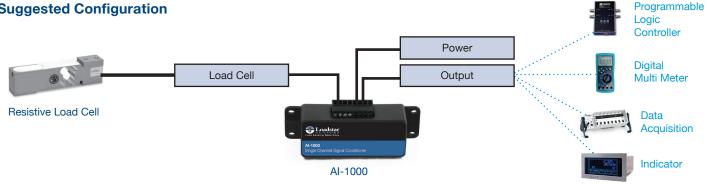


AI-1000 Single Channel Signal Conditioner

Technology

Accepts standard mV/V signals and outputs an amplified DC voltage (0.5-4.5V) signal output

Overview


The Loadstar Sensors' AI-1000 Signal Conditioner is an interface designed to amplify strain gauges arranged in a full Wheatstone bridge configuration, and is suitable for many applications where a bridge or differential input amplifier is required. The AI-1000 may be operated with single or dual power supply to provided singed-ended or bipolar output, and includes bridge offset and circuit gain trimmer potentiometers.

Specifications

Specifications		Orderin	Ordering Information	
Load Cell Connector	Screw Terminal Block	Available C	Available Configurations	
Power	Operating Voltage 8–30V DC regulated or filtered unregulated	Option	Part No.	
Operating Current	5mA, plus bridge current	Basic	Al-1000	
Excitation	5V			
Bridge Input	Full Wheatstone Bridge			

AI-1000 Basic

Suggested Configuration

Set-Up Steps

1	The AI-1000 was factory calibrated with the load cell that you have purchased. The terminal block is connected as shown on the next page.		
2	Verify the connection to the terminal block.		
3	Plug the power adapter to a power outlet.		
4	The AI-1000 was adjusted to output approximately 0.5V DC (no load) to 4.5V DC (full load), between +V DC (position #5) and -V DC (position #8) terminals.		

AI-1000 Quick Start Guide

Wiring Diagram

Position	Signal Name	Description
1	Load Cell: +Excitation	Color Code: Red
2	Load Cell: -Excitation	Color Code: Black
3	Load Cell: +Signal	Color Code: Green
4	Load Cell: -Signal	Color Code: White
5	AI-1000: +VDC Output	Output: 0.5VDC - 4.5VDC
6	AI-1000: +Power Input	Power adatper (Positive; with white stripe)
7	AI-1000: -Power Intput	Power adapter (Negative; merged with ground)
8	AI-1000: -VDC Output	Output: Ground

GAIN Adjustment (R2) - Clockwise to increase gain - Counter-clockwise to decrease gain

OFFSET Adjustment (R1) - Counter-clockwise to increase offset - Clockwise to decrease offset

Calibration Procedures

1	With no load on the load cell, adjust the R1 potentiometer (pot) to read approximately 0.5 V.	
2	With full load, adjust the R2 (pot) to read approximately 4.5 V. This will also change the offset setting made in step 1, which will now be slight;y	
2	different from 0.5 V.	
3	Take the load off and adjust R1 pot.	
4	You may have to go back and forth a few times to get the desired readings at both zero load and full load.	

Pre-Calibrated AI-1000

If you have received an AI-1000 pre-calibrated to a load cell, please refer to the calibration sheet indicating the lb/volt (or kg/ volt) on how to compute the load from the measured voltage. For example, in the graph shown below for a 2000 lb load cell, if the voltage measured between pins 5 and 8 is 3.0 V, then

Load, L = (3.0 * 509.81) - 223.96 = 1305.47 lb.

If you have a preload that needs to be zeroed out, simply take the difference in voltages, and multiply by the slope (in this case 509.81). For example, with a preload (to be zeroed out), if the measured voltage is 0.8 V, and with an unknown load L1, the measured voltage is 2.0 V, then

L1 = (2.0-0.8)*509.81 = 1.2*509.81 = 611.78 lb.

Sample Al-1000 calibration graph for a 2000 lb load cell