

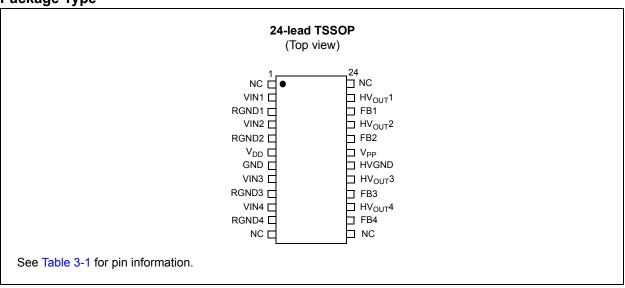
Quad High-Voltage Amplifier Array

Features

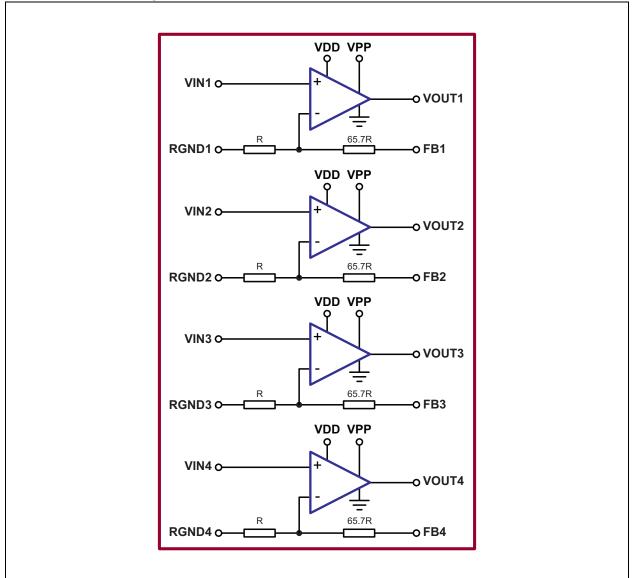
- · Four Independent High-Voltage Amplifiers
- · 215V Output Swing
- · 9V/µs Typical Output Slew Rate
- · 66.7V/V Fixed Gain
- · High-Value Internal Feedback Resistors
- · Very Low Operating Current

Applications

- · Tunable Laser
- · Microelectromechanical Systems (MEMS) Driver
- · Test Equipment
- · Piezoelectric Transducer Driver
- Braille Driver


General Description

The HV264 is a quad high-voltage amplifier array integrated circuit. It operates on a 225V high-voltage supply and a 5V low-voltage supply. Each channel has its own input and output.


When both V_{OUT} and FB pins are connected together and RGND is set at 0V, a non-inverting amplifier is formed with a closed-loop gain of 66.7V/V. High-value internal feedback resistors are used to minimize power dissipation. The input voltage V_{IN} is designed for a range of 0.05V to 3.22V. The output can swing from 1V to V_{PP} =10V. A 3.22V input will cause the output to swing to 215V.

The HV264 is designed for maximum performance with minimal high-voltage current. The high-voltage current for each channel is less than 75 μ A. The typical output slew rate performance is 9V/ μ s.

Package Type

Functional Block Diagram

HV264 VIN HVOUT RGND R KR FB

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

High-Voltage Supply, V _{PP}	JV
Low-Voltage Supply, V _{DD}	
Output Voltage, HV _{OUT}	PP
Analog Input Signal, V _{IN}	
Maximum Junction Temperature, T _{.1} +150	
Storage Temperature, T _S –65°C to +150°	
ESD Rating (Note 1) ESD Sensitiv	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: Device is ESD sensitive. Handling precautions are recommended.

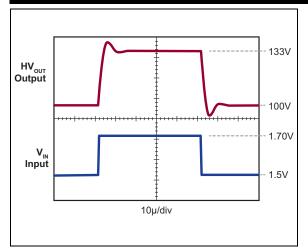
RECOMMENDED OPERATING CONDITIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
High-Voltage Positive Supply	V_{PP}	50	_	225	V	
Low-Voltage Positive Supply	V_{DD}	4.5	5	5.5	V	
Input Ground Range	R_{GND}	0	0	V_{DD}	V	
V _{PP} Supply Current	I _{PP}	_	_	300	μA	V _{PP} = 200V, all inputs at 0V
V _{DD} Supply Current	I_{DD}	_		5	mA	V _{DD} = 5.5V
Operating Ambient Temperature	T _A	-40	_	+125	°C	
Operating Junction Temperature	TJ	-40		+125	°C	

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over operating conditions unless otherwise noted, T _J = +25°C.							
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions	
HV _{OUT} Voltage Swing	HV _{OUT}	1	_	V _{PP} -10	V	No load	
HV _{OUT} Sink Current	I _{SINK}	3	_	_	mA		
HV _{OUT} Source Current	I _{SOURCE}	3	_	_	mA		
Input Voltage Range	V _{IN}	0	_	V _{DD} -1.5	V		
V _{IN} Input Current	I _{IN}	_	_	50	nA		
H _{VOUT} DC Offset	HV _{OS}	_	_	±1	V	V _{IN} = 0.2V	

AC ELECTRICAL CHARACTERISTICS


Electrical Specifications: Over operating conditions unless otherwise noted, T _J = 25°C.							
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions	
HV _{OUT} Slew Rate–Rising Edge		5	9	30	V/µs	V _{PP} = 200V,	
HV _{OUT} Slew Rate–Falling Edge	SR	_	9	_	V/µs	Load = 15 pF, measured between 10% to 90% of HV _{OUT}	
Feedback Impedance, R _f + R _i	R _{FB}	3.5	5.3	_	ΜΩ		
Closed-Loop Gain	A _V	63.4	66.7	70	V/V		
HV _{OUT} –3 dB Channel Bandwidth	BW	25	_	_	kHz	V _{PP} = 200V, Load = 15 pF	
HV _{OUT} Capacitive Load	C _{LOAD}	0	_	15	pF		
Output Referred Noise	V _N	_		10	mV _{RMS}	$\begin{array}{l} \mbox{Measured at HV}_{\mbox{OUT}}, \\ \mbox{0 kHz to 1 kHz single} \\ \mbox{pole, V}_{\mbox{IN}} = 0.2 \mbox{V} \end{array}$	
V _{DD} Power Supply Rejection Ratio	PSRR1	55		_	dB	$V_{DD} = 4.5V \text{ to } 5.5V$ $V_{PP} = 200V,$ $V_{IN} = 0.1V$	
V _{PP} Power Supply Rejection Ratio	PSRR2	60	_	_	dB	$V_{DD} = 5V,$ $V_{PP} = 50V \text{ to } 200V,$ $V_{IN} = 0.1V$	
Crosstalk	Xtalk	_	_	-80	dB	Output referred	

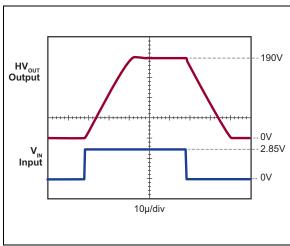
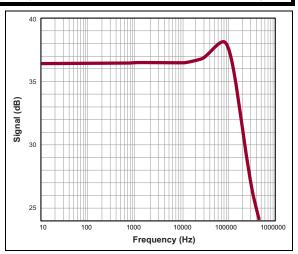
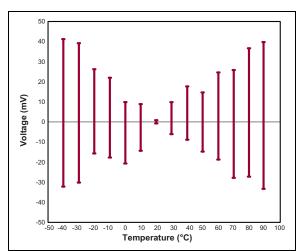
TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions	
Temperature Range							
Operating Ambient Temperature	T _A	-40	_	+125	°C		
Operating Junction Temperature	TJ	-40	_	+125	°C		
Storage Temperature	T _S	-65	_	+150	°C		
Package Thermal Resistance							
24-lead TSSOP	θ_{JA}	_	+72	_	°C/W		

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Typical Small-Signal Pulse Response.

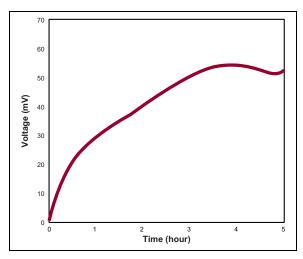

FIGURE 2-2: Typical Large-Signal Pulse Response.

FIGURE 2-3: Typical Bode Plot of Small-Signal Gain (V_{IN} = 0.2 V_{P-P} , V_{DC} = 1.5V, V_{DD} = 5V and V_{PP} = 200V).

FIGURE 2-4: Distribution of Typical HV_{OUT} Deviation over Temperature $(V_{IN} = 0.1 \ V_{DC}, \ 1.6 \ V_{DC}, \ 3.3 \ V_{DC}, \ in \ Reference to +20°C).$

FIGURE 2-5: Typical HV_{OUT} Drift Over Time (V_{PP} = 200V, V_{DD} = 5.5V, V_{IN} = 0.2V, Room Temperature and 50 pF Output Loading).

3.0 PIN DESCRIPTION

The pin details are listed in Table 3-1. Refer to **Section "Package Type"** for the location of the pins.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	NC	No connection
2	VIN1	Amplifier Input 1
3	RGND1	Resistor ground for Channel 1. Typically grounded. Can be connected to a voltage source to create a DC offset.
4	VIN2	Amplifier Input 2
5	RGND2	Resistor ground for Channel 2. Typically grounded. Can be connected to a voltage source to create a DC offset.
6	V_{DD}	Low-Voltage positive supply
7	GND	Device ground
8	VIN3	Amplifier Input 3
9	RGND3	Resistor ground for Channel 3. Typically grounded. Can be connected to a voltage source to create a DC offset.
10	VIN4	Amplifier Input 4
11	RGND4	Resistor ground for Channel 4. Typically grounded. Can be connected to a voltage source to create a DC offset.
12	NC	No connection
13	NC	No connection
14	FB4	Feedback Input 4
15	HVOUT4	Amplifier Output 4
16	FB3	Feedback Input 3
17	HVOUT3	Amplifier Output 3
18	HVGND	Device high-voltage supply ground
19	V_{PP}	High-Voltage positive supply
20	FB2	Feedback Input 2
21	HVOUT2	Amplifier Output 2
22	FB1	Feedback Input 1
23	HVOUT1	Amplifier Output 1
24	NC	No connection

4.0 FUNCTIONAL DESCRIPTION

4.1 Power-Up/Power-Down Sequence

The device can be damaged due to an improper power-up/power-down sequence. To avoid this, please follow the acceptable power-up and power-down sequences in Table 4-1 and Table 4-2 and add an external diode across V_{PP} and V_{DD} where the anode of the diode is connected to V_{PD} and the cathode of the diode is connected to V_{PP} . Any low-current high-voltage diode such as a 1N4004 will be adequate.

TABLE 4-1: ACCEPTABLE POWER-UP SEQUENCES

	Option 1	Option 2				
Step	Description	Step	Description			
1	V_{DD}	1	V_{DD}			
2	V _{PP}	2	Inputs			
3	Inputs	3	V_{PP}			

TABLE 4-2: ACCEPTABLE POWER-DOWN SEQUENCES

	Option 1	Option 2				
Step	Description	Step	Description			
1	Inputs	1	V _{PP}			
2	V_{PP}	2	Inputs			
3	V_{DD}	3	V_{DD}			

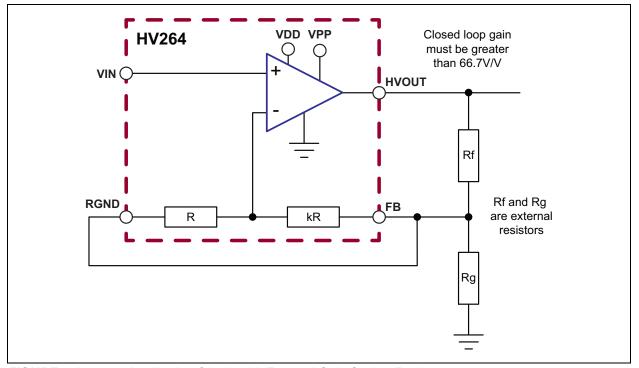
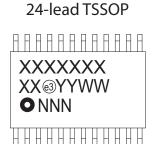
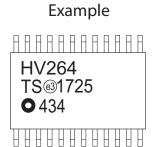
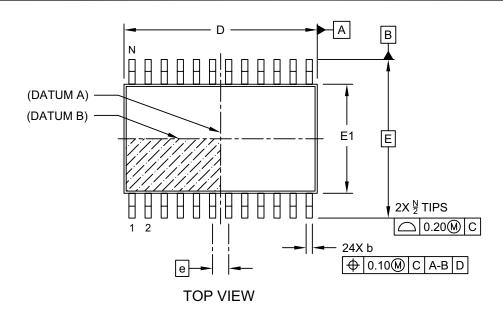




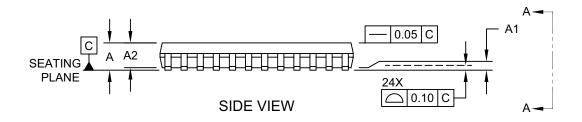
FIGURE 4-1: Application Circuit with External Gain Setting Resistors.

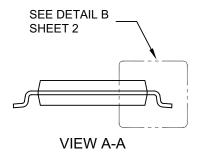
5.0 PACKAGE MARKING INFORMATION

5.1 Packaging Information

Legend: XX...X Product Code or Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code

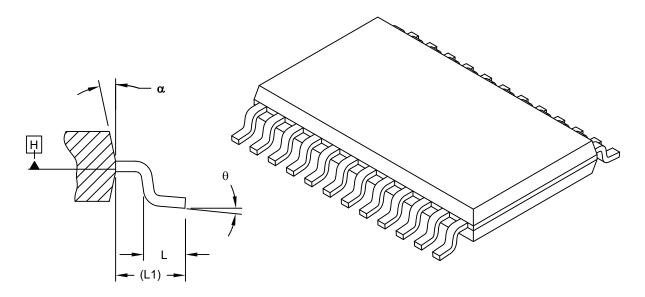

Byb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator (e3)
can be found on the outer packaging for this package.


In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.


Note:

24-Lead Thin Shrink Small Outline Package (QE) - 4.40 mm Body [TSSOP] Supertex Legacy & Micrel Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-284A Sheet 1 of 2

24-Lead Thin Shrink Small Outline Package (QE) - 4.40 mm Body [TSSOP] Supertex Legacy & Micrel Legacy Package

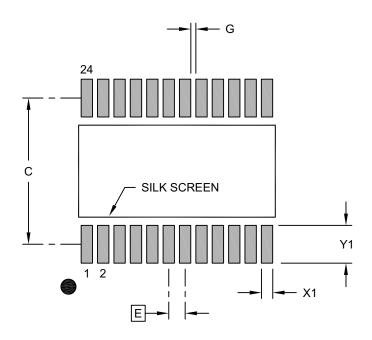
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	N		24		
Lead Pitch	е		0.65 BSC		
Overall Height	Α	0.85	-	1.20	
Standoff	A1	0.05	0.15		
Molded Package Thickness	A2	0.80	1.15		
Foot Length	L	0.45	0.75		
Footprint	L1	1.00 REF			
Foot Angle	θ	0° 4° 8°			
Overall Width	E		6.40 BSC		
Overall Length	D	7.70 7.80 7.90			
Molded Package Width	E1	4.30	4.40	4.50	
Lead Width	b	0.19 - 0.30			
Mold Draft Angle Top	α	12° REF			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-284A Sheet 2 of 2

24-Lead Thin Shrink Small Outline Package (QE) - 4.40 mm Body [TSSOP] Supertex Legacy & Micrel Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimensior	Dimension Limits			MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		5.80	
Contact Pad Width (X24)	X1			0.45
Contact Pad Length (X24)	Y1			1.50
Contact Pad to Center Pad (X20)	G1	0.20		

Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2284A

NOTES:

APPENDIX A: REVISION HISTORY

Revision B (February 2019)

- Updated Section "Features"
- Updated Section "General Description"
- Updated Section 1.0 "Electrical Characteristics"
- Updated Section 5.0 "Package Marking Information"
- · Minor typographical edits

Revision A (August 2017)

- Converted Supertex Doc# DSFP-HV264 to Microchip DS20005832B
- Changed the part marking format
- Made minor text changes throughout the document

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>xx</u>	- <u>X</u> - <u>X</u>	Exa	ample:	
Device	Package Options	Environmental Media Type	a)	HV264TS-G:	Quad High-Voltage Amplifier Array, 24-lead TSSOP, 2500/Reel
Device:	HV264	· Quad High-Voltage Amplifier Array			
Package:	TS	24-lead TSSOP			
Environmental:	G	Lead (Pb)-free/RoHS-compliant Package			
Media Type:	(blank)	2500/Reel for a TS Package			

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net. PICkit, PICtail, PowerSmart, PureSilicon. QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-4123-6

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 **Korea - Seoul** Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286 **Netherlands - Drunen** Tel: 31-416-690399

Fax: 31-416-690340 **Norway - Trondheim** Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820