MOSFET - Power, Dual N- & P-Channel, SO8 100 V, 83 mΩ, 4.5 A, -100 V, 131 mΩ, -3.6 A

NTMC083NP10M5L

Features

- Small Footprint (5 x 6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- The Part is Not ESD Protected
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

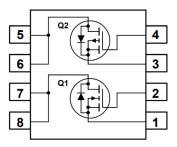
- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- Motor Drive, Home Automation

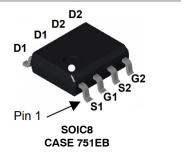
MAXIMUM RATINGS (T_J = 25°C, Unless otherwise specified)

Pa	Symbol	Q1	Q2	Unit		
Drain-to-Source	Breakdow	V _{(BR)DSS}	100	-100	V	
Gate-to-Source	Voltage		V_{GS}	±20	±20	V
Continuous Drain Current	Steady State	T _C = 25°C	I _D	4.1	-3.3	Α
R _{θJC} (Note 2)	State	T _C = 100°C		2.5	-2	
Power Dissipation Reac	Steady State	T _C = 25°C	P_{D}	3.1	3.1	W
(Note 2)	State	T _C = 100°C		1.2	1.2	
Continuous Drain Current	Steady T _A = 25°C State		I _D	2.9	-2.4	Α
R _{θJA} (Notes 1, 2)		T _A = 100°C		1.8	-1.4	
Power Dissipation R _{θJA}	Steady State	T _A = 25°C	P_{D}	1.6	1.6	W
(Notes 1, 2)	Otate	T _A = 100°C		0.6	0.6	
Pulsed Drain Current	T _A = 25°C	C, t _p = 10 μs	I _{DM}	20	20	Α
	Operating Junction and Storage Temperature Range			–55 to	+150	°C
Source Current (Body Diode)			I _S	3	3	Α
Single Pulse Dra Avalanche Energ (I _L = 6 A, 8.2 A, I	E _{AS}	18	34	mJ		
Lead Temperatur Soldering Purpos (1/8" from case fo	ses	g Reflow for	T _L	260	260	°C

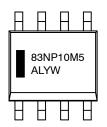
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.




ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	83 mΩ @ 10 V	4.5 A
-100 V	131 mΩ @ 10 V	-3.6 A

Dual-Channel MOSFET

MARKING DIAGRAM

A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Note 3)	40	40	°C/W
$R_{ heta JA}$	R _{θJA} Junction-to-Ambient – Steady State (Note 3)		78	

^{3.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ELECTRICAL CHARACTERISTICS (Q1, N-CHANNEL) ($T_J = 25$ °C unless otherwise noted)

Parameter	Symbol	Test Condition	ıs	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•		•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to 25°C			60		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}		T _J = 25°C			1	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 3	±20 V			±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 2$	8 μΑ	1.0	1.9	3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J	$I_D = 22 \mu A$, ref to	25°C		8.2		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 1	1.5 A		59.4	83	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D =$	1.2 A		96.3	118	
Forward Transconductance	9FS	V _{DS} = 5 V, I _D =	4 A		7.1		S
Gate-Resistance	R _G	T _A = 25°C			1.21		Ω
CHARGES & CAPACITANCES	•				•	•	
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			222		pF
Output Capacitance	C _{OSS}				55.4		
Reverse Transfer Capacitance	C _{RSS}				2.6		
Total Gate Charge	Q _{G(TOT)}				3		nC
Threshold Gate Charge	Q _{G(TH)}				0.6		
Gate-to-Source Charge	Q_{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 50 \text{ V}$	/, I _D = 1.5 A		0.9		
Gate-to-Drain Charge	Q_{GD}				1		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DD} = 50 V	′, I _D = 1.5 A		5		
SWITCHING CHARACTERISTICS	, ,						
Turn-On Delay Time	t _{d(ON)}				8.4		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS} = 50 V	In - 1 5 A		8		
Turn-Off Delay Time	t _{d(OFF)}	$R_{G} = 6 \Omega$, 10 – 1.071,		8.9		
Fall Time	t _f				6.2		
Turn-On Delay Time	t _{d(ON)}				5.7		ns
Rise Time	t _r	V_{GS} = 4.5 V, V_{DS} = 50 V, I_{D} = 1.5 A, R_{G} = 6 Ω			2		
Turn-Off Delay Time	t _{d(OFF)}				11.2		
Fall Time	t _f				4.6		
OFF CHARACTERISTICS						•	•
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.8	1.2	V
		$V_{GS} = 0 \text{ V},$ $I_{S} = 1.5 \text{ A}$ $T_{J} = 125^{\circ}$			1.3	1	1

ELECTRICAL CHARACTERISTICS (Q1, N-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Reverse Recovery Time	t _{RR}			19		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V, } dI_S/dt = 100 \text{ A/}\mu\text{s,}$		13		
Discharge Time	t _b	V_{GS} = 0 V, dI_S/dt = 100 A/ μ s, I_S = 0.8 A		6		
Reverse Recovery Charge	Q _{RR}			11		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Parameter	Symbol	Test Condition	ns	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to	25°C		54		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$ $T_{J} = T_{J} $	T _J = 25°C			1	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 3	±20 V			±100	nA
ON CHARACTERISTICS	•				•	-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = -2$	28 μΑ	-2.0	-3.0	-4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = -28 μA, ref to 25°C			6.61		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 110 V, I _D = -1.5 A			109	131	mΩ
		$V_{GS} = -6 \text{ V}, I_D = -1 \text{ A}$			141	198	
Forward Transconductance	9FS	$V_{DS} = 5 \text{ V}, I_{D} = -7 \text{ A}$			7.9		S
Gate-Resistance	R_{G}	T _A = 25°C			3.36		Ω
CHARGES & CAPACITANCES	•				•	•	•
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -50 V			525		pF
Output Capacitance	C _{OSS}				88		7
Reverse Transfer Capacitance	C _{RSS}				4		
Total Gate Charge	Q _{G(TOT)}				8.4		nC
Threshold Gate Charge	Q _{G(TH)}				1.8		
Gate-to-Source Charge	Q_{GS}	$V_{GS} = -10 \text{ V}, V_{DS} = -50 \text{ V}$	/, I _D = −1.5 A		2.7		
Gate-to-Drain Charge	Q_{GD}				1.3		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 6 V, V _{DD} = 50 V,	I _D =-1.5 A		5.2		
SWITCHING CHARACTERISTICS	•				•	•	•
Turn-On Delay Time	t _{d(ON)}				10.1		ns
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{DS} = -50 \text{ V}, I_D = -1.5 \text{ A},$ $R_G = 6 \Omega$			2.7		
Turn-Off Delay Time	t _{d(OFF)}				15.9		
Fall Time	t _f				6.8		1
Turn-On Delay Time	t _{d(ON)}				13.3		ns
Rise Time	t _r	$V_{GS} = -6 \text{ V}, V_{DS} = -50 \text{ V}, I_{D} = -41.5 \text{A},$ $R_{G} = 6 \Omega$			5.7		1
Turn-Off Delay Time	t _{d(OFF)}				12.5		1
Fall Time	t _f				7		1

ELECTRICAL CHARACTERISTICS (Q2, P-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

	(·)	, (0		, (,		
Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		-0.8	-1.2	V
Forward Diode Voltage		$V_{GS} = 0 \text{ V},$ $I_{S} = -1.5 \text{ A}$	T _J = 125°C		-0.7		
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI _S /dt = 100 A/ μ s, I _S = -0.8 A			31		ns
Charge Time	t _a				23		
Discharge Time	t _b				8		
Reverse Recovery Charge	Q _{RR}				42		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Device	Device Marking	Package	Shipping (Qty / Packing) [†]
NTMC083NP10M5L	83NP10M5	SO8 (Pb–Free/Halogen Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS - N-CHANNEL

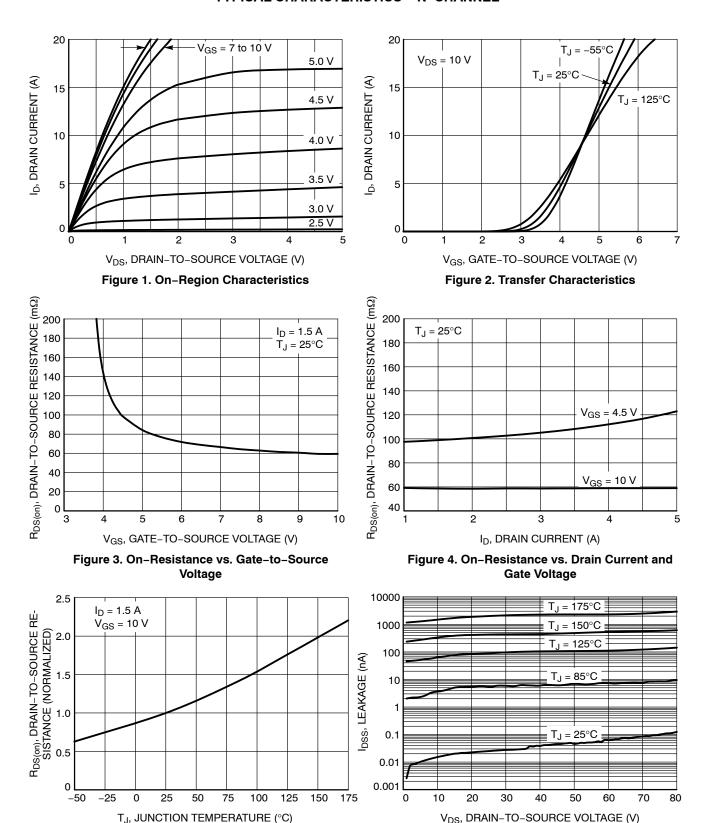
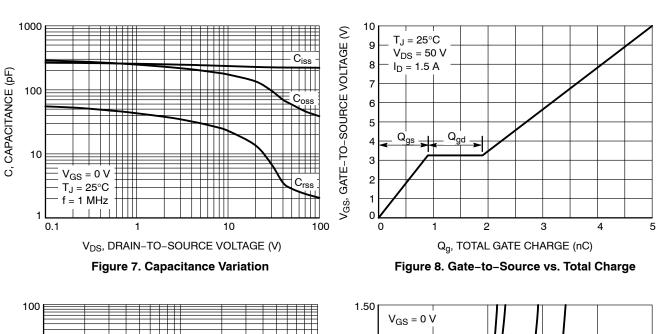



Figure 6. Drain-to-Source Leakage Current vs. Voltage

Figure 5. On-Resistance Variation with

Temperature

TYPICAL CHARACTERISTICS - N-CHANNEL

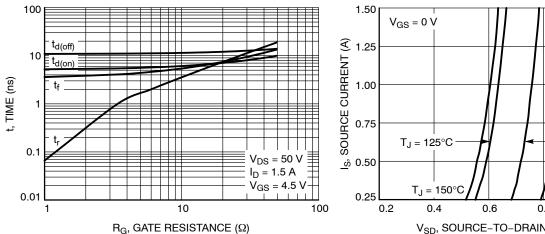


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

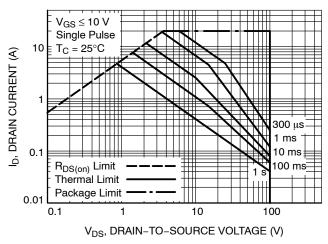
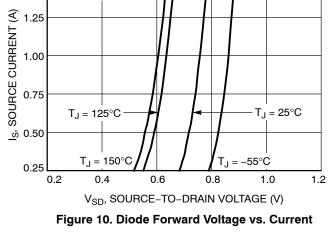



Figure 11. Maximum Rated Forward Biased Safe Operating Area

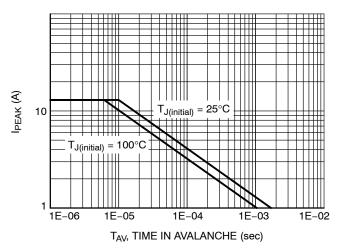


Figure 12. Maximum Drain Current vs. Time in **Avalanche**

TYPICAL CHARACTERISTICS - N-CHANNEL

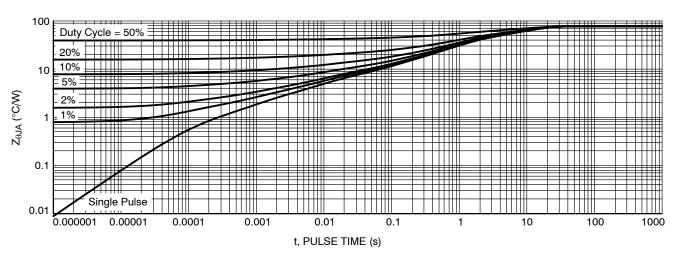


Figure 13. Thermal Response

TYPICAL CHARACTERISTICS - P-CHANNEL

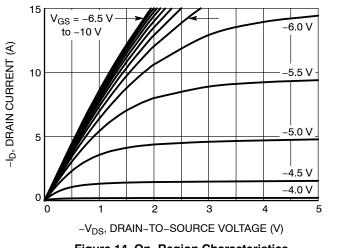


Figure 14. On-Region Characteristics

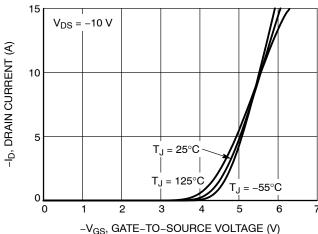


Figure 15. Transfer Characteristics

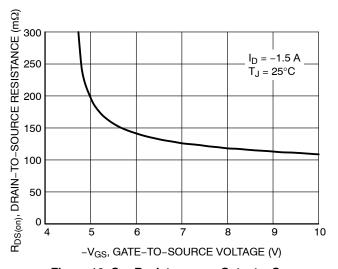


Figure 16. On-Resistance vs. Gate-to-Source Voltage

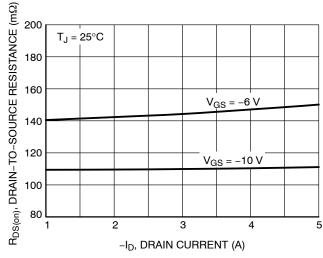


Figure 17. On-Resistance vs. Drain Current and Gate Voltage

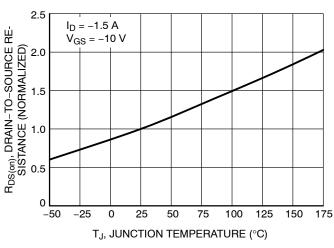


Figure 18. On-Resistance Variation with **Temperature**

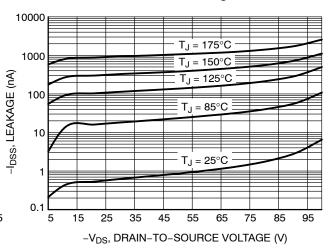


Figure 19. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - P-CHANNEL

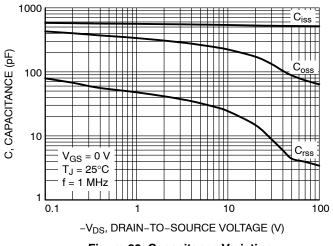


Figure 20. Capacitance Variation

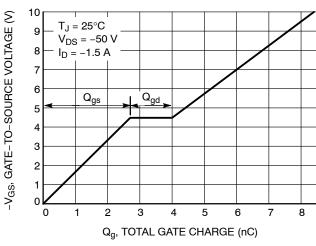


Figure 21. Gate-to-Source vs. Total Charge

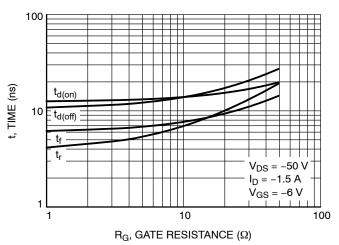


Figure 22. Resistive Switching Time Variation vs. Gate Resistance

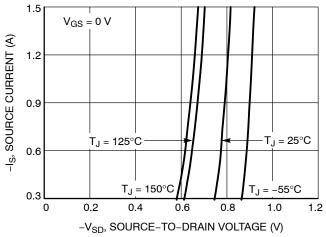


Figure 23. Diode Forward Voltage vs. Current

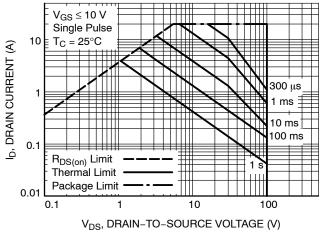


Figure 24. Maximum Rated Forward Biased Safe Operating Area



Figure 25. Maximum Drain Current vs. Time in Avalanche

TYPICAL CHARACTERISTICS - P-CHANNEL

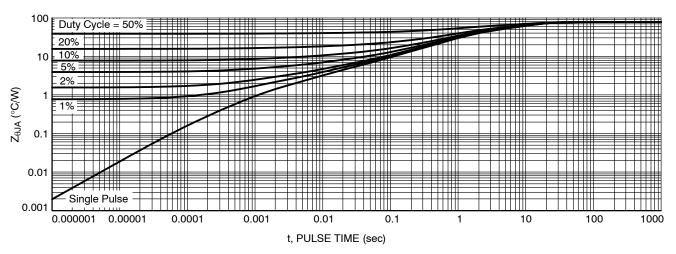
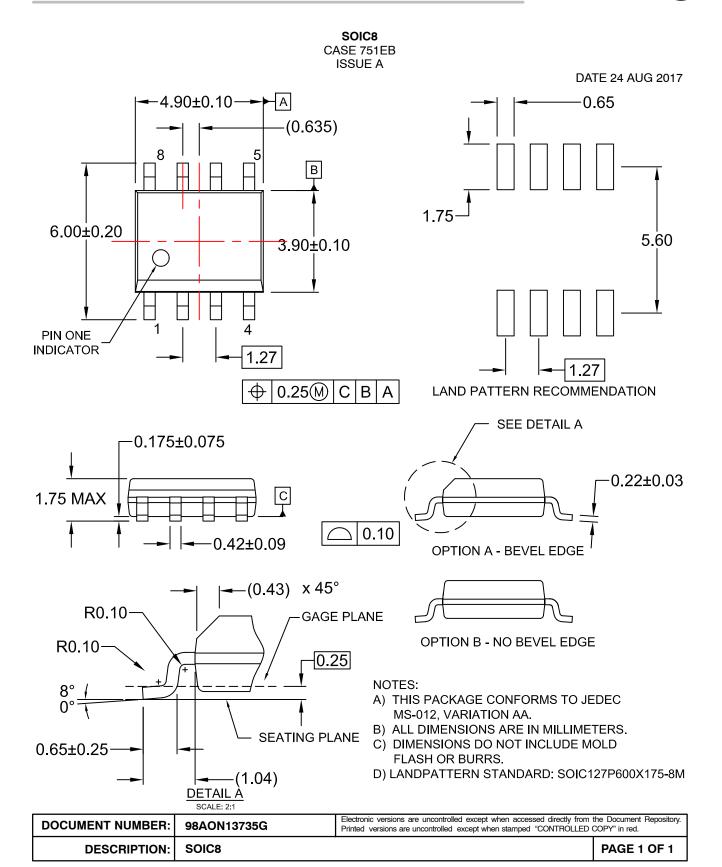



Figure 26. Thermal Response

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales