GENERAL DESCRIPTION

The NJU77903 is CMOS operational amplifier combines full swing input and output with operating up to 36V.

It outputs typically up to 200mA of peak-to-peak current to drive low resistance load including inductance load such as Angle resolver, Lineout cable and Piezo actuator.

In addition, it has enhanced RF noise immunity.

■ FEATURES

- High output current
- Wide Operating Temperature
- Rail-to-Rail Input / Output
- Enhanced RF noise immunity
- Wide Operating Voltage
- Supply Current
- Open Loop Gain
- Input Bias Current
- Slew Rate
- Unity Gain Frequency
- Current Limit
- Package Outline

±100mA typ. (200mApp typ.)

- Topr = -40° C to $+125^{\circ}$ C

- Thermal shutdown

6.8V to 36V 9.5mA typ.

- 100dB typ. 1pA typ.
- 3.5V/µs typ.
- 1.5MHz typ.
 - TO252-5 DFN8-W2 (ESON8-W2/Size: 3mm x 3mm)

- Angle Resolver
- Motor Driver
- Speaker Driver
- 4mA to 20mA Transmitter
- Liner Power Booster

PIN CONFIGURATION

NJU77903DL3 PIN CONFIGURATION

- 1 V
- 2 OUTPUT
- 3 V
- -INPUT 4
- 5 +INPUT

Exposed pad should connect with a V⁻ terminal.

NJU77903KW2 PIN CONFIGURATION

- NC 1
- 2 OUTPUT
- 3 V-
- 4 -INPUT
- 5 +INPUT
- 6 LIM2 (Output Sink Current Limit Trim Terminal)
- 7 LIM1 (Output Source Current Limit Trim Terminal)
- V⁺ 8

Exposed pad should connect with a V $\ \$ terminal.

The NC pin and The PAD have to be wired as short as possible to connect with a V⁻ terminal.

-New Japan Radio Co., Ltd.

NJU77903DL3

■ PACKAGE OUTLINE

NJU77903KW2 (DFN8-W2(ESON8-W2))

(TO252-5)

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted.)

PARAMETER	SYMBOL	RATING	UNIT	
Supply Voltage	V ⁺ - V ⁻	40	V	
Differential Input Voltage (Note 1)	V _{ID}	±36	V	
Input Voltage (Note 2)	V _{IN}	$V - 0.3$ to $V^{+} + 0.3$	V	
Input Current	I _{IN} ±10(Note 3)		mA	
Output Voltage (Note 4)	Vo	V ⁻ - 0.3 to V ⁺ + 0.3		
Power Dissipation (Note 9)		(2-layer / 4-layer)		
TO252-5	PD	1190(Note 5) / 3125(Note 6)	mW	
DFN8-W2 (ESON8-W2)		640(Note 7) / 2080(Note 8)		
Operating Temperature Range	T _{opr}	-40 to +125	°C	
Storage Temperature Range	T _{stg}	-55 to +150		

(Note1) Differential voltage is the voltage difference between +INPUT and -INPUT.

(Note2) Input voltage is the voltage should be allowed to apply to the input terminal independent of the magnitude of V⁺. The normal operation will establish when any input is within the Common Mode Input Voltage Range of electrical characteristics.

(Note3) If the input voltage exceeds the supply voltage, the input current must be limited 10 mA or less by using a restriction resistance.

(Note4) Output voltage is the voltage should be allowed to apply to the output terminal independent of the magnitude of V⁺.

(Note5) 2-layer: EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layers, FR-4) mounting

(Note6) 4-layer: EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 4layers, FR-4) mounting

(Note7) Mounted on glass epoxy board. (101.5×114.5×1.6mm: based on EIA/JEDEC standard, 2Layers FR-4, with Exposed Pad)

(Note8) Mounted on glass epoxy board. (101.5×114.5×1.6mm: based on EIA/JEDEC standard, 4Layers FR-4, with Exposed Pad)

(For 4Layers: Applying 99.5×99.5mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD51-5)

(Note9) Power dissipation is the power that can be consumed by the IC at Ta=25°C, and is the typical measured value based on JEDEC condition. When using the IC over Ta=25°C subtract the value [mW/°C] = PD / (Tstg (MAX)-25) per temperature. (Note10) The NC pin and The PAD have to be wired as short as possible to connect with a V⁻ terminal.

Figure 1 : Power Dissipation Derating Curve

RECOMMENDED OPERATING VOLTAGE

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V ⁺ -V ⁻	+6.8 to +36	V

-New Japan Radio Co., Ltd.

■ ELECTRICAL CHARACTERISTICS

(V⁺= +12V, V⁼ 0V, V_{IC}= +6V, R_L=10k Ω , Ta=25°C, unless otherwise noted.)

PARAMETER	PARAMETER	TEST CONDITION	Min.	Тур.	Max.	UNIT
INPUT CHARACTERISTICS						
Input Offset Voltage	V _{IO}	Rs=50Ω	-	1	6	mV
Input Offset Voltage Drift	ΔVio/ΔΤ	Ta = -40°C to 125°C	-	20	-	µV/⁰C
Input Bias Current	Ι _Β		-	1	-	pA
Input Offset Current	l _{io}		-	1	-	pА
Open Loop Gain	Av	V_0 =1V to 11V, R _L =10k Ω to V ⁺ /2	80	100	-	dB
Common Mode Rejection Ratio	CMR	V_{IC} =0V to 6V, V_{IC} =6V to 12V	55	75	-	dB
Common Mode Input Voltage Range	VICM	CMR≧55dB	0	-	12	v
OUTPUT CHARACTERISTICS						
Output Voltage	V	$R_L=10k\Omega$ to V ⁺ /2	11.97	11.99	-	V
	V _{OH}	Isource=100mA	11.4	11.65	-	V
	V _{OL}	$R_L=10k\Omega$ to V ⁺ /2	-	0.01	0.03	V
	¥0L	Isink=100mA	-	0.35	0.6	V
Output Source Current Limit1	Isourcelim1	[NJU77903DL3]	250	375	495	mA
		[NJU77903KW2] : LIM1=OPEN (Figure2-1)	250			
Output Source Current Limit2	ISOURCELIM2	LIM1=V ⁺ (Figure2-1) NJU77903KW2 ONLY	0	50	150	mA
Output Sink Current Limit1	Isinklimi	[NJU77903DL3]	000	375	545	mA
		[NJU77903KW2]: LIM2=OPEN (Figure2-2)	200			
Output Sink Current Limit2	I _{sinklim2}	LIM2=V (Figure2-2) NJU77903KW2 ONLY	0	40	120	mA
POWER SUPPLY						
Supply Current	I _{DD}	No Signal, RL=OPEN	-	9.5	12.5	mA
Supply Voltage Rejection Ratio	SVR	V^+ = 6.8V to 36V	70	85	-	dB
DYNAMIC PERFORMANCE						
Unity Gain Frequency	f _T	$R_L=10k\Omega$ to V ⁺ /2, C _L =10pF	-	1.5	-	MHz
Phase Margin	ФМ	R_L =10k Ω to V ⁺ /2, C _L =10pF	-	75	-	deg
Slew Rate (Note 11)	SR	G_V =0dB, R _L =10k Ω to V ⁺ /2, C _L =10pF, Vin=4Vpp (4V to 8V)	2.5	3.5	-	V/µs
NOISE PERFORMANCE						
Equivalent Input Noise Voltage	e _n	f=10kHz, R _S =50Ω	-	50	-	nV/√Hz
Total Harmonic Distortion + Noise	THD	G _V =6dB, R _F =10kΩ, R _L =10kΩ, C _L =10pF, Vo=2Vpp, f=10kHz	-	0.03	-	%

(Note 11) Number specified is the slower of the positive and negative slew rates.

-New Japan Radio Co.,Ltd.-

■ ELECTRICAL CHARACTERISTICS

(V⁺= +15V, V⁻= -15V, V_{IC}= 0V, R_L =10k Ω , Ta=25°C, unless otherwise noted.)

PARAMETER	PARAMETER	TEST CONDITION		Тур.	Max.	UNIT
INPUT CHARACTERISTICS	I				I	1
Input Offset Voltage	VIO	R _S =50Ω	-	2	8	mV
Input Offset Voltage Drift	ΔVio/ΔΤ	Ta = -40°C to 125°C	-	20	-	µV/°C
Input Bias Current	Ι _Β		-	1	-	pА
Input Offset Current	l _{io}		-	1	-	pА
Open Loop Gain	Av	V_0 =-14V to +14V, R _L =10k Ω to 0V	80	100	-	dB
Common Mode Rejection Ratio	CMR	V_{IC} =-15V to 0V, V_{IC} =0V to 15V	60	80	-	dB
Common Mode Input Voltage Range	VICM	CMR≧60dB	-15	-	15	V
OUTPUT CHARACTERISTICS	•					
Output Voltage		$R_L=10k\Omega$ to V ⁺ /2	14.97	14.99	-	V
	V _{он}	Isource=100mA	14.45	14.70	-	V
		$R_L=10k\Omega$ to V ⁺ /2	-	-14.99	-14.97	V
	Vol	Isink=100mA	-	-14.70	-14.45	V
Output Source Currrent Limit1	ISOURCELIM1	[NJU77903DL3]		400	-	mA
		[NJU77903KW2]: LIM1 terminal = OPEN , (Figure 2-1)	-			
Output Source Current		LIM1 terminal= V^+ , (Figure 2-1)				
Limit2	SOURCELIM2	NJU77903KW2 ONLY	-	60	-	mA
Output Sink Current Limit1	Isinklim1	[NJU77903DL3]:		400	-	mA
		[NJU77903KW2]: LIM2 terminal = OPEN (Figure 2-2)	-			
Output Sink Current Limit2	I _{SINKLIM2}	LIM2 terminal=V, (Figure 2-2) NJU77903KW2 ONLY	-	30	-	mA
POWER SUPPLY	•					
Supply Current	I _{DD}	No Signal, R _L =OPEN	-	12	16	mA
DYNAMIC PERFORMANCE		· · · · ·		•	•	•
Unity Gain Frequency	fT	$R_L=10k\Omega$ to V ⁺ /2, $C_L=10pF$	-	2	-	MHz
Phase Margin	Φ _M	$R_L=10k\Omega$ to V ⁺ /2, $C_L=10pF$	-	70	-	deg
Slew Rate (Note 12)	SR	G_V =0dB, R _L =10k Ω to V ⁺ /2, C _L =10pF, Vin=4Vpp (-2V to +2V)	-	4	-	V/µs
NOISE PERFORMANCE			I			
Equivalent Input Noise Voltage	en	f=10kHz, R _S =50Ω	-	50	-	nV/√Hz
Total Harmonic Distortion + Noise	THD	G _V =6dB, R _F =10kΩ, R _L =10kΩ, C _L =10pF, Vo=2Vpp, f=10kHz	-	0.03	-	%

(Note 12) Number specified is the slower of the positive and negative slew rates.

■ Output Current Limit Trim Circuit [NJU77903KW2]

Figure 2-1: Output Source Current Limit Trim

-New Japan Radio Co.,Ltd.

TYPICAL CHARACTERISTICS

-New Japan Radio Co.,Ltd.

Input Offset Voltage vs. Output Current V⁺/V⁻=±15V

New Japan Radio Co., Ltd.

-New Japan Radio Co.,Ltd.

-New Japan Radio Co.,Ltd.-

Rise

100

150

125

125

150

100

-New Japan Radio Co.,Ltd.

New Japan Radio Co., Ltd.

-New Japan Radio Co.,Ltd.

-New Japan Radio Co.,Ltd.-

-New Japan Radio Co., Ltd.

-New Japan Radio Co., Ltd.-

■ Application Note

The NJU77903 is CMOS operational amplifier that combines rail-to-rail input and output with operating up to 36V. It is able to output high current without the power booster. Therefore, the NJU77903 is suitable for the application requires high operating voltage and high output current.

This application note is one of effectual measures for understanding the dissipation power, thermal shutdown and behavior of current limit, to avoiding unexpected trebles. This application note consists of following matter.

- 1. Calculation of dissipation power
- 2. Thermal shutdown
- 3. Current limit
- 4. Resolver Excitation Circuit
- 5. Input Overvoltage Protection

This description does not assure the actual behavior. The performance of the NJU77903 should be conducted trials using actual equipment.

1. Calculation of dissipation power

The dissipation power is determined by the type of loads. It in case of resistance load and inductance load are shown respectively on this note. The symbols of supply voltage are defined as V_{DD} and V_{SS} instead of V⁺ and V⁻.

1.1 Calculation of dissipation power with resistance load

The dissipation power from the time 0 to π and it from π to 2π are calculated separately.

■ t=0 to π

Fig. 1.1 shows the internal current from 0 to π , Fig. 1.2 shows the Output current and the Output voltage from 0 to π . Io is the Output current and I_A is the current with the exception of the Output current. The dissipation power from 0 to π is expressed by the following equation.

$$P_{R1} = (V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_0^{\pi} (V_{DD} - V_O \sin \theta)I_O \sin \theta d\theta$$
$$= (V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_0^{\pi} (V_{DD} - V_O \sin \theta) \frac{V_O}{R} \sin \theta d\theta$$
$$= (V_{DD} - V_{SS})I_A + \frac{2V_{DD}V_O}{\pi R} - \frac{V_O^2}{2R}$$

Fig. 1.1 the internal current from 0 to π

Fig. 1.2 the Output current and Voltage with resistance load

I t= π to 2 π

Fig. 1.3 shows the internal current from π to 2π , the dissipation power from π to 2π is expressed by the following equation.

$$P_{R2} = (V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_{\pi}^{2\pi} (V_O \sin \theta - V_{SS})I_O \sin \theta d\theta$$

= $(V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_{\pi}^{2\pi} (V_O \sin \theta - V_{SS}) \frac{V_O}{R} \sin \theta d\theta$
= $(V_{DD} - V_{SS})I_A - \frac{2V_{SS}V_O}{\pi R} - \frac{V_O^2}{2R}$

In the case of V_{DD} = - V_{SS} , the internal loss P_R is the following result.

$$P_{R} = (V_{DD} - V_{SS})I_{A} + \frac{2V_{DD}V_{O}}{\pi R} - \frac{V_{O}^{2}}{2R}$$

 I_{0} I_{0

Fig. 1.3 the internal current from π to 2π

Fig.1.4 the Output current and Voltage with resistance

example for use

The dissipation power is calculated on the following condition.

Condition:

 V_{DD}/V_{SS} = +6V/-6V V_{o} =1Vpk R=20 Ω (Io=1Vpk/20 Ω =50mApk=100mApp) I_A=1.5mA

$$P_{R} = (V_{DD} - V_{SS})I_{A} + \frac{2V_{DD}V_{O}}{\pi R} - \frac{V_{O}^{2}}{2R}$$
$$= (6V + 6V) \times 1.5mA + \frac{2 \times 6V \times 1V}{\pi \times 20\Omega} - \frac{(1V)^{2}}{2 \times 20\Omega} = 184mW$$

On the single power supply operation (V_{DD}/V_{SS} = +12V/0V) with the load resistance(R=20 Ω which is the middle point Voltage), the dissipation power is 187 mW. It is same as previous one.

-New Japan Radio Co.,Ltd.-

1.2 Calculation of dissipation power with inductance load

The dissipation power from the time 0 to π and it from π to 2π are calculated separately.

■t=0 to π

Fig. 1.5 shows the internal current from 0 to π and Fig. 1.7 shows the Output current and the Output Voltage from 0 to π . Since it is an inductance load, the Output Current and the Output Voltage make 90-degree phase difference. Io is the Output Current and I_A is the current with the exception of the output current.

The loss by output current from 0 to π is expressed by the following equation.

$$P_{LO1} = (V_{DD} - V_O \cos \theta) I_O \sin \theta = V_{DD} I_O \sin \theta - \frac{1}{2} V_O I_O \sin 2\theta$$

The loss by output current from 0 to π is expressed by the following equation.

$$P_{L1} = (V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_0^{\pi} V_{DD}I_O \sin\theta d\theta - \frac{1}{\pi} \int_0^{\pi} \frac{1}{2} V_O I_O \sin 2\theta d\theta$$
$$= (V_{DD} - V_{SS})I_A + \frac{2V_{DD}I_O}{\pi}$$

$\blacksquare t = \pi$ to 2π

Fig. 1.6 shows the internal current from π to 2π . The loss by output current from π to 2π is expressed by the following equation.

-New Japan Radio Co.,Ltd.-

$$P_{LO2} = (V_O \cos \theta - V_{SS})I_O \sin \theta = -V_{ee}I_O \sin \theta + \frac{1}{2}V_O I_O \sin 2\theta$$

The Dissipation power from π to 2π is expressed by the following equation.

$$P_{L2} = (V_{DD} - V_{SS})I_A + \frac{1}{\pi}\int_{\pi}^{2\pi} - V_{ee}I_O\sin\theta d\theta + \frac{1}{\pi}\int_{\pi}^{2\pi}\frac{1}{2}V_OI_O\sin2\theta d\theta = (V_{DD} - V_{SS})I_A - \frac{2V_{SS}I_O}{\pi}$$

In the case of V_{DD} =- V_{SS} , the dissipation power is the following result.

$$P_{L} = (V_{DD} - V_{SS})I_{A} + \frac{2V_{DD}I_{O}}{\pi}$$

Fig.1.6 the internal current from π to 2π .

Fig.1.7 the Output current and Output Voltage with inductance load

Ver.02

V_{DD} IA V_{SS}

Fig. 1.5 the internal current from 0 to π

example for use

The dissipation power is calculated on the following condition.

Condition:

 V_{DD}/V_{SS} = +6V/-6V I_o=50mApk(100mApp) I_A=1.5mA

$$P_{L} = (V_{DD} - V_{SS})I_{A} + \frac{2V_{DD}I_{O}}{\pi} = (6V + 6V) \times 1.5mA + \frac{2 \times 6V \times 50mA}{\pi} = 209mW$$

On the Single power supply operation whose equivalent circuit is Fig1.8, the dissipation power is as follows. Condition:

 V_{DD}/V_{SS} = +12V/0V I_o=50mApk(100mApp) I_A=1.5mA

$$P_{L} = (V_{DD} - V_{SS})I_{A} + \frac{2V_{DD}I_{O}}{\pi} = (6V + 6V) \times 1.5mA + \frac{2 \times (12V/2) \times 50mA}{\pi} = 209mW$$

Fig1.9 is the supply-voltage dependency of the dissipation power on inductance load. The NJU77903 should be operated in lower than package power (P_D).

Fig1.8. Equivalent circuit (Single Supply

Fig1.9 the supply-voltage dependency of the dissipation power by inductance load. (Single-Supply)

1.3 the current with the exception of the Output current

Fig1.10 shows the Evaluation circuit of the current with the exception of the Output current. This result shows Fig1.11 and Fig1.12.

Fig1.11 the current with the exception of the Output current vs. Supply Voltage

New Japan Radio Co.,Ltd.

2. Thermal Shutdown

The NJU77903 has thermal shutdown (TSD) function in case that dissipation power exceeds Package Power P_D . Fig 2.1 shows Thermal Shutdown Temperature vs. Supply Voltage. When the junction temperature exceeds the shutdown temperature approximately 175°C on the Supply Voltage 12V, the TSD function operates and disables the output current. Under the TSD operation, the output terminal is regarded as high impedance terminal. If the output voltage is necessarily GND Voltage, the output terminal should be connected to GND via resistance.

When the junction temperature cools to recovery temperature approximately 160°C on the Supply Voltage 12V, the NJU77903 automatically recover from the TSD operation and output current is re-enabled.

The TSD function is not intended to replace proper heat sinking. The NJU77903 should be operated in lower than 150°C the maximum junction temperature.

Fig 2.1 Thermal Shutdown Temperature vs. Supply Voltage

3. Current Limit

The NJU77903 is designed with internal current limit in case of overload condition. Fig. 3.1 shows the Output Source Current Limit vs. temperature and Fig. 3.2 shows the Output Sink Current Limit vs. temperature respectively. With the increasing in temperature, the limits are reduced.

Fig. 3.3 shows Output Source Current vs. time. Output Source Current Limit decreases gradually since junction temperature rises. The output current is temporarily disabled due to TSD operation in Ta=160°C line of Fig. 3.3 (time = 55msec to 75msec). When the junction temperature falls, the output current is automatically recovered (time = 75msec). In order to prevent from damage the NJU77903 should be running under maximum junction temperature.

Output Source Current Limit vs. Time Fig3.3

New Japan Radio Co., Ltd.

4. Resolver Excitation Circuit

Fig4.1 shows the Typical Resolver Excitation Circuit using the NJU77903 and the NJM2904. The NJM2904 (A) makes midpoint voltage and the NJM2904 (B) makes signal phase inversion. Fig4.2 is the circuit without NJM2904 (A), its dominant voltage is given by resistance voltage divider. Fig4.3 is the circuit omitted NJM2904 (A) and NJM2904 (B), it is available under the condition using the input signals which have phase difference one another.

Fig 4.4 shows output voltage and current. The output voltage (Vout) is the voltage drop on the inductance load, the output current (lout) is defined as positive side according Fig 4.4. The inductance load makes phase difference between Vout and lout. However, it is not just 90° because of internal resistance on inductance. The performance of resolver excitation should be conducted trials using actual equipment.

Fig4.1 Resolver Excitation Circuit

Fig4.2 Resolver Excitation Circuit (This version omitted NJM2904(A))

Fig4.3 Resolver Excitation Circuit (This version omitted NJM2904)

Fig 4.4 Output Voltage and Output Current of Resolver Excitation Circuit

5. Input Overvoltage Protection

If the input voltage exceeds the supply rail, You must use a limiting resistor as shown in Fig5.1, because you must be limited to less than the input current of absolute maximum ratings. Resistance value of the current limiting and can be calculated by the following equation.

$$I_{IN} = \frac{V - V_{SIG}}{R_{IN}} \leq 10 \text{mA}, (V_{SIG} \leq V)$$

Fig5.1b Input Overvoltage (Vsig≦V)

<u>TO252-5</u>

■ PACKAGE DIMENSIONS

Unit : mm

-New Japan Radio Co.,Ltd.-

DFN8-W2 (ESON8-W2)

■ PACKAGE DIMENSIONS

Unit : mm

[CAUTION]

[CAU flow] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.