Dual D Flip-Flop with Set and Reset # MC74HC74A, MC74HCT74A The MC74HC74A is identical in pinout to the LS74. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of two D flip-flops with individual Set, Reset, and Clock inputs. Information at a D-input is transferred to the corresponding Q output on the next positive going edge of the clock input. Both Q and \overline{Q} outputs are available from each flip-flop. The Set and Reset inputs are asynchronous. #### **Features** - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 2.0 to 6.0 V (HC), 4.5 to 5.5 V (HCT) - Low Input Current: 1.0 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance with the JEDEC Standard No. 7.0 A Requirements - Chip Complexity: 136 FETs or 34 Equivalent Gates - –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### MARKING DIAGRAMS SOIC-14 D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G XXXX = Specific Device Code A = Assembly Location WL, L = Wafer Lot Y = Year WW, W = Work Week G or = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet. Figure 1. Logic Diagram #### **FUNCTION TABLE** | | Inp | uts | | Out | puts | | |-----|-------|-------|------|-------|-------|--| | Set | Reset | Clock | Data | Q | | | | L | Н | Х | Х | Н | Г | | | Н | L | Χ | X | L | Н | | | L | L | Χ | X | H* | H* | | | Н | Н | | Н | Н | L | | | Н | Н | _ | L | L | Н | | | Н | Н | L | Χ | No Cl | nange | | | Н | Н | Н | Χ | No Cl | nange | | | Н | Н | ~ | X | No Cl | nange | | ^{*}Both outputs will remain high as long as Set and Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously. #### **MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |------------------|--|--|-------------------------------|------| | V _{CC} | DC Supply Voltage | | -0.5 to +6.5 | V | | V _{IN} | DC Input Voltage | | -0.5 to V _{CC} + 0.5 | V | | V _{OUT} | DC Output Voltage | | -0.5 to V_{CC} + 0.5 | V | | I _{IN} | DC Input Diode Current, per Pin | | ±20 | mA | | I _{OUT} | DC Output Diode Current, per Pin | | ±25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | | ±50 | mA | | I _{IK} | Input Clamp Current (V _{IN} < 0 or V _{IN} > V _{CC}) | | ±20 | mA | | I _{OK} | Output Clamp Current (V _{OUT} < 0 or V _{OUT} > V _{CC}) | | ±20 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | T _L | Lead Temperature, 1 mm from Case for 10 Seconds | | 260 | °C | | TJ | Junction Temperature Under Bias | | ±150 | °C | | θ_{JA} | Thermal Resistance (Note 1) | SOIC-14
TSSOP-14 | 116
150 | °C/W | | P _D | Power Dissipation in Still Air at 25°C | SOIC-14
TSSOP-14 | 1077
833 | mW | | MSL | Moisture Sensitivity | | Level 1 | _ | | F _R | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @
0.125 in | - | | V _{ESD} | ESD Withstand Voltage (Note 2) | Human Body Model
Charged Device Model | > 2000
N/A | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Measured with minimum pad spacing on an FR4 board, using 76mm-by-114mm, 2-ounce copper trace no air flow per JESD51-7. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | | Min | Max | Unit | |------------------------------------|---|--|-----------------|--------------------|------| | МС74НС | | • | | | | | V _{CC} | DC Supply Voltage (Referenced to GND) | | 2.0 | 6.0 | V | | V _{IN} , V _{OUT} | DC Input Voltage, Output Voltage (Referenced to GND) (Note 3) | | 0 | V _{CC} | V | | T _A | Operating Free-Air Temperature | | – 55 | +125 | °C | | t _r , t _f | V | CC = 2.0 V
CC = 4.5 V
CC = 6.0 V | 0
0
0 | 1000
500
400 | ns | | МС74НСТ | | | | | | | V _{CC} | DC Supply Voltage (Referenced to GND) | | 4.5 | 5.5 | V | | V _{IN} , V _{OUT} | DC Input Voltage, Output Voltage (Referenced to GND) (Note 3) | | 0 | V _{CC} | V | | T _A | Operating Free-Air Temperature | | - 55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time | | 0 | 500 | ns | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 3. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. #### DC ELECTRICAL CHARACTERISTICS (MC74HC74A) | | | | | G | uaranteed Lii | mit | | |-----------------|--|--|----------------------|----------------|---------------|--------|------| | Symbol | Parameter | Test Conditions | V _{CC}
V | –55 to
25°C | ≤85°C | ≤125°C | Unit | | V _{IH} | Minimum High-Level Input | V _{OUT} = 0.1 V or V _{CC} – 0.1 V | 2.0 | 1.5 | 1.5 | 1.5 | V | | | Voltage | I _{OUT} ≤ 20 μA | 3.0 | 2.1 | 2.1 | 2.1 | | | | | | 4.5 | 3.15 | 3.15 | 3.15 | | | | | | 6.0 | 4.2 | 4.2 | 4.2 | | | V _{IL} | Maximum Low-Level Input | V _{OUT} = 0.1 V or V _{CC} – 0.1 V | 2.0 | 0.5 | 0.5 | 0.5 | V | | | Voltage | I _{OUT} ≤ 20 μA | 3.0 | 0.9 | 0.9 | 0.9 | | | | | | 4.5 | 1.35 | 1.35 | 1.35 | | | | | | 6.0 | 1.8 | 1.8 | 1.8 | | | V _{OH} | Minimum High-Level | V _{IN} = V _{IH} or V _{IL} | | | | | V | | | Output Voltage | I _{OUT} ≤ 20 μA | 2.0 | 1.9 | 1.9 | 1.9 | | | | | | 4.5 | 4.4 | 4.4 | 4.4 | | | | | | 6.0 | 5.9 | 5.9 | 5.9 | | | | | $ I_{OUT} \le 2.4 \text{ mA}$ | 3.0 | 2.48 | 2.34 | 2.2 | | | | | $ I_{OUT} \le 4.0 \text{ mA}$ | 4.5 | 3.98 | 3.84 | 3.7 | | | | | $ I_{OUT} \le 5.2 \text{ mA}$ | 6.0 | 5.48 | 5.34 | 5.2 | | | V _{OL} | Maximum Low-Level | V _{IN} = V _{IH} or V _{IL} | | | | | V | | | Output Voltage | I _{OUT} ≤ 20 μA | 2.0 | 0.1 | 0.1 | 0.1 | | | | | | 4.5 | 0.1 | 0.1 | 0.1 | | | | | | 6.0 | 0.1 | 0.1 | 0.1 | | | | | $ I_{OUT} \le 2.4 \text{ mA}$ | 3.0 | 0.26 | 0.33 | 0.4 | | | | | $ I_{OUT} \le 4.0 \text{ mA}$ | 4.5 | 0.26 | 0.33 | 0.4 | | | | | $ I_{OUT} \le 5.2 \text{ mA}$ | 6.0 | 0.26 | 0.33 | 0.4 | | | I _{IN} | Maximum Input Leakage
Current | V _{IN} = V _{CC} or GND | 6.0 | ±0.1 | ±1.0 | ±1.0 | μΑ | | I _{CC} | Maximum Quiescent
Supply Current (per
Package) | $V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$ | 6.0 | 2.0 | 20 | 80 | μΑ | #### AC ELECTRICAL CHARACTERISTICS (MC74HC74A) | | | | G | uaranteed Lii | mit | | |--------------------|---|----------------------|-----------------|---------------|--------|------| | Symbol | Parameter | V _{CC}
V | – 55 to
25°C | ≤85°C | ≤125°C | Unit | | f _{max} | Maximum Clock Frequency (50% Duty Cycle) | 2.0 | 6.0 | 4.8 | 4.0 | MHz | | | (Figure 4) | 3.0 | 15 | 10 | 8.0 | | | | | 4.5 | 30 | 24 | 20 | | | | | 6.0 | 35 | 28 | 24 | | | t _{PLH} , | Maximum Propagation Delay, Clock to Q or Q | 2.0 | 100 | 125 | 150 | ns | | t _{PHL} | (Figure 4) | 3.0 | 75 | 90 | 120 | | | – | | 4.5 | 20 | 25 | 30 | | | | | 6.0 | 17 | 21 | 26 | | | t _{PLH} , | Maximum Propagation Delay, Set or Reset to Q or Q | 2.0 | 105 | 130 | 160 | ns | | t_{PHL} | (Figure 5) | 3.0 | 80 | 95 | 130 | | | | | 4.5 | 21 | 26 | 32 | | | | | 6.0 | 18 | 22 | 27 | | | t _{TLH} , | Maximum Output Transition Time, Any Output | 2.0 | 75 | 95 | 110 | ns | | t_{THL} | (Figure 4) | 3.0 | 30 | 40 | 55 | | | | | 4.5 | 15 | 19 | 22 | | | | | 6.0 | 13 | 16 | 19 | | | C _{in} | Maximum Input Capacitance | _ | 10 | 10 | 10 | рF | | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|--|-----|---|----| | C_{PD} | Power Dissipation Capacitance (Per Enabled Output) | 5.0 | 32 | рF | ^{4.} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. #### **TIMING REQUIREMENTS (MC74HC74A)** | | | | Gu | Guaranteed Limit | | | | |---------------------------------|--|--------------------------|---------------------------|---------------------------|---------------------------|------|--| | Symbol | Parameter | V _{CC}
V | –55 to
25°C | ≤ 85 °C | ≤125°C | Unit | | | t _{su} | Minimum Setup Time, Data to Clock
(Figure 6) | 2.0
3.0
4.5
6.0 | 80
35
16
14 | 100
45
20
17 | 120
55
24
20 | ns | | | t _h | Minimum Hold Time, Clock to Data
(Figure 6) | 2.0
3.0
4.5
6.0 | 3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | ns | | | t _{rec} | Minimum Recovery Time, Set or Reset Inactive to Clock (Figure 5) | 2.0
3.0
4.5
6.0 | 8.0
8.0
8.0
8.0 | 8.0
8.0
8.0
8.0 | 8.0
8.0
8.0
8.0 | ns | | | t _w | Minimum Pulse Width, Clock
(Figure 4) | 2.0
3.0
4.5
6.0 | 60
25
12
10 | 75
30
15
13 | 90
40
18
15 | ns | | | t _w | Minimum Pulse Width, Set or Reset
(Figure 5) | 2.0
3.0
4.5
6.0 | 60
25
12
10 | 75
30
15
13 | 90
40
18
15 | ns | | | t _r , t _f | Maximum Input Rise and Fall Times
(Figure 4) | 2.0
3.0
4.5
6.0 | 1000
800
500
400 | 1000
800
500
400 | 1000
800
500
400 | ns | | #### DC ELECTRICAL CHARACTERISTICS (MC74HCT74A) | | | | | Gu | aranteed Li | imit | | |-----------------|---|--|-----------------|----------------|----------------|------------|------| | Symbol | Parameter | Test Conditions | v _{cc} | –55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | V _{IH} | Minimum High-Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 4.5
5.5 | 2.0
2.0 | 2.0
2.0 | 2.0
2.0 | V | | V _{IL} | Maximum Low-Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 4.5
5.5 | 0.8
0.8 | 0.8
0.8 | 0.8
0.8 | V | | V _{OH} | Minimum High-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \ \mu\text{A}$ | 4.5
5.5 | 4.4
5.4 | 4.4
5.4 | 4.4
5.4 | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 4.0 \text{ mA}$ | 4.5 | 3.98 | 3.84 | 3.7 | | | V _{OL} | Maximum Low-Level Output Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 4.5
5.5 | 0.1
0.1 | 0.1
0.1 | 0.1
0.1 | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 4.0 \text{ mA}$ | 4.5 | 0.26 | 0.33 | 0.4 | | | l _{in} | Maximum Input Leakage Current | V _{in} = V _{CC} or GND | 5.5 | ± 0.1 | ± 1.0 | ± 1.0 | μΑ | | I _{CC} | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$ | 5.5 | 2.0 | 20 | 80 | μΑ | | ΔI_{CC} | Additional Quiescent Supply
Current | V _{in} = 2.4 V, Any One Input
V _{in} = V _{CC} or GND, Other Inputs | | ≥-55°C | 25°C | to 125°C | | | | | $I_{out} = 0 \mu A$ | 5.5 | 2.9 | | 2.4 | mA | #### AC ELECTRICAL CHARACTERISTICS (MC74HCT74A) | | | Gı | | | | |--|---|----------------|----------------|---------|------| | Symbol | Parameter | –55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | f _{max} | Maximum Clock Frequency (50% Duty Cycle) (Figure 4) | 30 | 24 | 20 | MHz | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock to Q or $\overline{\mathbf{Q}}$ (Figure 4) | 24 | 30 | 36 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Set or Reset to Q or Q (Figure 5) | 24 | 30 | 36 | ns | | t _{TLH} ,
t _{THL} | Maximum Output Transition Time, Any Output (Figure 4) | 15 | 19 | 22 | ns | | C _{in} | Maximum Input Capacitance | 10 | 10 | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | 1 | |-----------------|---|---|----| | C _{PD} | Power Dissipation Capacitance (Per Enabled Output)* | 32 | pF | ^{5.} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. ## **TIMING REQUIREMENTS (MC74HCT74A)** | | | | | (| Guarante | ed Limi | it | | | |---------------------------------|---|------|-----|-------------|----------|---------|------|-----|-------| | | | | | 5 to
i°C | ≤ 8 | 5°C | ≤ 12 | 5°C | | | Symbol | Parameter | Fig. | Min | Max | Min | Max | Min | Max | Units | | t _{su} | Minimum Setup Time, Data to Clock | 6 | 15 | | 19 | | 22 | | ns | | t _h | Minimum Hold Time, Clock to Data | 6 | 3 | | 3 | | 3 | | ns | | t _{rec} | Minimum Recovery Time, Set or Reset Inactive to Clock | 5 | 6 | | 8 | | 9 | | ns | | t _w | Minimum Pulse Width, Clock | 4 | 15 | | 19 | | 22 | | ns | | t _w | Minimum Pulse Width, Set or Reset | 5 | 15 | | 19 | | 22 | | ns | | t _r , t _f | Maximum Input Rise and Fall Times | 4 | | 500 | | 500 | | 500 | ns | | Test | Switch Position | CL | R _L | |-------------------------------------|-----------------|-------|----------------| | t _{PLH} / t _{PHL} | Open | 50 pF | 1 kΩ | | t _{PLZ} / t _{PZL} | V _{CC} | | | | t _{PHZ} / t _{PZH} | GND | | | Figure 3. Test Circuit Figure 4. Figure 5. Figure 6. | Device | V _{IN} , V | V _m , V | |------------|---------------------|-----------------------| | MC74HC74A | V _{CC} | 50% x V _{CC} | | MC74HCT74A | 3 V | 1.3 V | $^{^{\}star}C_{L}$ Includes probe and jig capacitance Figure 7. Expanded Logic Diagram #### **ORDERING INFORMATION** | Device | Marking | Package | Shipping [†] | |-------------------|-----------|----------|-----------------------| | MC74HC74ADG | HC74AG | SOIC-14 | 55 Units / Rail | | MC74HC74ADR2G | HC74AG | SOIC-14 | 2500 / Tape & Reel | | MC74HC74ADTR2G | HC
74A | TSSOP-14 | 2500 / Tape & Reel | | MC74HC74ADTR2G-Q* | HC
74A | TSSOP-14 | 2500 / Tape & Reel | | MC74HCT74ADG* | HCT74AG | SOIC-14 | 55 Units / Rail | | MC74HCT74ADR2G* | HCT74AG | SOIC-14 | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*-}Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. △ 0.10 SOIC-14 NB CASE 751A-03 ISSUE L **DATE 03 FEB 2016** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT - MAXIMUM MATERIAL CONDITION. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. - 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 1.35 | 1.75 | 0.054 | 0.068 | | A1 | 0.10 | 0.25 | 0.004 | 0.010 | | АЗ | 0.19 | 0.25 | 0.008 | 0.010 | | b | 0.35 | 0.49 | 0.014 | 0.019 | | D | 8.55 | 8.75 | 0.337 | 0.344 | | Е | 3.80 | 4.00 | 0.150 | 0.157 | | е | 1.27 BSC | | 0.050 BSC | | | Н | 5.80 | 6.20 | 0.228 | 0.244 | | h | 0.25 | 0.50 | 0.010 | 0.019 | | L | 0.40 | 1.25 | 0.016 | 0.049 | | M | 0 ° | 7° | 0 ° | 7° | #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code Α = Assembly Location WL = Wafer Lot Υ = Year = Work Week WW = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. ### **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS C SEATING PLANE #### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-14 NB | | PAGE 1 OF 2 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### SOIC-14 CASE 751A-03 ISSUE L #### DATE 03 FEB 2016 | STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 2:
CANCELLED | STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE | STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE | |---|---|---|---| | STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE | STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE | STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE | | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Reposi
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|--|-------------| | DESCRIPTION: | SOIC-14 NB | | PAGE 2 OF 2 | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. **DATE 17 FEB 2016** - NOTES. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE - INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL - INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR DEFERENCE ONLY - REFERENCE ONLY. DIMENSION A AND B ARE TO BE - DETERMINED AT DATUM PLANE -W-. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 | BSC | | М | o° | 8 ° | 0 ° | 8 ° | #### **GENERIC MARKING DIAGRAM*** = Assembly Location = Wafer Lot Υ = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | so | OLDERING FOOT | PRINT | |--|---------------|-------------| | ~ | 7.06 — | - | | 1 | | | | | | | | —————————————————————————————————————— | | | | | | 0.65 | | <u> </u> | 1 | | | 0.36 T | 14X | | | DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | TSSOP-14 WB | • | PAGE 1 OF 1 | **DIMENSIONS: MILLIMETERS** onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales