MOSFET – Power, P-Channel, High Side Load Switch with Level-Shift, SC-88 8 V, ±1.3 A The NTJD1155L integrates a P and N–Channel MOSFET in a single package. This device is particularly suited for portable electronic equipment where low control signals, low battery voltages and high load currents are needed. The P–Channel device is specifically designed as a load switch using ON Semiconductor state–of–the–art trench technology. The N–Channel, with an external resistor (R1), functions as a level–shift to drive the P–Channel. The N–Channel MOSFET has internal ESD protection and can be driven by logic signals as low as 1.5 V. The NTJD1155L operates on supply lines from 1.8 to 8.0 V and can drive loads up to 1.3 A with 8.0 V applied to both $V_{\rm IN}$ and $V_{\rm ON/OFF}$. #### **Features** - Extremely Low R_{DS(on)} P-Channel Load Switch MOSFET - Level Shift MOSFET is ESD Protected - Low Profile, Small Footprint Package - V_{IN} Range 1.8 to 8.0 V - ON/OFF Range 1.5 to 8.0 V - These Devices are Pb-Free and are RoHS Compliant ### MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Rating | | | Symbol | Value | Unit | |---|------------------------|-----------------------|--------------------------------------|---------------|------| | Input Voltage (V _{DSS} , P-Ch | 1) | | V_{IN} | 8.0 | V | | ON/OFF Voltage (V _{GS} , N- | Ch) | | V _{ON/OFF} | 8.0 | V | | Continuous Load Current | Steady | T _A = 25°C | ΙL | ±1.3 | Α | | (Note 1) | State | T _A = 85°C | | ±0.9 | | | Power Dissipation | Steady | T _A = 25°C | P_{D} | 0.40 | W | | (Note 1) | State | T _A = 85°C | | 0.20 | | | Pulsed Load Current | t _p = 10 μs | | I_{LM} | ±3.9 | Α | | Operating Junction and Storage Temperature | | | T _J ,
T _{STG} | –55 to
150 | °C | | Source Current (Body Diode) | | | I _S | -0.4 | Α | | Lead Temperature for Solo (1/8" from case for 10 s) | dering Pur | poses | T _L | 260 | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|-----|------| | Junction-to-Ambient - Steady State (Note 1) | $R_{\theta JA}$ | 320 | °C/W | | Junction-to-Foot - Steady State (Note 1) | $R_{\theta JF}$ | 220 | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ### ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | R _{DS(on)} TYP | I _D MAX | |----------------------|-------------------------|--------------------| | | 130 mΩ @ -4.5 V | | | 8.0 V | 170 mΩ @ –2.5 V | ±1.3 A | | | 260 mΩ @ -1.8 V | | #### SIMPLIFIED SCHEMATIC SC-88 (SOT-363) CASE 419B STYLE 30 TB = Device Code M = Date Code Pb-Free Package (Note: Microdot may be in either location) ### **PIN ASSIGNMENT** ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------------------------|--------------------|-----------------------| | NTJD1155LT1G,
NTJD1155LT2G | SC-88
(Pb-Free) | 3000/Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. | 1. | Surface-mounted on FR4 board using 1 inch sq pad size (Cu area = 1.127 in sq [1 oz] including traces). | |----|--| # **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Characteristic | Symbol | Test Condi | tion | Min | Тур | Max | Unit | |--------------------------------------|----------------------|---|---|------|------|------|------| | OFF CHARACTERISTICS | | | | | • | | | | Q2 Drain-to-Source Breakdown Voltage | V _{IN} | V _{GS2} = 0 V, I _{D2} = | = 250 μΑ | -8.0 | | | V | | Forward Leakage Current | I _{FL} | V _{GS1} = 0 V, | T _J = 25°C | | | 1.0 | μΑ | | | | $V_{DS2} = -8.0 \text{ V}$ | T _J = 125°C | | | 10 | | | Q1 Gate-to-Source Leakage Current | I _{GSS} | V _{DS1} = 0 V, V _{GS1} | = ±8.0 V | | | ±100 | nA | | Q1 Diode Forward On-Voltage | V_{SD} | $I_S = -0.4 \text{ A}, V_{GS}$ | _{S1} = 0 V | | -0.8 | -1.1 | V | | ON CHARACTERISTICS | | | | | | | | | ON/OFF Voltage | V _{ON/OFF} | | | 1.5 | | 8.0 | V | | Q1 Gate Threshold Voltage | V _{GS1(th)} | $V_{GS1} = V_{DS1}, I_D$ | = 250 μΑ | 0.4 | | 1.0 | V | | Input Voltage | V _{IN} | $V_{GS1} = V_{DS1}$, $I_D = 250 \mu A$ | | 1.8 | | 8.0 | V | | Q2 Drain-to-Source On Resistance | R _{DS(on)} | V _{ON/OFF} = 1.5 V | V _{IN} = 4.5 V
I _L = 1.2 A | | 130 | 175 | mΩ | | | | | V _{IN} = 2.5 V
I _L = 1.0 A | | 170 | 220 | | | | | | V _{IN} = 1.8 V
I _L = 0.7 A | | 260 | 320 | | | Load Current | ΙL | $V_{DROP} \le 0.2 \text{ V, V}$
$V_{ON/OFF} = 1$ | _{IN} = 5.0 V,
.5 V | 1.0 | | | Α | | | | $V_{DROP} \le 0.3 \text{ V, V}$
$V_{ON/OFF} = 1$ | | 1.0 | | | | Figure 1. Load Switch Application | Components | Description | Values | |---------------------------------|----------------------------------|--------------------------| | R1 | Pullup Resistor | Typical 10 kΩ to 1.0 MΩ* | | R2 | Optional Slew-Rate Control | Typical 0 to 100 kΩ* | | C _O , C _I | Output Capacitance | Usually < 1.0 μF | | C1 | Optional In-Rush Current Control | Typical ≤ 1000 pF | ^{*}Minimum R1 value should be at least 10 x R2 to ensure Q1 turn-on. ## TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted) 0.50 0.45 0.40 0.35 $T_J = 125^{\circ}C$ 0.30 V_{DROP} (V) 0.25 0.20 $T_J = 25^{\circ}C$ 0.15 0.10 0.05 0.5 1.0 1.5 2.0 2.5 3.0 0 I_L (AMPS) Figure 2. V_{drop} vs. $I_L @ V_{in}$ = 2.5 V Figure 3. V_{drop} vs. $I_L @ V_{in} = 4.5 \text{ V}$ Figure 4. On-Resistance vs. Input Voltage Figure 5. On-Resistance Variation with Temperature Figure 7. Switching Variation R2 @ V_{in} = 4.5 V, R1 = 20 k Ω # $\textbf{TYPICAL PERFORMANCE CURVES} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$ Figure 8. Switching Variation R2 @ V_{in} = 4.5 V, R1 = 20 k Ω Figure 9. Switching Variation R2 @ V_{in} = 2.5 V, R1 = 20 k Ω t_{d(on)} $t_{d(off)} \\$ Figure 10. Switching Variation R2 @ V_{in} = 2.5 V, R1 = 20 $k\Omega$ Figure 11. FET Thermal Response ### SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z** **DATE 18 APR 2024** ### NOTES: - DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018. - ALL DIMENSION ARE IN MILLIMETERS. - DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 - DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. - DIMENSIONS 6 AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6. - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. ddd 6X 0.30 - TOP VIEW ⊕ ddd M C A−B D 2.50 | | MI | LLIMETER | S | | |-----|----------|----------|------|--| | DIM | MIN. | NOM. | MAX. | | | Α | | | 1.10 | | | A1 | 0.00 | | 0.10 | | | A2 | 0.70 | 0.90 | 1.00 | | | b | 0.15 | 0.20 | 0.25 | | | С | 0.08 | 0.15 | 0.22 | | | D | 2.00 BSC | | | | | E | 2.10 BSC | | | | | E1 | | 1.25 BSC | : | | | е | | 0.65 BSC |) | | | L | 0.26 | 0.36 | 0.46 | | | L2 | 0.15 BSC | | | | | aaa | 0.15 | | | | | bbb | 0.30 | | | | | ccc | | 0.10 | | | 0.10 XXX = Specific Device Code = Date Code* = Pb-Free Package (Note: Microdot may be in either location) - *Date Code orientation and/or position may vary depending upon manufacturing location. - *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. ### RECOMMENDED MOUNTING FOOTPRINT* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. ### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|----------------------------|---|-------------|--|--| | DESCRIPTION: | SC-88 2.00x1.25x0.90, 0.65 | 5P | PAGE 1 OF 2 | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ### SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z **DATE 18 APR 2024** | STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2 | STYLE 2:
CANCELLED | STYLE 3:
CANCELLED | STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE | STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE | STYLE 6:
PIN 1. ANODE 2
2. N/C
3. CATHODE 1
4. ANODE 1
5. N/C
6. CATHODE 2 | |--|--|---|---|---|--| | STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2 | STYLE 8:
CANCELLED | STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2 | STYLE 10:
PIN 1. SOURCE 2
2. SOURCE 1
3. GATE 1
4. DRAIN 1
5. DRAIN 2
6. GATE 2 | STYLE 11:
PIN 1. CATHODE 2
2. CATHODE 2
3. ANODE 1
4. CATHODE 1
5. CATHODE 1
6. ANODE 2 | STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2 | | STYLE 13: PIN 1. ANODE 2. N/C 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE | STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC | STYLE 15: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 3 4. CATHODE 3 5. CATHODE 2 6. CATHODE 1 | STYLE 16: PIN 1. BASE 1 2. EMITTER 2 3. COLLECTOR 2 4. BASE 2 5. EMITTER 1 6. COLLECTOR 1 | STYLE 17: PIN 1. BASE 1 2. EMITTER 1 3. COLLECTOR 2 4. BASE 2 5. EMITTER 2 6. COLLECTOR 1 | STYLE 18:
PIN 1. VIN1
2. VCC
3. VOUT2
4. VIN2
5. GND
6. VOUT1 | | STYLE 19:
PIN 1. I OUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF | STYLE 20: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR | STYLE 21: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. N/C 6. CATHODE 1 | STYLE 22:
PIN 1. D1 (i)
2. GND
3. D2 (i)
4. D2 (c)
5. VBUS
6. D1 (c) | STYLE 23:
PIN 1. Vn
2. CH1
3. Vp
4. N/C
5. CH2
6. N/C | STYLE 24: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE | | STYLE 25: PIN 1. BASE 1 2. CATHODE 3. COLLECTOR 2 4. BASE 2 5. EMITTER 6. COLLECTOR 1 | STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1 | STYLE 27: PIN 1. BASE 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. EMITTER 2 6. COLLECTOR 2 | STYLE 28: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN | STYLE 29: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE/ANODE 6. CATHODE | STYLE 30:
PIN 1. SOURCE 1
2. DRAIN 2
3. DRAIN 2
4. SOURCE 2
5. GATE 1
6. DRAIN 1 | Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment. | DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|----------------------------|--|-------------|--| | DESCRIPTION: | SC-88 2.00x1.25x0.90, 0.69 | 5P | PAGE 2 OF 2 | | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales