

80MHz Low-Power SC-70 Op Amp

General Description

The MIC920 is a high-speed operational amplifier with a gain-bandwidth product of 80MHz. The part is unity gain stable. It has a very low 550μ A supply current, and features the SC-70 package.

Supply voltage range is from $\pm 2.5V$ to $\pm 9V$, allowing the MIC920 to be used in low-voltage circuits or applications requiring large dynamic range.

The MIC920 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC920 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables.

Features

- 80MHz gain bandwidth product
- 115MHz –3dB bandwidth
- 550µA supply current
- SC-70 or SOT-23-5 packages
- 3000V/µs slew rate
- Drives any capacitive load
- Unity gain stable

Applications

- Video
- Imaging
- Ultrasound
- Portable equipment
- Line drivers

Ordering Information

Part Number				Ambient Temperature	Baakaga	
Standard	Marking	Pb-Free	Marking	Ambient Temperature	Package	
MIC920BM5	A37			–40°C to +85°C	SOT-23-5*	
MIC920BC5	A37	MIC920YC5	<u>A</u> 37	–40°C to +85°C	SC-70-5	

* Contact factory for availability of SOT-23-5 package. Note: Underbar marking may not be to scale.

Pin Configuration

SOT-23-5 or SC-70

Functional Pinout

SOT-23-5 or SC-70

Pin Description

Pin Number	Pin Name	Pin Function
1	IN+	Noninverting Input
2	V–	Negative Supply (Input)
3	IN–	Inverting Input
4	OUT	Output: Amplifier Output
5	V+	Positive Supply (Input)

Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Absolute Maximum Ratings (Note 1)

Supply Voltage $(V_{V+} - V_{V-})$
Differentail Input Voltage ($ V_{IN+} - V_{IN-} $)
Input Common-Mode Range (V _{IN+} , V _{IN})V _{V+} to V _{V-}
Lead Temperature (soldering, 5 sec.)
Storage Temperature (T _S) 150°C
ESD Rating, Note 4 1.5kV

Operating Ratings (Note 2)

Supply Voltage (V _S)	±2.5V to ±9V
Junction Temperature (T _J)	40°C to +85°C
Package Thermal Resistance	
SOT-23-5	260°C/W
SC-70-5	450°C/W

Electrical Characteristics (±5V)

(/	0V, R_L = 10MΩ; T_J = 25°C, bc	d values indicate 10°C < T	< ±85°C: unloss noted
$v_{\pm} = \pm 5v, v_{\pm} = -5v, v_{CM} =$	0° , $n_{1} = 10^{\circ}$ 1° , 1° = 20 0, D	nu values multate -40 C \ge T	$1 \simeq \pm 00$ C, unless noted.
	· L · J ·		-

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OS}	Input Offset Voltage			0.43	5	mV
V _{OS}	V _{OS} Temperature Coefficient			1		μV/°C
I _B	Input Bias Current			0.26	0.6	μA
	Input Offset Current			0.04	0.3	μA
V _{CM}	Input Common-Mode Range	CMRR > 72dB	-3.25		+3.25	V
CMRR	Common-Mode Rejection Ratio	-2.5V < V _{CM} < +2.5V	75	85		dB
PSRR	Power Supply Rejection Ratio	±3.5V < V _S < ±9V	95	104		dB
A _{VOL}	Large-Signal Voltage Gain	$R_L = 2k, V_{OUT} = \pm 2V$	65	82		dB
		R _L = 100Ω, V _{OUT} = ±1V		85		dB
V _{OUT}	Maximum Output Voltage Swing	positive, $R_L = 2k\Omega$	+3.0	3.6		V
		negative, $R_L = 2k\Omega$		-3.6	-3.0	V
		positive, $R_L = 200\Omega$	+1.5	3.0		V
		negative, $R_L = 200\Omega$, Note 5		-2.5	-1.0	V
GBW	Unity Gain-Bandwidth Product	C _L = 1.7pF		67		MHz
PM	Phase Margin			32		°
BW	–3dB Bandwidth	Av = 1, R _L = 1kΩ, C _L = 1.7pF		100		MHz
SR	Slew Rate	C=1.7pF, Gain=1, V _{OUT} =5V, peak to peak, positive SR = 1190V/µs		1350		V/µs
I _{SC}	Short-Circuit Output Current	source	45	63		mA
		sink	20	45		mA
I _S	Supply Current	No Load		0.55	0.80	mA
	Input Voltage Noise	f = 10kHz		11		V/√Hz
	Input Current Noise	f = 10kHz		0.7		A/√Hz

Electrical Characteristics

 $V+=+9V, V-=-9V, V_{CM}=0V, R_{L}=10M\Omega; T_{J}=25^{\circ}C, \text{ bold } \text{values indicate } -40^{\circ}C \leq T_{J} \leq +85^{\circ}C; \text{ unless noted } T_{J} \leq +85^{\circ}C; \text{ and } T_{J} \leq +85^{\circ}C; \text{ an$

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OS}	Input Offset Voltage			0.3	5	mV
V _{OS}	Input Offset Voltage Temperature Coefficient			1		µV/°C
I _B	Input Bias Current			0.23	0.60	μA
I _{OS}	Input Offset Current			0.04	0.3	μA
V _{CM}	Input Common-Mode Range	CMRR > 75dB	-7.25		+7.25	V
CMRR	Common-Mode Rejection Ratio	-6.5V < V _{CM} < +6.5V	60	91		dB
PSRR	Power Supply Rejection Ratio	±3.5V < V _S < ±9V	95	104		dB

Micrel, Inc.

Symbol	Parameter	Condition	Min	Тур	Max	Units
A _{VOL}	Large-Signal Voltage Gain	$R_L = 2k, V_{OUT} = \pm 2V$	75	84		dB
		R _L = 100Ω, V _{OUT} = ±1V		93		dB
V _{OUT}	Maximum Output Voltage Swing	positive, $R_L = 2k\Omega$	6.5	7.5		V
		negative, $R_L = 2k\Omega$		-7.5	-6.2	V
GBW	Unity Gain-Bandwidth Product	C _L = 1.7pF		80		MHz
PM	Phase Margin			30		0
BW	–3dB Bandwidth	$A_V = 1, R_L = 1k\Omega, C_L = 1.7pF$		115		MHz
SR	Slew Rate	C=1.7pF, Gain=1, V _{OUT} =5V, peak to peak, negative SR = 2500V/µs		3000		V/µs
I _{SC}	Short-Circuit Output Current	source	50	65		mA
		sink	30	50		mA
I _S	Supply Current	No Load		0.55	0.8	mA
	Input Voltage Noise	f = 10kHz		10		V/√Hz
	Input Current Noise	f = 10kHz		0.8		A/√Hz

Note 1. Exceeding the absolute maximum rating may damage the device.

Note 2. The device is not guaranteed to function outside its operating rating.

Note 3. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to change).

Note 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.

Note 5. Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in "Typical Characteristics."

Test Circuits

PSRR vs. Frequency

CMRR vs. Frequency

Noise Measurement

Closed Loop Frequency Response Measurement

Typical Characteristics

Closed-Loop Frequency

Response

±9.0\

25

20

15

10

0

(dB) 5

200 400 600 800 10 LOAD CAPACITANCE (pF)

1000

10 100

Positive PSRR

vs. Frequency

ν± +9\

11111

10k

1k

120

100

80

60

40

20

0

0.1

PSRR (dB)

Small Signal Response

8

TIME (50ns/div)

Large Signal Reponse

Applications Information

The MIC920 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable, capable of driving high capacitance loads.

Driving High Capacitance

The MIC920 is stable when driving high capacitance, making it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive limited capacitance.

> Note: increasing load capacitance does reduce the speed of the device. In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100 Ω) in series with the output.

Feedback Resistor Selection

Conventional op amp gain configurations and resistor selection apply, the MIC920 is NOT a current feedback device.

Also, for minimum peaking, the feedback resistor should have low parasitic capacitance, usually 470Ω is ideal. To use the part as a follower, the output should be connected to input via a short wire.

Layout Considerations

All high speed devices require careful PCB layout. The following guidelines should be observed: Capacitance, par-ticularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane.

It is important to ensure adequate supply bypassing capacitors are located close to the device.

Power Supply Bypassing

Regular supply bypassing techniques are recommended. A 10μ F capacitor in parallel with a 0.1μ F capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resis-tance). Surface-mount ceramic capacitors are ideal.

Thermal Considerations

The SC70-5 package and the SOT-23-5 package, like all small packages, have a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85°C. The part can be operated up to the absolute maximum temperature rating of 125°C, but between 85°C and 125°C performance will degrade, in par-ticular CMRR will reduce.

An MIC920 with no load, dissipates power equal to the quiescent supply current \times supply voltage

$$P_{D(no \ load)} = \left(V_{V+} - V_{V-} \right) I_{S}$$

When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current.

$$P_{D(output stage)} = (V_{V+} - V_{OUT}) I_{OUT}$$

Total Power Dissipation = P_{D(no load)} + P_{D(output stage)}

Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SC70-5 package has a thermal resistance of 450°C/W.

Max. Allowable Power Dissipation =
$$\frac{T_{J(max)} - T_{A(max)}}{450^{\circ}C/W}$$

Package Information

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2001 Micrel, Inc.