

N-Channel JFET, 15 V, 10 to 32 mA, 38 mS

NSVJ2394SA3

Automotive JFET designed for compact and efficient designs and including high gain performance. AEC-Q101 qualified JFET and PPAP capable suitable for automotive applications.

Features

- Large | yfs |
- Small Ciss
- This Small Package Enables Sets to be Smaller and Thinner
- Ultralow Noise Figure
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

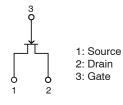
- AM Tuner RF Amplifier
- Low Noise Amplifier

Specifications

ABSOLUTE MAXIMUM RATINGS (at $T_A = 25^{\circ}C$)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSX}	15	V
Gate-to-Drain Voltage	V _{GDS}	-15	V
Gate Current	I _G	10	mA
Drain Current	I _D	50	mA
Allowable Power Dissipation	P_{D}	200	mW
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



MARKING DIAGRAM

YJ = Specific Device Code

ELECTRICAL CONNECTION

N-Channel

ORDERING INFORMATION

Device	Package	Shipping [†]
NSVJ2394SA3T1G	SC-59/CP3 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NSVJ2394SA3

ELECTRICAL CHARACTERISTICS (at $T_A = 25^{\circ}C$)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Gate-to-Drain Breakdown Voltage	V _{(BR)GDS}	$I_G = -10 \mu A, V_{DS} = 0 V$	-15	-	-	V
Gate Cutoff Current	I _{GSS}	V _{GS} = -10 V, V _{DS} = 0 V	=	-	-1.0	nA
Cutoff Voltage	V _{GS(off)}	$V_{DS} = 5 \text{ V}, I_D = 100 \mu\text{A}$	-0.3	-0.7	-1.5	V
Drain Current	I _{DSS}	V _{DS} = 5 V, V _{GS} = 0 V	10	-	32	mA
Forward Transfer Admittance	yfs	V _{DS} = 5 V, V _{GS} = 0 V, f = 1 kHz	20	38	-	mS
Input Capacitance	Ciss	V _{DS} = 5 V, V _{GS} = 0 V, f = 1 MHz	=	10	-	pF
Reverse Transfer Capacitance	Crss		-	2.9	-	pF
Noise Figure	NF	$V_{DS} = 5 \text{ V}$, $Rg = 1 \text{ k}\Omega$, $I_D = 1 \text{ mA}$, $f = 1 \text{ kHz}$	-	1.0	-	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NSVJ2394SA3

TYPICAL CHARACTERISTICS

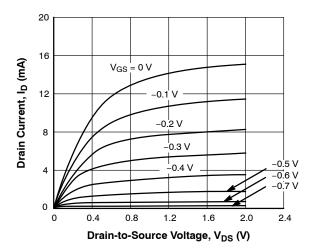


Figure 1. I_D - V_{DS}

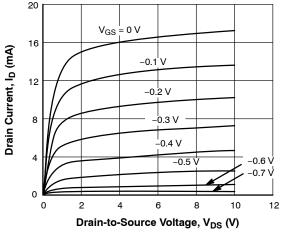


Figure 2. I_D – V_{DS}

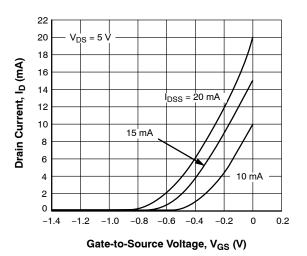


Figure 3. I_D - V_{GS}

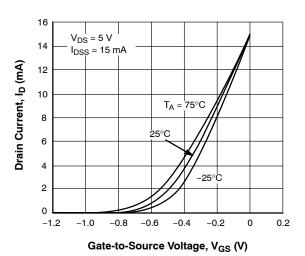


Figure 4. I_D - V_{GS}

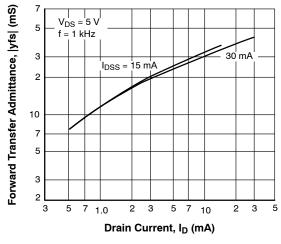


Figure 5. |yfs| - I_D

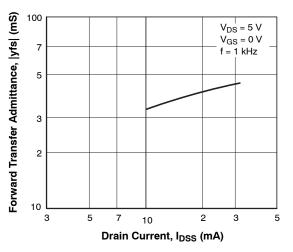


Figure 6. |yfs| - I_{DSS}

NSVJ2394SA3

TYPICAL CHARACTERISTICS (CONTINUED)

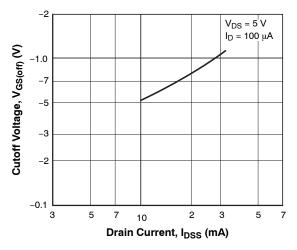


Figure 7. V_{GS(off)} - I_{DSS}

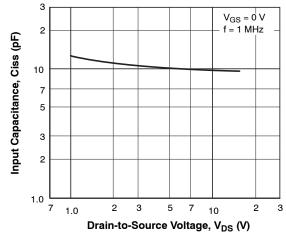


Figure 8. Ciss - V_{DS}

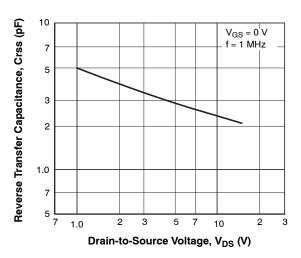


Figure 9. Crss - V_{DS}

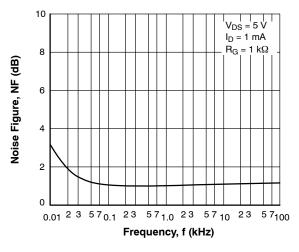


Figure 10. NF - f

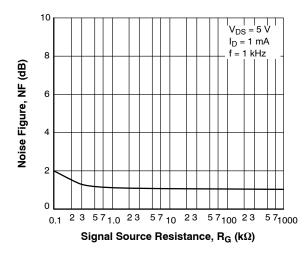


Figure 11. NF - R_G

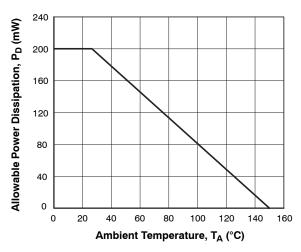


Figure 12. P_D - T_A

MECHANICAL CASE OUTLINE

3X L

зх b

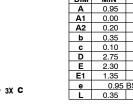
⊕ 0.10 M C A

C SEATING PLANE

Α

E1

е


SC-59 / CP3 CASE 318BJ **ISSUE O**

DATE 09 JAN 2015

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER SIDE.
 4. DIMENSIONS D AND E1 ARE MEASURED AT THE OUTERMOST
- EXTREME OF THE PLASTIC BODY.
 DIMENSIONS 6 AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 AND 0.20 FROM THE TIP.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.95	1.35	
A1	0.00	0.10	
A2	0.20	0.40	
b	0.35	0.50	
С	0.10	0.20	
D	2.75	3.05	
E	2.30 2.70		
E1	1.35 1.65		
е	0.95 BSC		
_	0.35	0.75	


END VIEW

RECOMMENDED **SOLDERING FOOTPRINT***

SIDE VIEW

Δ1

TOP VIEW

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM

XXX = Specific Device Code

Μ = Date Code

= Pb-Free Package

(Note: Microdot may be in either location) *This information is generic. Please refer to

device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON94458F	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-59 / CP3		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales