MOSFET - Small Signal, Complementary, SC-88 30 V/-20 V, +0.25/-0.88 A

Features

- Leading 20 V Trench for Low R_{DS(on)} Performance
- ESD Protected Gate
- SC-88 Package for Small Footprint (2 x 2 mm)
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- DC-DC Conversion
- Load/Power Management
- Load Switch
- Cell Phones, MP3s, Digital Cameras, PDAs

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Pai	Symbol	Value	Unit		
Drain-to-Source Volt	N-Ch	V _{DSS}	30	V	
		P-Ch		-20	
Gate-to-Source Volta	age	N-Ch	V _{GS}	±20	V
		P-Ch		±12	
N-Channel Continuous Drain	Steady	T _A = 25°C	I _D	0.25	Α
Current (Note 1)	State	T _A = 85°C		0.18	
P-Channel Continuous Drain	Steady	T _A = 25°C		-0.88	
Current (Note 1)	State	T _A = 85°C		-0.63	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	0.27	W
Pulsed Drain Cur-	N-Ch	to 10	I _{DM}	0.5	Α
rent	P-Ch	tp = 10 μs		-3.0	
Operating Junction a	T _J , T _{stg}	–55 to 150	°C		
Source Current (Body	N-Ch	IS	0.25	Α	
P-Ch				-0.48	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	460	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
N-Ch	1.0 Ω @ 4.5 V	0.25 A
30 V	1.5 Ω @ 2.5 V	0.25 A
P-Ch	215 mΩ @ -4.5 V	-0.88 A
-20 V	345 mΩ @ –2.5 V	-0.00 A

MARKING DIAGRAM & PIN ASSIGNMENT

SC-88 (SOT-363) CASE 419B STYLE 26

XXX = Specific Device Code

M = Date Code ■ Pb-Free Package

■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

1.	Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

OFF CHARACTERISTICS (Note 3) V(BRIDSS PREMIXED NOTATION - Source Breakdown Voltage V(BRIDSS PREMIXED NOTATION - Source Breakdown Voltage Breakdown Voltage Premixed - Coefficient T.J. V(BRIDSS PREMIXED NOTATION - VORD - 30 V. D 20 D. A. 33 D 30 V. D 20 D	Parameter	Symbol	N/P	Test Condition	n	Min	Тур	Max	Unit
Death-In-Source Versiposs P		,	, ,-	1			71-		
Breakdown Voltage P	, ,	V/======	l NI	Ī	I- 250A	20	I	ı	\ \/
Drain-to-Source Breakdown Vigingbss N		V(BR)DSS		V _{GS} = 0 V					V
Voltage Temperature Coefficient T _J P V _{GS} = 0 \ V _{DS} = 30 \ V V _{DS} = 30 \ V V _{DS} = 10 \ V					I _D = -250 μA	-20			
Zero Gate Voltage Drain Current Ioss N V _{GS} = 0 V, V _{DS} = 30 V T _J = 25°C 1.0 1.0 I.0									
P V _{GS} = 0 \ V, V _{DS} = 30 \ V V	<u> </u>				1		-9.0		
P Vos = 0.4 Vps = 16 V Vos = 10 V V	Zero Gate Voltage Drain Current	I _{DSS}			T _{.1} = 25°C				μΑ
P V _{GS} = 0 \ V, V _{DS} = 16 \ V O O O O O O O O O					ŭ			1.0	
P					T ₁ = 125°C		0.5		
P V _{DS} = 0 V, V _{QS} = -4.5 V 0.8 1.0			Р		ŭ		0.5		
On Characteristics (Note 2) Vas(Th) P	Gate-to-Source Leakage Current	I _{GSS}	N	$V_{DS} = 0 V, V_{GS} = 0$	10 V			1.0	μΑ
Reverse Recovery Time Vas(Ti+) N			Р	$V_{DS} = 0 \text{ V}, V_{GS} = -$	4.5 V			1.0	
Negative Gate Threshold Vas(TH) N Temperature Coefficient T N P Vas = 4.5 V, I _D = 10 mA 1.0 1.5 Ω 2.5	ON CHARACTERISTICS (Note 2)								
P VGS = VIS ID = -250 μA -0.45 -0.61 -1.5 Temperature Coefficient T P VGS = -4.5 V, ID = 10 mA -2.7 -2.7 P VGS = -4.5 V, ID = -0.88 A -0.215 0.280 P VGS = -2.5 V, ID = 10 mA -1.5 0.280 P VGS = -2.5 V, ID = -0.71 A -0.45 0.08 -0.8 P VGS = -2.5 V, ID = -0.71 A -0.45 0.08 -0.8 P VGS = -2.5 V, ID = -0.71 A -0.45 0.08 -0.8 P VGS = -2.5 V, ID = -0.71 A -0.45 0.280 P VGS = -2.5 V, ID = -0.71 A -0.48 -0.08 -0.8 P VGS = -2.5 V, ID = -0.71 A -0.48 -0.45 -0.61 -1.5 P VGS = -2.5 V, ID = -0.71 A -0.48 -0.45 -0.61 -1.5 P VGS = -0.5 V, ID = -0.71 A -0.48 -0.88 -0.5 P VGS = -0.5 V, ID = -0.88 A -0.5 -0.88 -0.5 P VGS = -0.0 V, ID = -0.88 A -0.5 -0.88 -0.5 P VGS = -0.0 V, ID = -0.88 A -0.5 -0.88 -0.5 P VGS = -0.0 V, ID = -0.88 A -0.5 -0.88 -0.5 P VGS = -0.0 V, ID = -0.88 A -0.5 -0.88 -0.5 P VGS = -4.5 V, VDS = -10 V, ID = -0.88 A -0.5 -0.88 -0.5 P VGS = -4.5 V, VDS = -10 V, ID = -0.88 A -0.5 -0.88 -0.5 Gate-to-Drain Charge QGS N VGS = 5.0 V, VDS = 24 V, ID = 0.1 A -0.2 -0.88 -0.5 Gate-to-Drain Charge QGS N VGS = -4.5 V, VDS = -10 V, ID = -0.88 A -0.5 -0.5 Gate-to-Drain Charge QGS N VGS = -4.5 V, VDS = -10 V, ID = -0.88 A -0.5 -0.5 Rise Time t ₁ Turn-Off Delay Time t ₁ t	Gate Threshold Voltage	V _{GS(TH)}	N	1	I _D = 100 μA	0.8	1.2	1.5	V
Negative Gate Threshold Temperature Coefficient Trushold Tru	G	GO(111)		$V_{GS} = V_{DS}$		-0.45	-0.61	-1.5	
Page	Negative Gate Threshold	Vocatur/	N		, U.				mV/
Description									°C
P V _{GS} = -4.5 V, I _D = -0.88 A 0.215 0.260 N V _{GS} = 2.5 V, I _D = 10 mA 1.5 2.5 P V _{GS} = -2.5 V, I _D = 0.71 A 0.345 0.500 P V _{GS} = -2.5 V, I _D = -0.71 A 0.345 0.500 P V _{DS} = 3.0 V, I _D = 10 mA 0.08 3.0 P V _{DS} = -10 V, I _D = -0.88 A 3.0 P V _{DS} = -10 V, I _D = -0.88 A 3.0 P V _{DS} = -10 V, I _D = -0.88 A 3.0 P V _{DS} = -10 V, I _D = -0.88 A 3.0 P V _{DS} = -5.0 V V _D	<u>'</u>	_		Voc = 45 V L = 10	0 mΔ	1		1.5	
N V _{GS} = 2.5 V, I _D = 10 mA 1.5 2.5	Diani-to-cource off nesistatice	ייטS(on)							52
P V _{GS} = -2.5 V, I _D = -0.71 A 0.345 0.500			-						ł
Forward Transconductance GFS N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 10 mA 0.08 N VDS = 3.0 V, ID = 3.0 V, I									
CHARGES, CAPACITANCES AND GATE RESISTANCE Input Capacitance								0.500	
The Composition color	Forward Transconductance	9FS					0.08		S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Р	$V_{DS} = -10 \text{ V}, I_D = -0$	D.88 A		3.0		
Part	CHARGES, CAPACITANCES AND	GATE RESIS	STANC	E					
Part	Input Capacitance	C _{ISS}	N		$V_{DS} = 5.0 \text{ V}$		20	33	pF
Output Capacitance			Р	1			155	225	1
Reverse Transfer Capacitance Capacitanc	Output Capacitance	Coss	N	1			19		
$ \begin{array}{ c c c c c } \hline \text{Reverse Transfer Capacitance} & C_{RSS} & N \\ \hline P & V_{QS} = 5.0 \text{ V}, V_{DS} = 20 \text{ V} & 18 & 30 \\ \hline \hline \text{Total Gate Charge} & Q_{G(TOT)} & N & V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V}, I_{D} = 0.1 \text{ A} & 0.9 & 1.5 \\ \hline P & V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_{D} = -0.88 \text{ A} & 2.2 & 3.5 \\ \hline \text{Threshold Gate Charge} & Q_{G(TH)} & N & V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V}, I_{D} = 0.1 \text{ A} & 0.2 & 2.2 & 3.5 \\ \hline \text{Reverse Transfer Capacitance} & Q_{G(TH)} & N & V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V}, I_{D} = 0.1 \text{ A} & 0.2 & 2.2 & 3.5 \\ \hline P & V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_{D} = -0.88 \text{ A} & 0.2 & 2.2 & 3.5 \\ \hline \text{Reverse Charge} & Q_{GS} & N & V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V}, I_{D} = 0.1 \text{ A} & 0.2 & 2.2 & 3.5 \\ \hline \text{Reverse Charge} & Q_{GS} & N & V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V}, I_{D} = 0.1 \text{ A} & 0.2 & 2.2 & 3.5 \\ \hline \text{Reverse Charge} & Q_{GS} & N & V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V}, I_{D} = 0.1 \text{ A} & 0.3 & 0.2 & 2.2 & 3.5 \\ \hline \text{Reverse Charge} & Q_{GS} & N & V_{GS} = 5.0 \text{ V}, V_{DS} = 10 \text{ V}, I_{D} = -0.88 \text{ A} & 0.5 & 3.2 & 3.5 & 3.2 \\ \hline \text{Reverse Charge} & Q_{GS} & N & V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_{D} = -0.88 \text{ A} & 0.5 & 3.2 & 3.5 \\ \hline \text{Reverse Revovey Time} & \text{t}_{d(ON)} & N & \text{t}_{GS} = 4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_{D} = -0.88 \text{ A} & 0.5 & 3.2 & 3.5 \\ \hline \text{Reverse Recovery Time} & \text{t}_{d(ON)} & N & \text{t}_{GS} = 4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_{D} = -0.88 \text{ A} & 0.5 & 3.2 & 3.5 \\ \hline \text{Reverse Recovery Time} & \text{t}_{d(OFF)} & \text{t}_{D} = 250 \text{ mA}, R_{G} = 50 \Omega & 5.0 & 5.0 & 3.2 & 3.5 & 3.2 \\ \hline \text{Reverse Recovery Time} & \text{t}_{d(OFF)} & \text{t}_{GS} = 0 \text{ V}, T_{J} = 25^{\circ}\text{C} & \frac{I_{S} = 10 \text{ mA}}{I_{S} = -0.48 \text{ A}} & -0.66 & 3.2 & 3.5 & 3.2 & 3.5 & 3.2 \\ \hline \text{Reverse Recovery Time} & \text{t}_{RR} & N & \text{V}_{GS} = 0 \text{ V}, T_{J} = 125^{\circ}\text{C} & \frac{I_{S} = 10 \text{ mA}}{I_{S} = -0.48 \text{ A}} & -0.66 & 3.2 & 3.5 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3$		-033		f = 1 MHz, V _{GS} = 0 V					1
P	Reverse Transfer Canacitance	Cnoo		1					-
Total Gate Charge	Theverse Transfer Supucitainee	ORSS		1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Cata Charge		-	V 50VV 04V					~C
$ \begin{array}{ c c c c c c c c c } \hline \mbox{Threshold Gate Charge} & Q_{G(TH)} & N & V_{GS} = 5.0 \ V, V_{DS} = 24 \ V, \ I_{D} = 0.1 \ A & 0.2 & 0.$	Total Gate Charge	QG(TOT)							nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T							3.5	
Gate-to-Source Charge Page Pag	Threshold Gate Charge	$Q_{G(TH)}$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate-to-Source Charge	Q_GS					0.3		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$	$I_D = -0.88 A$		0.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Drain Charge	Q_{GD}							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$	$I_D = -0.88 A$		0.65		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS (Note 3)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	td(ON)	N	1			15		ns
$ \begin{array}{ c c c c }\hline \text{Turn-Off Delay Time} & t_{d(OFF)} \\\hline \text{Fall Time} & t_{f} \\\hline \text{Turn-On Delay Time} & t_{d(ON)} \\\hline \text{Rise Time} & t_{f} \\\hline \text{Turn-Off Delay Time} & t_{d(ON)} \\\hline \text{Rise Time} & t_{f} \\\hline \text{Fall Time} & t_{f} \\\hline \end{array} \begin{array}{ c c c c }\hline \text{P} & V_{GS} = -4.5 \text{ V, } V_{DD} = -10 \text{ V,} \\\hline \text{I}_{D} = -0.5 \text{ A, } R_{G} = 20 20 \\\hline \hline \text{Pall Time} & t_{f} \\\hline \end{array} \begin{array}{ c c c c }\hline \text{Porward Diode Voltage} & V_{SD} \\\hline \text{Power Diode Voltage} & V_{SD} \\\hline \hline \text{Reverse Recovery Time} & t_{RR} \\\hline \end{array} \begin{array}{ c c c c c }\hline \text{N} & V_{GS} = 0 \text{ V, } T_{J} = 25^{\circ}\text{C} \\\hline \text{Power Nowed Diode Voltage} & I_{S} = 10 \text{ mA} \\\hline \text{Reverse Recovery Time} & t_{RR} \\\hline \end{array} \begin{array}{ c c c c }\hline \text{N} & V_{GS} = 0 \text{ V, } T_{J} = 125^{\circ}\text{C} \\\hline \text{Reverse Recovery Time} & I_{RR} \\\hline \end{array} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•		1	Voc = 45 V Voc -	5.0 V				1
		<u> </u>	1			-		 	ł
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	1	-	.b - 255, (, rig -				 	ł
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ь			-			ł
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	` '	↓ 「		40.17			<u> </u>	ł
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>	4			<u> </u>			-
		` ′	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						<u> </u>	3.5	<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		=							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Forward Diode Voltage	V_{SD}	N	Vac = 0.V.T. 25°C	I _S = 10 mA		0.65	0.7	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Р	v _{GS} = 0 v, 1 _J = 25 °C	$I_S = -0.48 \text{ A}$		-0.8	-1.2	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			N	V 0V T 10500	I _S = 10 mA	1	0.45		1
Reverse Recovery Time $ t_{RR} \qquad N \qquad V_{GS} = 0 \; V, \; d_{IS}/d_t = 8.0 \; A/\mu s \qquad I_S = 10 \; mA \qquad \qquad 12.4 \qquad \qquad ns $			Р	V _{GS} = 0 V, I _J = 125°C		i e	-0.66		1
	Reverse Recovery Time	tee	N	$V_{GS} = 0 \text{ V}, d_{1S}/d_t = 8.0 \text{ A/Hs}$		l			ns
$I = I + I + V_{CC} = 0.0 \text{ M/H} = 100 \text{ A/H} = -0.48 \text{ MA} = 1.10 \text{ A} = 1.00 \text{ A} = -0.48 \text{ MA} = 1.10 \text{ A} = 1.00 \text{ A} = 1.$	•	""	P	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A/}\mu\text{s}$	$I_S = -0.48 \text{ mA}$		10.6		1

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

Figure 1. On–Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On–Resistance vs. Drain Current and Temperature

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

TYPICAL P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On–Resistance vs. Drain Current and Temperature

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

$\textbf{TYPICAL P-CHANNEL PERFORMANCE CURVES} \ \, (\textbf{T}_{J} = 25^{\circ} \text{C unless otherwise noted})$

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total
Gate Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]	
NTJD4158CT1G	TCD			
NTJD4158CT2G	TCD	SC-88 (Pb-Free)	3000 / Tape & Reel	
NVJD4158CT1G*	VCD	,		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z**

DATE 18 APR 2024

NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20
- DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
- DIMENSIONS 6 AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

6X 0.30 -

TOP VIEW

GENERIC MARKING DIAGRAM*

DIM	MIN.	NOM.	MAX.			
Α		1.10				
A1	0.00		0.10			
A2	0.70	0.90	1.00			
b	0.15	0.20	0.25			
С	0.08	0.15	0.22			
D	2.00 BSC					
E	2.10 BSC					
E1	1.25 BSC					
е	0.65 BSC					
L	0.26	0.36	0.46			
L2		0.15 BSC				
aaa	0.15					
bbb	0.30					
ccc	0.10					
ddd		0.10				

MILLIMETERS

RECOMMENDED MOUNTING FOOTPRINT*

6X 0.66

2.50

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXX = Specific Device Code

= Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

- *Date Code orientation and/or position may vary depending upon manufacturing location.
- *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65	5P	PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z

DATE 18 APR 2024

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13: PIN 1. ANODE 2. N/C 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 14: PIN 1. VREF 2. GND 3. GND 4. IOUT 5. VEN 6. VCC	STYLE 15: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 3 4. CATHODE 3 5. CATHODE 2 6. CATHODE 1	STYLE 16: PIN 1. BASE 1 2. EMITTER 2 3. COLLECTOR 2 4. BASE 2 5. EMITTER 1 6. COLLECTOR 1	STYLE 17: PIN 1. BASE 1 2. EMITTER 1 3. COLLECTOR 2 4. BASE 2 5. EMITTER 2 6. COLLECTOR 1	STYLE 18: PIN 1. VIN1 2. VCC 3. VOUT2 4. VIN2 5. GND 6. VOUT1
STYLE 19: PIN 1. I OUT 2. GND 3. GND 4. V CC 5. V EN 6. V REF	STYLE 20: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 21: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. N/C 6. CATHODE 1	STYLE 22: PIN 1. D1 (i) 2. GND 3. D2 (i) 4. D2 (c) 5. VBUS 6. D1 (c)	STYLE 23: PIN 1. Vn 2. CH1 3. Vp 4. N/C 5. CH2 6. N/C	STYLE 24: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 25: PIN 1. BASE 1 2. CATHODE 3. COLLECTOR 2 4. BASE 2 5. EMITTER 6. COLLECTOR 1	STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 27: PIN 1. BASE 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. EMITTER 2 6. COLLECTOR 2	STYLE 28: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 29: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE/ANODE 6. CATHODE	STYLE 30: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B Electronic versions are uncontrolled except when accessed directly from the II Printed versions are uncontrolled except when stamped "CONTROLLED COP"		
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.69	5P	PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales