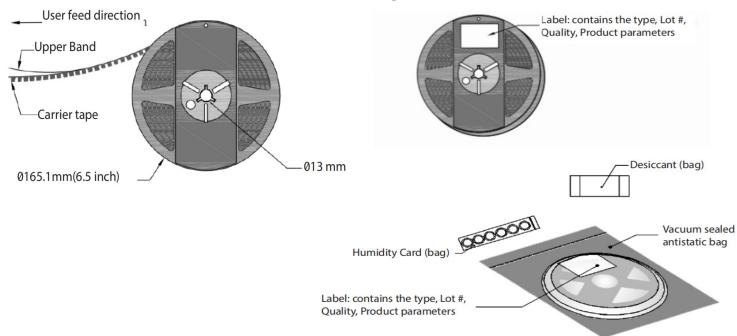
^{*}Quantity:Max 2000pcs/Reel.

Green

^{*}Quantity:Max 4000pcs/Reel.

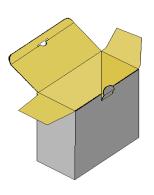
^{*}Cumulative Tolerance:Cumulative Tolerance/10 pitiches to be ±0.2mm.

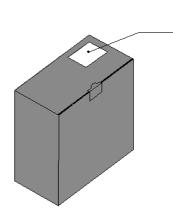
^{*}Package:P/N,Manufacturing data Code No. and Quantity to be indicated on a damp proof Package.


^{*}unit=mm.

^{*}Cumulative Tolerance:Cumulative Tolerance/10 pitiches to be ±0.2mm.

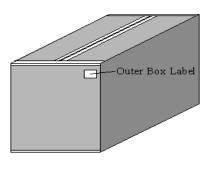
^{*}Package:P/N,Manufacturing data Code No. and Quantity to be indicated on a damp proof Package.


^{*}unit=mm.

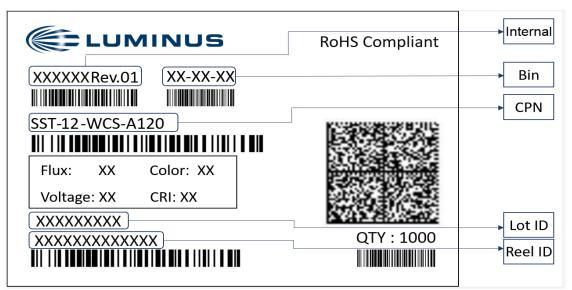

PACKAGING REEL

PACKAGE BOX

Packaging Box



Label: contains the type, Lot #, Quality, Product parameters


Capacity 5 or 10 reels per box

Shipping Box

LABEL

PRECAUTION FOR USE

STORAGE

1.1 Before opening the package

The LEDs should be kept at <40°C & <90%RH. The LEDs should be used within a year. When storing the LEDs, moisture proof package with absorbent material (silica gel) is recommended.

1.2 After opening the package

The LEDs should be kept at \leq 30 °C & \leq 60%RH. The LEDs should be soldered within 72 hours (3 days) after opening the moisture proof package.

If unused LEDs remain, they should be stored in moisture proof packages, such as sealed containers with moisture proof package within absorbent material (silica gel). It is also recommended to return the unused LEDs to the original moisture proof package and to seal the moisture proof package again.

If the moisture absorbent material (silica gel) vapors or expires the expiration date, baking treatment should be performed by using the following conditions: 60 °C for 20 hours.

The LEDs electrode and leadframe comprise a silver plated copper alloy. The silver surface may be affected by environments. Please avoid conditions which may cause the LEDs being corroded or discolored. The corrosion or discoloration might lower solderability or affect optical characteristics.

Please avoid rapid transition in ambient temperature, especially in high humidity environments where condensation can occur.

STATIC ELECTRICITY

The products are sensitive to static electricity and highly taken care when handling them.

Static electricity or surge voltage will damage the LEDs. It is recommended to wear an anti-electrostatic wristband or an anti-electrostatic glove when handling the LEDs.

All devices, equipment and machinery must be properly grounded. It is recommended that measures be taken against surge voltage to the equipment that mounts the LEDs.