

THB Grade IIIB Class Y2 Interference Suppression Film Capacitor Radial MKP 305 V_{AC} - Line Bypass

LINKS TO ADDITIONAL RESOURCES

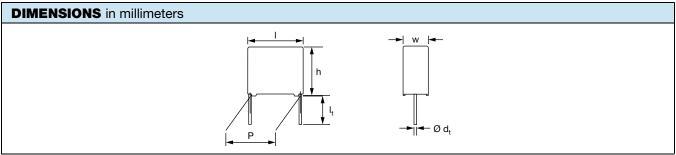
FEATURES

- IEC 60384-14: 2013 / AMD1: 2016 grade IIIB certified: 85 °C, 85 % RH, 1000 h at U_{RAC}
- AEC-Q200 qualified (rev. D) up to 105 °C
- High temperature capabilities, up to 125 °C
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

RoHS

APPLICATIONS

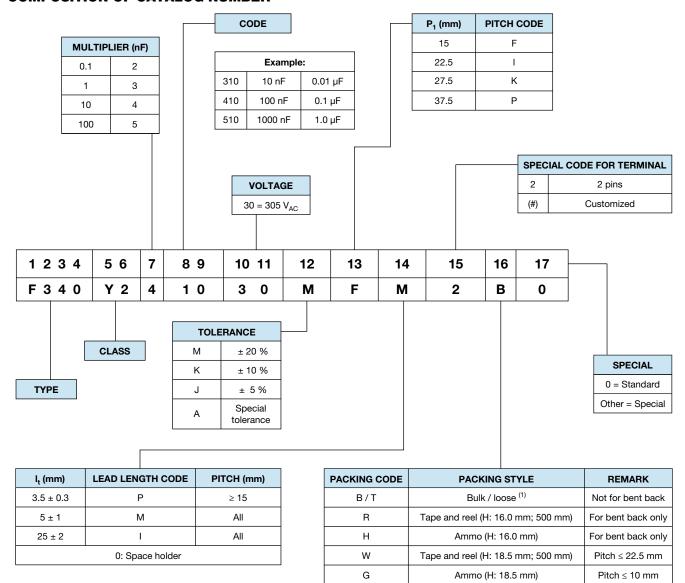
For standard line bypass (between line and ground) Y2 applications.


See also application note: www.vishay.com/doc?28153

QUICK REFERENCE DATA	
Rated capacitance range	0.01 μF to 1 μF (preferred values according to E6)
Capacitance tolerance	± 20 %; ± 10 %; ± 5 % (37.5 mm ± 5 % pitch values on request)
Climatic testing class according to IEC 60068-1	55 / 105 / 56B
Rated DC voltage	1000 V _{DC} at 105 °C 1500 V _{DC} at 85 °C
Permissible AC voltage	305 V _{AC} ; 50 Hz to 60 Hz
Rated temperature	105 °C
Maximum permissible temperature	125 °C for limited time
Reference standards	IEC 60384-14:2013 IEC 60384-14:2013 AMD1:2016 EN 60384-14 IEC 60065 requires pass. flamm. class B for volume ≥ 1750 mm ³ Class C for volume < 1750 mm ³ UL 60384-14 (2 nd edition) CSA-E60384-1:14 (3 rd edition) CQC
Dielectric	Polypropylene film
Electrodes	Metallized
Construction	Series construction
Encapsulation	Plastic case, epoxy resin sealed, flame retardant UL-class 94 V-0
Leads	Tinned wire
Marking	C-value; tolerance; rated voltage; sub-class; manufacturer's type; code for dielectric material; manufacturer location, manufacturer's logo, year and week; safety approvals

Note

• For more detailed data and test requirements, contact rfi@vishay.com



Notes

- Standard dimension
- Ø d_t ± 10 % of standard diameter specified

COMPOSITION OF CATALOG NUMBER

- For detailed tape specifications refer to packaging information www.vishay.com/doc?28139
 Packaging will be bulk for all capacitors with pitch ≤ 15 mm and such with long leads (> 5 mm). Capacitors with short leads up to 5 mm and pitch > 15 mm will be in tray and asking code will be "T"

SPECIFIC REFERENCE DATA			
DESCRIPTION	VALUE		
Rated AC voltage (U _{RAC})	305 V		
Permissible DC voltage (U _{RDC})	1000 V _{DC} at 105 °C 1500 V _{DC} at 85 °C		
Tangent of loss angle	At 1 kHz	At 10 kHz	
	≤ 10 x 10 ⁻⁴	≤ 20 x 10 ⁻⁴	
Rated voltage pulse slope (du/dt) _R at 420 V _{DC}	100	V/µs	
R between leads, for C ≤ 0.33 µF at 100 V; 1 min	> 15 0	00 MΩ	
RC between leads, for C > 0.33 µF at 100 V; 1 min	> 50	000 s	
R between leads and case; 100 V; 1 min	> 30 0	000 MΩ	
Withstanding (DC) voltage (cut off current 10 mA) (1); rise time ≤ 1000 V/s	3400 V; 1 min		
Withstanding (AC) voltage between leads and case	2100 V; 1 min		
Rated temperature	105	5 °C	
Maximum permissible temperature	125 °C up	to 1000 h	

Note

⁽¹⁾ See "Voltage Proof Test for Metalized Film Capacitors": www.vishay.com/doc?28169

					CATALOG NU	MBER	F340Y2 AND P	ACKAC	GING	
U _{RAC}	CAP.	DIMENSIONS (4)	MASS		LOOSE IN	вох			TAPED REE	
(V)	UAF. (μF)	wxhxl	(g) ⁽³⁾		ORT LEADS		LONG LEAD	os	(500 mm) ⁽¹⁾⁽	(2)
(-)	(μ.)	(mm)	(9)	I _t = 3.5 mm	l _t = 5.0 mm	SPQ	l _t = 25.0 mm	SPQ	H = 18.5 mm;	SPQ
			L	± 0.3 mm	± 1.0 mm		± 2.0 mm		$P_0 = 12.7 \text{ mm}$	0. 4
			PITCH = 1		n; $d_t = 0.60 \text{ mm} \pm$	0.06 m) %		
	0.01			31030MFP2B0	31030MFM2B0	_	31030MFI2B0		31030MF02W0	
	0.012	5.0 x 11.0 x 17.5	1.0	31230MFP2B0	31230MFM2B0	1250	31230MFI2B0	1000	31230MF02W0	1100
	0.015	0.0 X 11.0 X 11.0	1.0	31530MFP2B0	31530MFM2B0	1200	31530MFI2B0	1000	31530MF02W0	1100
	0.018			31830MFP2B0	31830MFM2B0		31830MFI2B0		31830MF02W0	
	0.022	6.0 x 12.0 x 17.5	1.4	32230MFP2B0	32230MFM2B0	1000	32230MFI2B0	1000	32230MF02W0	900
			PITCH = 1	15.0 mm ± 0.4 mn	n; $d_t = 0.80 \text{ mm } \pm$	0.08 m	m; C-TOL. = ± 20) %		
	0.027			32730MFP2B0	32730MFM2B0		32730MFI2B0		32730MF02W0	
	0.033	7.0 x 13.5 x 17.5	1.8	33330MFP2B0	33330MFM2B0	750	33330MFI2B0	500	33330MF02W0	800
	0.039			33930MFP2B0	33930MFM2B0		33930MFI2B0		33930MF02W0	
	0.047	8.5 x 15.0 x 17.5	2.4	34730MFP2B0	34730MFM2B0	750	34730MFI2B0	500	34730MF02W0	650
	0.056	0.5 X 15.0 X 17.5	2.4	35630MFP2B0	35630MFM2B0	750	35630MFI2B0		35630MF02W0	030
	0.068	10.0 x 16.5 x 17.5	3.0	36830MFP2B0	36830MFM2B0	500	36830MFI2B0	450	36830MF02W0	600
	0.082	10.5 x 17.5 x 18.0	4.5	38230MFP2B0	38230MFM2B0	250	38230MFI2B0	400	=	
305		ļ	PITCH = 2	22.5 mm ± 0.4 mm	n; d _t = 0.80 mm ±	0.08 m	m; C-TOL. = ± 20) %		
	0.033			33330MIP2T0	33330MIM2T0		33330MII2B0			
	0.039	6.0 x 15.5 x 26.0	2.4	33930MIP2T0	33930MIM2T0	300	33930MII2B0	250		
	0.047			34730MIP2T0	34730MIM2T0		34730MII2B0			
	0.056	7.0 x 16.5 x 26.0	2.9	35630MIP2T0	35630MIM2T0	200	35630MII2B0	250		
	0.068	7.0 X 16.5 X 26.0	2.9	36830MIP2T0	36830MIM2T0	200	36830MII2B0	250		
	0.082	0.510.000.0	0.0	38230MIP2T0	38230MIM2T0	000	38230MII2B0	050		
	0.10	8.5 x 18.0 x 26.0	3.8	41030MIP2T0	41030MIM2T0	200	41030MII2B0	250		
	0.12	10.0 10.5 00.0	6.8	41230MIP2T0	41230MIM2T0	200	41230MII2B0	200	-	
	0.15	10.0 x 19.5 x 26.0	6.8	41530MIP2T0	41530MIM2T0	200	41530MII2B0	200		
	0.18	10.0 00.0 00.0	7.0	41830MIP2T0	41830MIM2T0	450	41830MII2B0	000		
	0.22	12.0 x 22.0 x 26.0	7.8	42230MIP2T0	42230MIM2T0	150	42230MII2B0	200		
	0.27			42730MIP2T0	42730MIM2T0		42730MII2B0			
	0.33	15.5 x 26.5 x 26.5	14	43330MIP2T0	43330MIM2T0	110	43330MII2B0	275		
	0.39			43930MIP2T0	43930MIM2T0		43930MII2B0			

- SPQ = Standard Packing Quantity
- (1) Reel diameter = 356 mm is available on request
- $^{(2)}$ H = in-tape height; P_0 = sprocket hole distance; for detailed specifications refer to "Packaging Information"
- (3) Weight for short lead product only
- (4) For tolerances see chapter "Space Requirements for Printed-Circuit Board Applications and Dimension Tolerances"

Vishay BCcomponents

ELE	ELECTRICAL DATA AND ORDERING INFORMATION														
					CATALOG NU	MBER	F340Y2 AND P	ACKAG	GING						
U _{RAC}	CAP.	DIMENSIONS (4)	MASS		LOOSE IN	BOX			TAPED REE						
(V)	(μ F)	w x h x l	(g) ⁽³⁾		ORT LEADS		LONG LEAD	os	(500 mm) ⁽¹⁾	(2)					
	u ,	(mm)	107	l _t = 3.5 mm ± 0.3 mm	l _t = 5.0 mm ± 1.0 mm	SPQ	l _t = 25.0 mm ± 2.0 mm	SPQ	H = 18.5 mm; P ₀ = 12.7 mm	SPQ					
			PITCH = 2	27.5 mm ± 0.4 mr	n; d _t = 0.80 mm ±	0.08 m	m; C-TOL. = ± 20) %							
	0.10	0.0 10.0 01.0		41030MKP2T0	41030MKM2T0	400	41030MKI2B0	450							
	0.12	9.0 x 19.0 x 31.0	5.5	41230MKP2T0	41230MKM2T0	100	41230MKI2B0	150							
	0.15	44.0 04.0 04.0	7.4	41530MKP2T0	41530MKM2T0	400	41530MKI2B0	405							
	0.18	11.0 x 21.0 x 31.0	7.4	41830MKP2T0	41830MKM2T0	100	41830MKI2B0	125							
	0.22	10.000.001.0	0.0	42230MKP2T0	42230MKM2T0	100	42230MKI2B0	105							
	0.27	13.0 x 23.0 x 31.0	9.2	42730MKP2T0	42730MKM2T0	100	42730MKI2B0	125							
	0.33	15.0 x 25.0 x 31.0	12.3	43330MKP2T0	43330MKM2T0	100	43330MKI2B0	125	-						
	0.39	10.000.001.0	10.1	43930MKP2T0	43930MKM2T0	100	43930MKI2B0	100							
	0.47	18.0 x 28.0 x 31.0	16.1	44730MKP2T0	44730MKM2T0	100	44730MKI2B0	100							
	0.56	01.001.001.0	00.0	45630MKP2T0	45630MKM2T0		45630MKI2B0	7.5							
	0.68	21.0 x 31.0 x 31.0	20.3	46830MKP2T0	46830MKM2T0	50	46830MKI2B0	75							
	0.82	20.0 x 35.0 x 31.0	17.5	48230MKP2T0	48230MKM2T0	50	48230MKI2B0	75							
			PITCH =	37.5 mm ± 0.5 m	m; d _t = 1.0 mm ±	0.1 mn	n; C-TOL. = ± 20	%							
	0.47	14.5 x 24.5 x 41.5	15.5	44730MPP2T0	44730MPM2T0	80	44730MPI2T0	80							
	0.68	16.0 x 28.5 x 41.5	19.5	46830MPP2T0	46830MPM2T0	70	46830MPI2T0	70	-						
	1.0	18.0 x 32.5 x 41.5	25	51030MPP2T0	51030MPM2T0	60	51030MPI2T0	60							
			PITCH =	15.0 mm ± 0.4 mr	n; d _t = 0.60 mm ±	0.06 m	m; C-TOL. = ± 10) %							
	0.010			31030KFP2B0	31030KFM2B0		31030KFI2B0		31030KF02W0						
	0.012	5 0 v 11 0 v 17 5	5 0 v 11 0 v 17 5	5 0 v 11 0 v 17 5	5 0 v 11 0 v 17 5	5 0 v 11 0 v 17 5	5.0 x 11.0 x 17.5	1.0	31230KFP2B0	31230KFM2B0	1250	31230KFI2B0	1000	31230KF02W0	1100
	0.015	5.0 X 11.0 X 17.5	1.0	31530KFP2B0	31530KFM2B0	1230	31530KFI2B0	1000	31530KF02W0] 1100					
	0.018			31830KFP2B0	31830KFM2B0		31830KFI2B0		31830KF02W0						
305	0.022	6.0 x 12.0 x 17.5	1.4	32230KFP2B0	32230KFM2B0	1000	32230KFI2B0	1000	32230KF02W0	900					
			PITCH = '	15.0 mm ± 0.4 mn	n; d _t = 0.80 mm ±	0.08 m	m; C-TOL. = ± 10) %							
	0.027	7.0 x 13.5 x 17.5	1.8	32730KFP2B0	32730KFM2B0	750	32730KFI2B0	500	32730KF02W0	800					
	0.033	7.0 X 13.3 X 17.3	1.0	33330KFP2B0	33330KFM2B0	730	33330KFI2B0	300	33330KF02W0	800					
	0.039	0 5 v 15 0 v 17 5	0.4	33930KFP2B0	33930KFM2B0	750	33930KFI2B0	500	33930KF02W0	6EO					
	0.047	8.5 x 15.0 x 17.5	2.4	34730KFP2B0	34730KFM2B0	750	34730KFI2B0	500	34730KF02W0	650					
	0.056	10.0 x 16.5 x 17.5	2.0	35630KFP2B0	35630KFM2B0	500	35630KFI2B0	450	35630KF02W0	600					
	0.068	10.0 X 16.5 X 17.5	3.0	36830KFP2B0	36830KFM2B0	300	36830KFI2B0	430	36830KF02W0	7 600					
	0.082	11.0 x 18.5 x 18.0	4.5	38230KFP2B0	38230KFM2B0	250	38230KFI2B0	400	-	-					
			PITCH = 2	22.5 mm ± 0.4 mm	n; d _t = 0.80 mm ±	0.08 m	m; C-TOL. = ± 10) %							
	0.033			33330KIP2T0	33330KIM2T0		33330KII2B0								
	0.039	6.0 x 15.5 x 26.0	2.4	33930KIP2T0	33930KIM2T0	300	33930KII2B0	250							
	0.047			34730KIP2T0	34730KIM2T0		34730KII2B0								
	0.056	7.0 x 16.5 x 26.0	2.9	35630KIP2T0	35630KIM2T0	200	35630KII2B0	250							
	0.068			36830KIP2T0	36830KIM2T0		36830KII2B0								
	0.082	8.5 x 18.0 x 26.0	3.8	38230KIP2T0	38230KIM2T0	200	38230KII2B0	250							
	0.10			41030KIP2T0	41030KIM2T0		41030KII2B0		-	-					
	0.12	10.0 x 19.5 x 26.0	6.8	41230KIP2T0	41230KIM2T0	200	41230KII2B0	200							
	0.15	10.0 x 00.0 x 06.0	7.0	41530KIP2T0	41530KIM2T0	150	41530KII2B0	200							
	0.18	12.0 x 22.0 x 26.0	7.8	41830KIP2T0	41830KIM2T0	150	41830KII2B0	200							
	0.22	12.5 x 22.5 x 26.5	11.0	42230KIP2T0	42230KIM2T0	140	42230KII2B0	200							
	0.27	15.5 x 26.5 x 26.5	14.0	42730KIP2T0	42730KIM2T0	110	42730KII2B0	275							
	0.33	10.0 x 20.0 x 20.0	14.0	43330KIP2T0	43330KIM2T0	110	43330KII2B0	210							

- SPQ = Standard Packing Quantity
 (1) Reel diameter = 356 mm is available on request
- (2) H = in-tape height; P₀ = sprocket hole distance; for detailed specifications refer to "Packaging Information"
- (3) Weight for short lead product only
- (4) For tolerances see chapter "Space Requirements for Printed-Circuit Board Applications and Dimension Tolerances"

Vishay BCcomponents

ELE	CIKIC	AL DATA AND	OKUE	ING INFORM		MD==	E040V0 4115 5	10//1	NIN 0		
		BILLERIA (C)					F340Y2 AND P	ACKAC			
URAC	CAP.	DIMENSIONS (4) w x h x l	MASS	CUI	LOOSE IN	BOX	LONGLEA	20	TAPED REE (500 mm) ⁽¹⁾		
(V)	(μ F)	(mm)	(g) ⁽³⁾	I _t = 3.5 mm	ORT LEADS	1	LONG LEAD				
		(,		t = 3.5 mm ± 0.3 mm	l _t = 5.0 mm ± 1.0 mm	SPQ	l _t = 25.0 mm ± 2.0 mm	SPQ	H = 18.5 mm; P ₀ = 12.7 mm	SPQ	
	i		PITCH = 2		n; d _t = 0.80 mm ±	0.08 m) %	. 0 = .=	1	
	0.10			41030KKP2T0	41030KKM2T0		41030KKI2B0				
	0.12	9.0 x 19.0 x 31.0	5.5	41230KKP2T0	41230KKM2T0	100	41230KKI2B0	150			
	0.15			41530KKP2T0	41530KKM2T0		41530KKI2B0				
	0.18	11.0 x 21.0 x 31.0	7.4	41830KKP2T0	41830KKM2T0	100	41830KKI2B0	125			
	0.22	13.0 x 23.0 x 31.0	9.2	42230KKP2T0	42230KKM2T0	100	42230KKI2B0	125			
	0.27	15.0 x 25.0 x 31.0	12.3	42730KKP2T0	42730KKM2T0	100	42730KKI2B0	125	-	-	
	0.33	10.0 00.0 01.0	40.4	43330KKP2T0	43330KKM2T0	400	43330KKI2B0	400			
	0.39	18.0 x 28.0 x 31.0	16.1	43930KKP2T0	43930KKM2T0	100	43930KKI2B0	100			
	0.47	01.0 01.0 01.0	00.0	44730KKP2T0	44730KKM2T0		44730KKI2B0	7.5			
	0.56	21.0 x 31.0 x 31.0	20.3	45630KKP2T0	45630KKM2T0	50	45630KKI2B0	75			
	0.68	20.0 x 35.0 x 31.0	17.5	46830KKP2T0	46830KKM2T0	50	46830KKI2B0	75			
			PITCH =	37.5 mm ± 0.5 m	m; d _t = 1.0 mm ±	0.1 mm	; C-TOL. = ± 10	%			
	0.47	14.5 x 24.5 x 41.5	14.8	44730KPP2T0	44730KPM2T0	80	44730KPI2T0	80			
	0.56	16.0 x 28.5 x 41.5	19.5	45630KPP2T0	45630KPM2T0	70	45630KPI2T0	70			
	0.68	10.0 X 26.5 X 41.5	18.5	46830KPP2T0	46830KPM2T0	70	46830KPI2T0	70	-	-	
	0.82	18.0 x 32.5 x 41.5	26	48230KPP2T0	48230KPM2T0	60	48230KPI2T0	60			
	1.0	18.5 x 35.5 x 43.0	30	51030KPP2T0	51030KPM2T0	105	51030KPI2T0	105			
			PITCH =	15.0 mm ± 0.4 m	m; d _t = 0.60 mm ±	0.06 m	m; C-TOL. = ± 5	%			
	0.010			31030JFP2B0	31030JFM2B0		31030JFI2B0		31030JF02W0		
	0.012	5.0 x 11.0 x 17.5	5.0 x 11.0 x 17.5	1.0	31230JFP2B0	31230JFM2B0	1250	31230JFI2B0		31230JF02W0	1100
	0.015			31530JFP2B0	31530JFM2B0		31530JFI2B0	1000	31530JF02W0		
305	0.018	6.0 x 12.0 x 17.5	1.4	31830JFP2B0	31830JFM2B0	1000	31830JFI2B0		31830JF02W0	900	
303	0.022	0.0 X 12.0 X 17.3	1.4	32230JFP2B0	32230JFM2B0	1000	32230JFI2B0		32230JF02W0	900	
			PITCH =	15.0 mm ± 0.4 m	m; d _t = 0.80 mm ±	0.08 m	ım; C-TOL. = ± 5	%			
	0.027	7.0 x 13.5 x 17.5	1.8	32730JFP2B0	32730JFM2B0	750	32730JFI2B0		32730JF02W0	800	
	0.033	7.0 X 10.0 X 17.0	1.0	33330JFP2B0	33330JFM2B0	750	33330JFI2B0	500	33330JF02W0	000	
	0.039	8.5 x 15.0 x 17.5	2.4	33930JFP2B0	33930JFM2B0	750	33930JFI2B0	300	33930JF02W0	650	
	0.047	0.0 X 10.0 X 17.0	2.7	34730JFP2B0	34730JFM2B0	750	34730JFI2B0		34730JF02W0	000	
	0.056	10.0 x 16.5 x 17.5	3.0	35630JFP2B0	35630JFM2B0	500	35630JFI2B0	450	35630JF02W0	600	
	0.068			36830JFP2B0	36830JFM2B0		36830JFI2B0		36830JF02W0	000	
	0.082	11.0 x 18.5 x 18.0	5.5	38230JFP2B0	38230JFM2B0	225	38230JFI2B0	350	-	-	
			PITCH =		$m; d_t = 0.80 \text{ mm } \pm$	0.08 m		%			
	0.033	6.0 x 15.5 x 26.0	2.4	33330JIP2T0	33330JIM2T0	300	33330JII2B0	250			
	0.039	0.0 X 10.0 X 20.0		33930JIP2T0	33930JIM2T0	000	33930JII2B0	200			
	0.047	7.0 x 16.5 x 26.0	2.9	34730JIP2T0	34730JIM2T0	200	34730JII2B0	250			
	0.056			35630JIP2T0	35630JIM2T0		35630JII2B0				
	0.068	8.5 x 18.0 x 26.0	3.8	36830JIP2T0	36830JIM2T0	200	36830JII2B0	250			
	0.082			38230JIP2T0	38230JIM2T0		38230JII2B0				
	0.10	10.0 x 19.5 x 26.0	6.8	41030JIP2T0	41030JIM2T0	200	41030JII2B0	200	-	-	
	0.12			41230JIP2T0	41230JIM2T0		41230JII2B0				
	0.15	12.0 x 22.0 x 26.0	7.8	41530JIP2T0	41530JIM2T0	150	41530JII2B0	200			
	0.18			41830JIP2T0	41830JIM2T0		41830JII2B0				
	0.22	12.5 x 22.5 x 26.5	8.4	42230JIP2T0	42230JIM2T0	140	42230JII2B0	200			
	0.27	15.5 x 26.5 x 26.5	14	42730JIP2T0	42730JIM2T0	110	42730JII2B0	275			
	0.33			43330JIP2T0	43330JIM2T0		43330JII2B0				

- SPQ = Standard Packing Quantity
- (1) Reel diameter = 356 mm is available on request
- (2) H = in-tape height; P₀ = sprocket hole distance; for detailed specifications refer to "Packaging Information"
- (3) Weight for short lead product only
- (4) For tolerances see chapter "Space Requirements for Printed-Circuit Board Applications and Dimension Tolerances"

Vishay BCcomponents

ELE	LECTRICAL DATA AND ORDERING INFORMATION									
					CATALOG NU	ACKAC	ING			
U _{RAC}	CAP.	DIMENSIONS (4)	MASS		LOOSE IN	BOX			TAPED REE	_
(V)	(μ F)	w x h x l	(g) ⁽³⁾		ORT LEADS	1	LONG LEAI	os	(500 mm) ⁽¹⁾⁽	(2)
		(mm)		l _t = 3.5 mm ± 0.3 mm	l _t = 5.0 mm ± 1.0 mm	SPQ	l _t = 25.0 mm ± 2.0 mm	SPQ	H = 18.5 mm; P ₀ = 12.7 mm	SPQ
			PITCH =	27.5 mm ± 0.4 m	m; d _t = 0.80 mm ±	0.08 m	ım; C-TOL. = ± 5	%		
	0.10	9.0 x 19.0 x 31.0	5.5	41030JKP2T0	41030JKM2T0	100	41030JKI2B0	150		
	0.12	9.0 x 19.0 x 31.0	5.5	41230JKP2T0	41230JKM2T0	100	41230JKl2B0	150		
	0.15	11.0 x 21.0 x 31.0	7.4	41530JKP2T0	41530JKM2T0	100	41530JKl2B0	125		
	0.18	11.0 X 21.0 X 31.0	7.4	41830JKP2T0	41830JKM2T0	100	41830JKl2B0	123		
305	0.22	13.0 x 23.0 x 31.0	9.2	42230JKP2T0	42230JKM2T0	100	42230JKI2B0	125		
303	0.27	15.0 x 25.0 x 31.0	12.3	42730JKP2T0	42730JKM2T0	100	42730JKI2B0	125	-	-
	0.33	18.0 x 28.0 x 31.0	16.1	43330JKP2T0	43330JKM2T0	100	43330JKI2B0	100		
	0.39	16.0 % 26.0 % 31.0	10.1	43930JKP2T0	43930JKM2T0	100	43930JKI2B0	100		
	0.47	21.0 x 31.0 x 31.0	20.3	44730JKP2T0	44730JKM2T0	50	44730JKI2B0	75		
	0.56	21.0 x 31.0 x 31.0	20.3	45630JKP2T0	45630JKM2T0	30	45630JKI2B0	73		
	0.68	20.0 x 35.0 x 31.0	17.5	46830JKP2T0	46830JKM2T0	50	46830JKI2B0	75		

Notes

- SPQ = Standard Packing Quantity
- (1) Reel diameter = 356 mm is available on request
- $^{(2)}$ H = in-tape height; P_0 = sprocket hole distance; for detailed specifications refer to "Packaging Information"
- (3) Weight for short lead product only
- (4) For tolerances see chapter "Space Requirements for Printed-Circuit Board Applications and Dimension Tolerances"

APPROVALS							
SAFETY APPROVALS Y2	VOLTAGE	VALUE	FILE NUMBERS	LINK			
EN 60384-14 (ENEC) (= IEC 60384-14 ed-4 (2013))	305 V _{AC}	1 nF to 1 μF	ENEC16/FI/19/10007/M1	www.vishay.com/doc?28253			
UL 60384-14 (2 nd edition)	305 V _{AC}	1 nF to 1 μF	E354331	www.vishay.com/doc?28256			
CSA-E60384-1:14 (3 rd edition)	305 V _{AC}	1 nF to 1 μF	E354331	www.vishay.com/doc?28256			
CQC	305 V _{AC}	1 nF to 1 μF	L-15001128762	www.vishay.com/doc?28251			
	OOO VAC	1111 το 1 μι	F-15001128766	www.vishay.com/doc?28252			
CB-test certificate	305 V _{AC}	1 nF to 1 μF	FI-39833/M1	www.vishay.com/doc?28254			

The ENEC-approval together with the CB-certificate replace all national marks of the following countries (they have already signed the ENEC-agreement): Austria; Belgium; Czech Republic; Denmark; Finland; France; Germany; Greece; Hungary; Ireland; Italy; Luxembourg; Netherlands; Norway; Portugal; Slovenian; Spain; Sweden, Switzerland, and United Kingdom.

MOUNTING

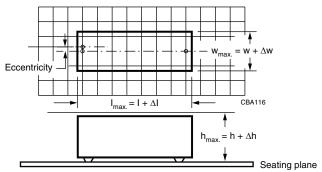
Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to packaging information www.vishay.com/docs?28139

Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board:


- For original pitch ≤ 15 mm the capacitors shall be mechanically fixed by the leads
- · For larger pitches the capacitors shall be mounted in the same way and the body clamped

Space Requirements for Printed-Circuit Board Applications and Dimension Tolerances

For the maximum product dimensions and maximum space requirements for length (I_{max.}), width (w_{max.}) and height (h_{max.}) following tolerances must be taken in account in the envelopment of the components as shown in the drawings below.

- For products with pitch \leq 15 mm, $\Delta w = \Delta l = 0.3$ mm, and $\Delta h = 0.1$ mm
- For products with 15 mm < pitch \leq 27.5 mm, $\Delta w = \Delta l = 0.5$ mm, and $\Delta h = 0.1$ mm
- For products with pitch = 37.5 mm, $\Delta w = \Delta l = 0.7$ mm, and $\Delta h = 0.5$ mm

Eccentricity defined as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.

For the minimum product dimensions for length (I_{min.}), width (w_{min.}), and height (h_{min.}) following tolerances of the components are valid:

 $I_{min.} = I - \Delta I$, $w_{min.} = w - \Delta w$, and $h_{min.} = h - \Delta h$ following

- For products with pitch \leq 10 mm, $\Delta l = 0.3$ mm, and $\Delta w = \Delta h = 0.3$ mm
- For products with pitch = 15 mm, $\Delta l = 0.5$ mm, and $\Delta w = \Delta h = 0.5$ mm
- For products with 15 mm < pitch \leq 27.5 mm, $\Delta l = 1.0$ mm, and $\Delta w = \Delta h = 0.5$ mm
- For products with pitch = 37.5 mm, $\Delta l = 1.0$ mm, and $\Delta w = \Delta h = 1.0$ mm

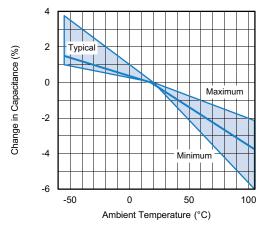
SOLDERING CONDITIONS

For general soldering conditions and wave soldering profile we refer to the document "Soldering Guidelines for Film Capacitors": www.vishay.com/doc?28171

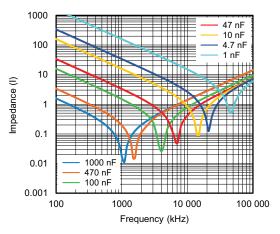
STORAGE TEMPERATURE

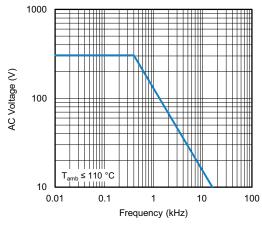
 T_{stg} = -25 °C to +35 °C with RH maximum 75 % without condensation

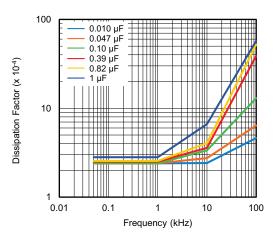
RATINGS AND CHARACTERISTICS REFERENCE CONDITIONS

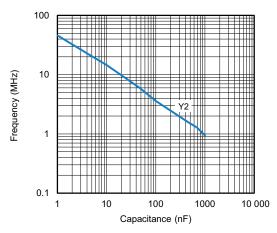

Unless otherwise specified, all electrical values apply to an ambient temperature of 23 °C \pm 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %.

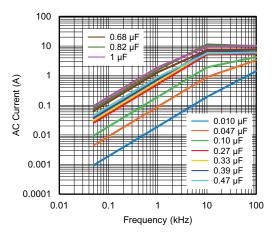
For reference testing, a conditioning period shall be applied over 96 h \pm 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.



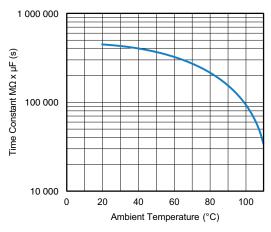

CHARACTERISTICS


Capacitance as a function of ambient temperature (typical curve)


Impedance as a function of frequency (typical curve)


Max. RMS voltage as a function of frequency

Tangent of loss angle as a function of frequency (typical curve)



Resonant frequency as a function of capacitance (typical curve)

Max. RMS current as a function of frequency

Insulation resistance as a function of ambient temperature (typical curve)

APPLICATION NOTES

- For Y2 electromagnetic interference suppression in standard line bypass applications (50 Hz / 60 Hz) with a maximum of 305 V_{AC} rated voltage including fluctuation of the mains. It is recommended to use these components in a mains with maximum nominal voltage of 240 V_{AC}. Higher continuous applied voltages will shorten the life time
- For series impedance applications we refer to the application note: www.vishav.com/doc?28153
- To ensure withstanding high humidity requirements in the application it is recommended not to damage the epoxy adhesion at the leads. Therefore the leads may not be damaged or bent before soldering
- For capacitors connected in parallel, normally the proof voltage and possibly the rated voltage must be reduced. For information depending of the capacitance value and the number of parallel connections contact: rfi@vishay.com
- These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse programs must be used
- The maximum ambient temperature must not exceed 105 °C
- Rated voltage pulse slope:
 if the pulse voltage is lower than the rated voltage, the values of the specific reference data can be multiplied by 420 V_{DC} and divided by the applied voltage

INSPECTION REQUIREMENTS

General Notes

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-14 ed-3 and Specific Reference Data".

INSPECTION REQUIREMENTS	INSPECTION REQUIREMENTS						
SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS					
SUB-GROUP C1A PART OF SAMPLE OF	SUB-GROUP C1						
4.1 Dimensions (detail)		As specified in chapters "General Data" of this specification					
Initial measurements	Capacitance Tangent of loss angle: for C ≤ 1 µF at 10 kHz						
4.3 Robustness of terminations	Tensile: load 10 N; 10 s Bending: load 5 N; 4 x 90°						
4.4 Resistance to soldering heat	No pre-drying Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s						

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C1A PART OF SAMPLE OF		PENI ONIMANOE REGUINEMENTS
4.19 Component solvent	Isopropylalcohol at room temperature	
resistance	Method: 2	
	Immersion time: 5 min ± 0.5 min	
	Recovery time: min. 1 h, max. 2 h	
4.4.2 Final measurements	Visual examination	No visible damage
The Final medical officials	Viodal Oxalimation	Legible marking
	Capacitance	$ \Delta C/C \le 5$ % of the value measured initially
	Tangent of loss angle	Increase of tan δ :
	Tangent of 1033 angle	≤ 0.008 for: C ≤ 1 µF
		Compared to values measured initially
	Insulation resistance	As an adding a section "Institution
	insulation resistance	As specified in section "Insulation Resistance" of this specification
SUB-GROUP C1B OTHER PART OF SAM	IPLE OF SUB-GROUP C1	,
Initial measurements	Capacitance	
	Tangent of loss angle:	
	for Č ≤ 1 μF at 10 kHz	
4.20 Solvent resistance of the marking	Isopropyl alcohol at room temperature	No visible damage
· ·	Method: 1	Legible marking
	Rubbing material: cotton wool	
	Immersion time: 5 min ± 0.5 min	
4.6 Rapid change of temperature	θA = -55 °C	
	θB = +105 °C	
	5 cycles Duration t = 30 min	
4.6.1 Inspection	Visual examination	No visible damage
4.7. \\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\	NAti	
4.7 Vibration	Mounting: see section "Mounting" of this specification	
	Procedure B4:	
	frequency range: 10 Hz to 55 Hz	
	Amplitude: 0.75 mm or Acceleration 98 m/s ²	
	(whichever is less severe)	
	Total duration 6 h	
4.7.2 Final inspection	Visual examination	No visible damage
4.9 Shock	Mounting: see section "Mounting" for more	
4.9 SHOCK	information	
	Pulse shape: half sine	
	Acceleration: 490 m/s ²	
	Duration of pulse: 11 ms	
4.9.2 Final measurements	Visual examination	No visible damage
		-
	Capacitance	$ \Delta C/C \le 5$ % of the value measured initially
	Tangent of less angle	Increase of tan St
	Tangent of loss angle	Increase of tan δ : ≤ 0.008 for: C $\leq 1 \mu$ F
		Compared to values measured initially
	Inculation registers as	As appointed in assetion "Institution
	Insulation resistance	As specified in section "Insulation Resistance" of this specification

INSPECTION REQUIREMENT	TS	
SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C1 COMBINED SAMPLE	OF SPECIMENS OF SUB-GROUPS C1A AND	C1B
4.11 Climatic sequence	O	
4.11.1 Initial measurements	Capacitance Measured in 4.4.2 and 4.9.2 Tangent of loss angle: measured initially in C1A and C1B	
4.11.2 Dry heat	Temperature: 105 °C	
4.11.3 Damp heat cyclic Test Db First cycle	Duration: 16 h	
4.11.4 Cold	Temperature: -55 °C	
4.11.5 Damp heat cyclic Test Db remaining cycles	Duration: 2 h	
4.11.6 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.11.1.
	Tangent of loss angle	Increase of tan δ : ≤ 0.008 for C $\leq 1~\mu F$ Compared to values measured in 4.11.1
	Voltage proof 2250 V _{DC} ; 1 min between terminations	No permanent breakdown or flash-over
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GROUP C2		
4.12 Damp heat steady state	56 days, 40 °C, 90 % to 95 % RH, no load	
4.12.1 Initial measurements	Capacitance Tangent of loss angle at 1 kHz	
4.12.3 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.12.1.
	Tangent of loss angle	Increase of tan δ : ≤ 0.008 for C ≤ 1 µF Compared to values measured in 4.12.1.
	Voltage proof 2250 V _{DC} ; 1 min between terminations	No permanent breakdown or flash-over
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

SUB-CI	AUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	ROUP C2A	JONETHORS	1 ETH OTHINGIOE HEAGINEMENTS
			Г
4.12A	Damp heat steady state with load	RH: 85 %, temp.: 85 °C, load: 305 V _{AC} Duration: 1000 h	
4.12.1A	Initial measurements	Capacitance Tangent of loss angle: for $C \le 1 \mu F$ at 10 kHz	
4.12.3A	Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C $ ≤ 10 % of the value measured in 4.12.1A.
		Tangent of loss angle	Increase of $\tan \delta$: ≤ 0.0240 for C $\leq 1 \mu F$ at 10 kHz Compared to values measured in 4.12.1A.
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GI	ROUP C3		
4.13.1	Initial measurements	Capacitance Tangent of loss angle: for C ≤ 1 µF at 10 kHz	
4.13	Impulse voltage	3 successive impulses, full wave, peak voltage: Y2: 5 kV for C \leq 1 μ F Max. 24 pulses	No self healing breakdowns or flash-over
4.14	Endurance	Duration: 1000 h 1.7 x U_{RAC} at 105 °C Once in every hour the voltage is increased to 1000 V_{RMS} for 0.1 s via resistor of 47 Ω ± 5 %	
4.14.7	Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 10$ % compared to values measured in 4.13.1.
		Tangent of loss angle	Increase of tan δ : \leq 0.008 for C \leq 1 μ F Compared to values measured in 4.13.1
		Voltage proof 2250 V _{DC} ; 1 min between terminations 2110 V _{AC} ; 1 min between terminations and case	No permanent breakdown or flash-over
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C4	T	1
4.15 Charge and discharge	10 000 cycles Charged to 420 V_{DC} Discharge resistance: $R = \frac{420 V_{DC}}{1.5 \times C \text{ (du/dt)}}$	
4.15.1 Initial measurements	Capacitance Tangent of loss angle: for $C \le 1 \mu F$ at 10 kHz for $C > 1 \mu F$ at 1 kHz	
4.15.3 Final measurements	Capacitance	$ \Delta C/C \le 10$ % compared to values measured in 4.15.1.
	Tangent of loss angle	Increase of tan δ : ≤ 0.008 for: $C \leq 1 \mu\text{F}$ Compared to values measured in 4.15.1
	Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GROUP C5	•	•
4.16 Radio frequency characteristic	Resonance frequency	\geq 0.9 times the value as specified in section "Resonant Frequency" of this specification
SUB-GROUP C6		
4.17 Passive flammability Class B for volume > 1750 mm³ Class C for volume ≤ 1750 mm³	Bore of gas jet: \varnothing 0.5 mm Fuel: butane Test duration for actual volume V in mm³: Class B Class C 250 < V \le 500: - 10 s 500 < V \le 1750: - 20 s V > 1750: 60 s - One flame application:	After removing test flame from capacitor, the capacitor must not continue to burn for more than 10 s (class B) and more than 30 s (class C). No burning particle must drop from the sample.
SUB-GROUP C7		
4.18 Active flammability	20 cycles of 5 kV discharges on the test capacitor connected to U _{RAC}	The cheese cloth around the capacitors shall not burn with a flame. No electrical measurements are required.

STRESS		REVISION	CONDITION	SAMPLE SIZE	PERFORMANCE REQUIREMENTS
1.	High temperature exposure (storage)	D	Temp.: 105 °C; unpowered 250 h / 500 h / 1000 h	77	$ \Delta C/C $ ≤ 5 % Increase of tan δ: ≤ 0.008 for C ≤ 1 μF at 10 kHz Increase of tan δ: ≤ 0.005 for C > 1 μF at 1 kHz IR > 50 % of initial specified value
2.	Temperature cycling	D	Total no. of cycles: 1000 cycles Lower temp.: -55 °C Upper temp: +105 °C 30 min dwell time at each temperature Transition time < 1 min	77	$ \Delta C/C $ ≤ 5 % Increase of tan δ: ≤ 0.008 for C ≤ 1 μF at 10 kHz IR > 50 % of initial specified value
3.	Moisture resistance		No. of cycle: 10 cycles t = 24 h/cycle	77	$ \Delta C/C \le 5$ % Increase of tan δ : ≤ 0.008 for $C \le 1$ µF at 10 kHz IR $> 50\%$ of initial specified value
4.	Biased humidity AC	D	Temp.: 40 °C; RH: 93 %; U _{RAC} 250 h / 500 h / 1000 h	77	$ \Delta C/C \le 10$ % Increase of tan δ : ≤ 0.008 for $C \le 1$ μF at 10 kHz IR > 50 % of initial specified value
5.	Operational life AC	D	Temp. = 105 °C; U _{RAC} 1000 h	77	$ \Delta C/C \le 10$ % Increase of tan δ: ≤ 0.008 for C ≤ 1 μF at 10 kHz IR > 50 % of initial specified value
6.	Terminal strength (leaded)	D	Test leaded device lead integrity only A (pull-test): 2.27 kg (10 s) - C (wire-lead bend test): 227 g (3 x 3 s)	30	No visual damage
7.	Resistance to solvents	D	MIL-STD-202 method 215. - Also aqueous chemical - OKEM clean or equivalent. Do not use banned solvents.	5	No visual damage Legible marking
8.	Mechanical shock	D	100 g's ; 6 ms half-sine; 3.75 m/s	30	No visual damage
9.	Vibration	D	5 g's for 20 min 12 cycles x 3 directions 10 Hz to 2000 Hz	30	No visual damage
10.	Resistance to soldering heat	D	Temp.: 280 °C; time: 10 s solder within 1.5 mm of device body	30	$ \Delta C/C \le 5$ % Increase of tan δ : ≤ 0.008 for C ≤ 1 μF at 10 kHz IR > 50 % of initial specified value
11.	Solderability	D	Leaded: method A at 235 °C, category 3 (245 °C / 3 s)	15	Good tinning as evidence by free flowing of the solder with wetting of terminations > 95 %
12.	Electrical characterization		-	30	-
13.	Flammability		One flame application Class B	15	V-0 or V-1 are acceptable. Class B or C according IEC is also acceptable

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.