Dual D Flip-Flop with Set and Reset with LSTTL Compatible Inputs # **High-Performance Silicon-Gate CMOS** The MC74HCT74A is identical in pinout to the LS74. This device may be used as a level converter for interfacing TTL or NMOS outputs to High Speed CMOS inputs. This device consists of two D flip–flops with individual Set, Reset, and Clock inputs. Information at a D–input is transferred to the corresponding Q output on the next positive going edge of the clock input. Both Q and \overline{Q} outputs are available from each flip–flop. The Set and Reset inputs are asynchronous. #### **Features** - Output Drive Capability: 10 LSTTL Loads - TTL NMOS Compatible Input Levels - Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 4.5 to 5.5 V - Low Input Current: 1.0 μA - In Compliance With the JEDEC Standard No. 7.0 A Requirements - Chip Complexity: 136 FETs or 34 Equivalent Gates - These Devices are Pb-Free, Halogen Free and are RoHS Compliant #### **LOGIC DIAGRAM** | Design Criteria | Value | Units | |---------------------------------|-------|-------| | Internal Gate Count† | 34 | ea. | | Internal Gate Propagation Delay | 1.5 | ns | | Internal Gate Power Dissipation | 5.0 | μW | | Speed Power Product | .0075 | рЈ | [†]Equivalent to a two-input NAND gate. ## ON Semiconductor® http://onsemi.com #### **PIN ASSIGNMENT** | | | | _ | |---------|-----|----|-------------------| | RESET 1 | 1 • | 14 | □ v _{cc} | | DATA 1 | 2 | 13 | RESET 2 | | CLOCK 1 | 3 | 12 | DATA 2 | | SET 1 | 4 | 11 | CLOCK 2 | | Q1 [| 5 | 10 | SET 2 | | Q1 [| 6 | 9 |] Q2 | | GND [| 7 | 8 |] Q2 | #### **MARKING DIAGRAM** A = Assembly Location WL = Wafer Lot Y, YY = Year WW = Work Week G = Pb-Free Package #### **FUNCTION TABLE** | | Inp | Out | puts | | | |-----|-------|---------------|------|-------|-------| | Set | Reset | Clock | Data | Ø | Q | | L | Н | Х | Χ | Н | L | | Н | L | Χ | Χ | L | Н | | L | L | Χ | Χ | H* | H* | | Н | Н | | Н | Н | L | | Н | Н | \mathcal{L} | L | L | Н | | Н | Н | L | X | No Cl | nange | | Н | Н | Н | Χ | | nange | | Н | Н | $\overline{}$ | Χ | No CI | nange | *Both outputs will remain high as long as Set and Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously. ### ORDERING INFORMATION See detailed ordering and shipping information on page 3 of this data sheet. #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------|---|-------------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | -0.5 to +7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | -0.5 to V _{CC} + 0.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | -0.5 to V _{CC} + 0.5 | V | | I _{in} | DC Input Current, per Pin | ±20 | mA | | I _{out} | DC Output Current, per Pin | ±25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | ±50 | mA | | P _D | Power Dissipation in Still Air SOIC Package† | 500 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. †Derating: SOIC Package: -7 mW/°C from 65° to 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or $V_{\rm CC}$). Unused outputs must be left open. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Min | Max | Unit | |------------------------------------|--|-------------|-----------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | 4.5 | 5.5 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | 0 | V _{CC} | V | | T _A | Operating Temperature, All Package Types | - 55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time (Figure 1) | 0 | 500 | ns | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. #### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Gua | aranteed Li | imit | | |------------------|---|--|----------------------|----------------|------------------------|------------|------| | Symbol | Parameter | Test Conditions | v _{cc}
v | –55 to
25°C | ≤ 85 ° C | ≤ 125°C | Unit | | V _{IH} | Minimum High-Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 4.5
5.5 | 2.0
2.0 | 2.0
2.0 | 2.0
2.0 | V | | V _{IL} | Maximum Low–Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 4.5
5.5 | 0.8
0.8 | 0.8
0.8 | 0.8
0.8 | V | | V _{OH} | Minimum High–Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 4.5
5.5 | 4.4
5.4 | 4.4
5.4 | 4.4
5.4 | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 4.0 \text{ mA}$ | 4.5 | 3.98 | 3.84 | 3.7 | | | V _{OL} | Maximum Low–Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu A$ | 4.5
5.5 | 0.1
0.1 | 0.1
0.1 | 0.1
0.1 | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 4.0 \text{ mA}$ | 4.5 | 0.26 | 0.33 | 0.4 | | | l _{in} | Maximum Input Leakage Current | V _{in} = V _{CC} or GND | 5.5 | ± 0.1 | ± 1.0 | ± 1.0 | μΑ | | I _{CC} | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$ | 5.5 | 2.0 | 20 | 80 | μΑ | | Δl _{CC} | Additional Quiescent Supply Current | V _{in} = 2.4 V, Any One Input
V _{in} = V _{CC} or GND, Other Inputs | | ≥-55°C | 25°C | to 125°C | | | | | $I_{out} = 0 \mu A$ | 5.5 | 2.9 | | 2.4 | mA | ## AC ELECTRICAL CHARACTERISTICS (V_{CC} = $5.0~V \pm 10\%$, C_L = 50~pF, Input $t_r = t_f = 6.0~ns$) | | | G | Guaranteed Limit | | | |--|---|----------------|------------------|---------|------| | Symbol | Parameter | –55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | f _{max} | Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 4) | 30 | 24 | 20 | MHz | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock to Q or Q (Figures 1 and 4) | 24 | 30 | 36 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Set or Reset to Q or $\overline{\mathbb{Q}}$ (Figures 2 and 4) | 24 | 30 | 36 | ns | | t _{TLH} ,
t _{THL} | Maximum Output Transition Time, Any Output (Figures 1 and 4) | 15 | 19 | 22 | ns | | C _{in} | Maximum Input Capacitance | 10 | 10 | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|---|---|----| | C_{PD} | Power Dissipation Capacitance (Per Enabled Output)* | 32 | pF | ^{1.} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. ## **TIMING REQUIREMENTS** (V_{CC} = 5.0 V \pm 10%, C_L = 50 pF, Input t_r = t_f = 6.0 ns) | | | | Guaranteed Limit | | | | | | | |---------------------------------|---|------|------------------|------------|------|-----|------|------|-------| | | | | | 5 to
°C | ≤ 85 | 5°C | ≤ 12 | 25°C | | | Symbol | Parameter | Fig. | Min | Max | Min | Max | Min | Max | Units | | t _{su} | Minimum Setup Time, Data to Clock | 3 | 15 | | 19 | | 22 | | ns | | t _h | Minimum Hold Time, Clock to Data | 3 | 3 | | 3 | | 3 | | ns | | t _{rec} | Minimum Recovery Time, Set or Reset Inactive to Clock | 2 | 6 | | 8 | | 9 | | ns | | t _w | Minimum Pulse Width, Clock | 1 | 15 | | 19 | | 22 | | ns | | t _w | Minimum Pulse Width, Set or Reset | 2 | 15 | | 19 | | 22 | | ns | | t _r , t _f | Maximum Input Rise and Fall Times | 1 | | 500 | | 500 | | 500 | ns | #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|-------------------------|-----------------------| | MC74HCT74ADG | SOIC-14 NB
(Pb-Free) | 55 Units / Rail | | MC74HCT74ADR2G | SOIC-14 NB
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## **SWITCHING WAVEFORMS** Figure 1. Figure 2. Figure 3. *Includes all probe and jig capacitance Figure 5. Figure 4. Expanded Logic Diagram onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales