

2-Input NAND Schmitt-Trigger with Open Drain Output

NLV74VHC1G135

The NLV74VHC1G135 is a single gate CMOS Schmitt NAND trigger with an open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffered 3–state output which provides high noise immunity and stable output.

The input structures provide protection when voltages up to 5.5~V are applied, regardless of the supply voltage. This allows the device to be used to interface 5~V circuits to 3~V circuits. Some output structures also provide protection when $V_{CC}=0~V$ and when the output voltage exceeds V_{CC} . These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- Designed for 2.0 V to 5.5 V V_{CC} Operation
- 4.9 ns t_{PD} at 5 V (typ)
- Inputs/Outputs Over-Voltage Tolerant up to 5.5 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 8 mA at 3.0 V
- Available in SC-88A and TSOP-5 Packages
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

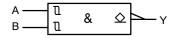


Figure 1. Logic Symbol

1

MARKING DIAGRAMS

SC-88A DF SUFFIX CASE 419A

TSOP-5 DT SUFFIX CASE 483

XX = Specific Device Code

M = Date Code*
■ Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 7 of this data sheet.

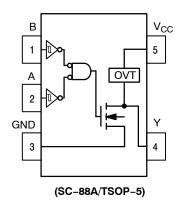


Figure 2. Pinout (Top View)

PIN ASSIGNMENT (SC-88A/TSOP-5)

Pin	Function
1	В
2	Α
3	GND
4	Υ
5	V _{CC}

FUNCTION TABLE

Inp	Output	
Α	В	Υ
L	L	Z
L	Н	Z
Н	L	Z
Н	Н	L

MAXIMUM RATINGS

Symbol	С	naracteristics	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage	1Gxx	-0.5 to V _{CC} + 0.5	V
		1GTxx Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +7.0 -0.5 to +7.0	
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA
I _{OK}	DC Output Diode Current	1Gxx V _{OUT} > V _{CC} , V _{OUT} < GND	±20	mA
		1GTxx V _{OUT} < GND	-20	
I _{OUT}	DC Output Source/Sink Current	±25	mA	
I _{CC} or I _{GND}	DC Supply Current per Supply Pir	±50	mA	
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Ca	se for 10 secs	260	°C
TJ	Junction Temperature Under Bias		+150	°C
$\theta_{\sf JA}$	Thermal Resistance (Note 2)	SC-88A TSOP-5	377 320	°C/W
P _D	Power Dissipation in Still Air	SC-88A TSOP-5	332 390	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V _{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Applicable to devices with outputs that may be tri-stated.
 Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
 HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.

^{4.} Tested to EIA/JESD78 Class II.

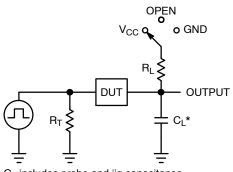
RECOMMENDED OPERATING CONDITIONS

Symbol	CI	Characteristics			
V _{CC}	Positive DC Supply Voltage	2.0	5.5	V	
V _{IN}	DC Input Voltage	0	5.5	V	
V _{OUT}	DC Output Voltage	1Gxx	0	V _{CC}	V
		1GTxx Active-Mode (High or Low State) Tri-State Mode Power-Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 5.5 5.5	
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 3.0 V to 3.6 V V _{CC} = 4.5 V to 5.5 V	0	No Limit No Limit	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			v _{cc}	T	A = 25°	С	-40°C ≤	T _A ≤ 85°C	-55°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{T+}	Positive Input Threshold Voltage		3.0 4.5 5.5	1.2 1.75 2.15	2.0 3.0 3.6	2.2 3.15 3.85		2.2 3.15 3.85		2.2 3.15 3.85	V
V _{T-}	Negative Input Threshold Voltage		3.0 4.5 5.5	0.9 1.35 1.65	1.5 2.3 2.9	1.9 2.75 3.35	0.9 1.35 1.65	- - -	0.9 1.35 1.65	- - -	٧
V _H	Hysteresis Voltage		3.0 4.5 5.5	0.30 0.40 0.50	0.85 1.05 1.20	1.60 2.00 2.25	0.30 0.40 0.50	1.60 2.00 2.25	0.30 0.40 0.50	1.60 2.00 2.25	V
V _{OL}	Maximum Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$	2.0 3.0 4.5	- - -	0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	٧
		I _{OL} = 4 mA I _{OL} = 8 mA	3.0 4.5	_ _	<u>-</u>	0.36 0.36	- -	0.44 0.44	-	0.52 0.52	٧
I _{IN}	Maximum Input Leakage Current	V _{IN} = 5.5 V or GND	2.0 to 5.5	-	-	±0.1	İ	±1.0	ı	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5	_	-	1.0	İ	20	-	40	μА
l _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V	0.0	_	_	1.0	-	10	-	10	μА


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

				Т	Δ = 25°	С	-40°C ≤ 1	Γ _A ≤ 85°C	-55°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PZL}	Propagation Delay,	C _L = 15 pF	3.0 to 3.6	-	7.6	11.9	-	14.0	_	16.1	ns
	(A or B) to Y (Figures 3 and 4)	C _L = 50 pF		-	10.1	15.4	-	17.5	-	19.6	
		C _L = 15 pF	4.5 to 5.5	-	4.9	7.7	-	9.0	-	10.3	
		C _L = 50 pF		-	6.4	9.7	-	11.0	-	12.3	
t _{PLZ}	Propagation Delay,	C _L = 15 pF	3.0 to 3.6	-	7.6	11.9	-	14.0	-	16.1	ns
	(A or B) to Y (Figures 3 and 4)	C _L = 50 pF		-	10.1	15.4	-	17.5	-	19.6	
		C _L = 15 pF	4.5 to 5.5	-	4.9	7.7	-	9.0	-	10.3	
		C _L = 50 pF		-	6.4	9.7	-	11.0	-	12.3	
C _{IN}	Maximum Input Capacitance			-	5.0	10	-	10	-	10	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Note 5)	16.0	pF

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

Test	Switch Position	C _L , pF	R_L , Ω
t _{PLH} / t _{PHL}	Open	See AC Characteristics Table	Х
t _{PLZ} / t _{PZL}	V _{CC}		1 k
t _{PHZ} / t _{PZH}	GND		1 k

X = Don't Care

 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz

Figure 3. Test Circuit

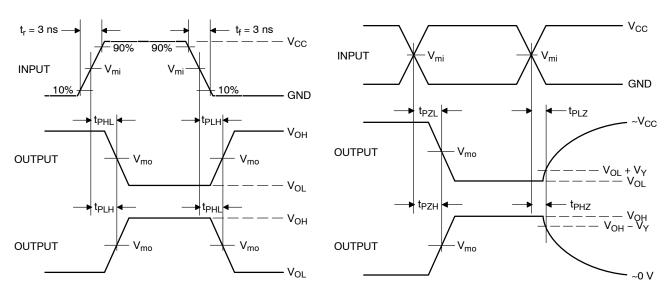
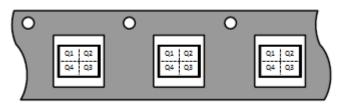


Figure 4. Switching Waveforms

		V _m		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ}	V _Y , V
3.0 to 3.6	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3
4.5 to 5.5	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3

ORDERING INFORMATION


Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
M74VHC1G135DFT1G-L22038	SC-88A	VZ	Q2	3000 / Tape & Reel
M74VHC1G135DFT2G-L22038	SC-88A	VZ	Q4	3000 / Tape & Reel
NLVVHC1G135DFT2G*	SC-88A	VZ	Q4	3000 / Tape & Reel
M74VHC1G135DTT1G	TSOP-5	VZ	Q4	3000 / Tape & Reel

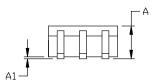
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN 1 ORIENTATION IN TAPE AND REEL

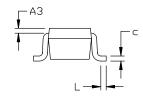
Direction of Feed

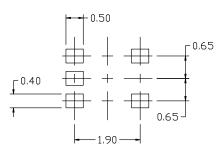
^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M


DATE 11 APR 2023

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. 419A-01 DBSOLETE, NEW STANDARD 419A-02
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS,
 OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.


DIM	MILLIMETERS				
ואונת	MIN.	N□M.	MAX.		
А	0.80	0.95	1.10		
A1			0.10		
A3	0.20 REF				
b	0.10	0.20	0.30		
C	0.10		0.25		
D	1.80	2.00	2,20		
Е	2.00	2.10	2.20		
E1	1.15	1.25	1.35		
е	0.65 BSC				
L	0.10	0.15	0.30		

E + E1

◆ 0.2 M B M

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

XXX = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

STYLE 1:
PIN 1. BASE
EMITTER
3. BASE
COLLECTOR
COLLECTOR

YLE 2:				
IN 1.	ANODE			
2.	EMITTER			
3.	BASE			
4.	COLLECTOR			
5.	CATHODE			

STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1 STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2

STYLE 5:
PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE

5. EMITTER

STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:

98ASB42984B

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

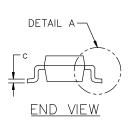
DESCRIPTION:

5. COLLECTOR 2/BASE 1

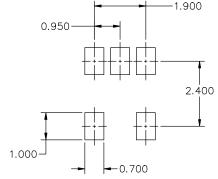
SC-88A (SC-70-5/SOT-353)

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

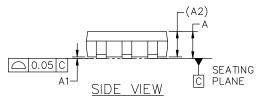


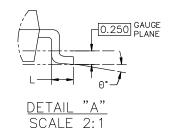
TSOP-5 3.00x1.50x0.95, 0.95P **CASE 483 ISSUE P**


DATE 01 APR 2024

NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME 1. Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS (ANGLES IN DEGREES). MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OF GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION D.
- OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.


DIM	MILLIMETERS			
	MIN.	NOM.	MAX.	
А	0.900	1.000	1.100	
A1	0.010	0.055	0.100	
A2	0.950 REF.			
b	0.250	0.375	0.500	
С	0.100	0.180	0.260	
D	2.850	3.000	3.150	
Е	2.500	2.750	3.000	
E1	1.350	1.500	1.650	
е	0.950 BSC			
L	0.200	0.400	0.600	
Θ	0.	5°	10°	



RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTE 5 В Ė1 PIN 1 **IDENTIFIER** A TOP VIEW

GENERIC MARKING DIAGRAM*

Discrete/Logic

= Pb-Free Package

Analog

XXX = Specific Device Code XXX = Specific Device Code М = Date Code

= Assembly Location = Year

W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may

or may not be present. Some products may not follow the Generic Marking.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98ARB18753C Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** TSOP-5 3.00x1.50x0.95, 0.95P **PAGE 1 OF 1**

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales