MSCSM120HM50CT3AG Datasheet Full Bridge SiC MOSFET Power Module January 2020 # **Contents** | Revision History | | |---|----| | 1.1 Revision 1.0 | 1 | | | | | Product Overview | | | 2.1 Features | 3 | | 2.2 Benefits | 3 | | 2.3 Applications | 3 | | Electrical Specifications | 4 | | 3.1 SiC MOSFET Characteristics (Per MOSFET) | | | 3.2 Reverse SiC Diode Ratings and Characteristics (Per SiC Diode) | | | 3.3 Thermal and Package Characteristics | 6 | | 3.4 Typical SiC MOSFET Performance Curves | 8 | | 3.5 Typical SiC Diode Performance Curves | 11 | | Package Specifications | 12 | | 4.1 Package Outline Drawing | | | | | # 1 Revision History The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication. #### 1.1 Revision 1.0 Revision 1.0 was published in January 2020. It is the first publication of this document. ## 2 Product Overview The MSCSM120HM50CT3AG device is a full bridge 1200 V/55 A full Silicon Carbide (SiC) power module. Figure 1 • MSCSM120HM50CT3AG Electrical Schematic Figure 2 • MSCSM120HM50CT3AG Pinout Location All multiple inputs and outputs must be shorted together. Example: 13/14; 29/30; 22/23, and so on. All ratings at $T_J = 25$ °C, unless otherwise specified. **Caution**: These devices are sensitive to electrostatic discharge. Proper handling procedures should be followed. #### 2.1 Features The following are key features of the MSCSM120HM50CT3AG device: - SiC Power MOSFET - Low R_{DS(on)} - High temperature performance - · SiC Schottky Diode - Zero reverse recovery - Zero forward recovery - Temperature independent switching behavior - Positive temperature coefficient on VF - Very low stray inductance - · Internal thermistor for temperature monitoring - Aluminum nitride (AIN) substrate for improved thermal performance #### 2.2 Benefits The following are benefits of the MSCSM120HM50CT3AG device: - · High power and efficiency converters and inverters - Outstanding performance at high frequency operation - Direct mounting to heatsink (isolated package) - Low junction-to-case thermal resistance - · Solderable terminals for power and signal, for easy PCB mounting - · Low profile - · RoHS compliant #### 2.3 Applications The MSCSM120HM50CT3AG device is designed for the following applications: - Uninterruptible power supplies - Switched mode power supplies - EV motor and traction drive - Welding converters # **3** Electrical Specifications This section shows the electrical specifications of the MSCSM120HM50CT3AG device. #### 3.1 SiC MOSFET Characteristics (Per MOSFET) The following table shows the absolute maximum ratings per MOSFET of the MSCSM120HM50CT3AG device. **Table 1 • Absolute Maximum Ratings** | Symbol | Parameter | | | Unit | |-------------------|----------------------------|---|-----|------| | V _{DSS} | Drain-source voltage | n-source voltage | | | | I _D | Continuous drain current | ntinuous drain current T _C = 25 °C | | | | | | T _C = 80 °C | | | | I _{DM} | Pulsed drain current | | | | | V _{GS} | Gate-source voltage | | | V | | R _{DSon} | Drain source ON resistance | 50 | mΩ | | | P _D | Power dissipation | T _C = 25 °C | 245 | w | The following table shows the electrical characteristics per MOSFET of the MSCSM120HM50CT3AG device. **Table 2 • Electrical Characteristics** | Symbol | Characteristic | Test Conditions | | Min | Тур | Max | Unit | |---------------------|---------------------------------|---|------------------------|-----|-----|-----|------| | I _{DSS} | Zero gate voltage drain current | V _{GS} = 0 V; V _{DS} = 1200 V | | | 10 | 100 | μА | | R _{DS(on)} | Drain-source on resistance | 03 | T _J = 25 °C | | 40 | 50 | mΩ | | | I _D = 40 A | T _J = 175 °C | | 64 | | | | | V _{GS(th)} | Gate threshold voltage | $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$ | | 1.8 | 2.7 | | V | | I _{GSS} | Gate-source leakage current | V _{GS} = 20 V, V _{DS} = 0 V | | | | 150 | nA | The following table shows the dynamic characteristics per MOSFET of the MSCSM120HM50CT3AG device. **Table 3 • Dynamic Characteristics** | Symbol | Characteristic | Test Conditions | | Min | Тур | Max | Unit | |---------------------|-------------------------------------|---|-------------------------|-----|------|------|------| | C _{iss} | Input capacitance | V _{GS} = 0 V
V _{DS} = 1000 V
f = 1 MHz | | | 1990 | | pF | | C _{oss} | Output capacitance | | | | 156 | | | | C _{rss} | Reverse transfer capacitance | | | | 17 | | | | Qg | Total gate charge | V _{GS} = -5 V/20 V | | | 137 | | nC | | Q_{gs} | Gate—source charge | V _{Bus} = 800 V
I _D = 40 A | | | 29 | | | | Q_{gd} | Gate-drain charge | | | | 31 | | - | | T _{d(on)} | Turn-on delay time | V _{GS} = -5 V/20 V | •• | | | | ns | | T _r | Rise time | $V_{Bus} = 600 \text{ V}$ $I_D = 40 \text{ A}$ | | | 30 | | | | T _{d(off)} | Turn-off delay time | R_{Gon} = 10 Ω; R_{Goff} = 5.8 Ω | | | 50 | | | | T _f | Fall time | | | | 25 | | | | E _{on} | Turn on energy | Inductive switching | T _J = 150 °C | | 0.79 | | mJ | | E _{off} | Turn off energy | $V_{GS} = -5 \text{ V/20 V}$ $V_{Bus} = 600 \text{ V}$ $I_D = 40 \text{ A}$ $R_{Gon} = 10 \Omega$ $R_{Goff} = 5.8 \Omega$ | | | 0.53 | | mJ | | R _{Gint} | Internal gate resistance | | | | 1.2 | | Ω | | R _{thJC} | Junction-to-case thermal resistance | | | | | 0.61 | °C/W | The following table shows the body diode ratings and characteristics per MOSFET of the MSCSM120HM31CT3AG device. **Table 4 • Body Diode Ratings and Characteristics** | Symbol | Characteristic | Test Conditions | Min | Тур | Max | Unit | |-----------------|--------------------------|---|-----|-----|-----|------| | V_{SD} | Diode Forward Voltage | V _{GS} = 0 V ; I _{SD} = 40 A | | 5.4 | | V | | t _{rr} | Reverse recovery time | I _{SD} = 40 A; V _{GS} = -5 V | | 31 | | ns | | Q _{rr} | Reverse recovery charge | $V_R = 800 \text{ V}; d_{iF}/dt = 1800 \text{ A}/\mu\text{s}$ | | 610 | | nC | | I _{rr} | Reverse recovery current | | | 40 | | A | ### 3.2 Reverse SiC Diode Ratings and Characteristics (Per SiC Diode) The following table shows the reverse SiC diode ratings and characteristics per SiC diode of the MSCSM120HM50CT3AG device. Table 5 • Reverse SiC Diode Ratings and Characteristics (Per SiC Diode) | Symbol | Characteristic | Test Conditions | | Min | Тур | Max | Unit | |-------------------|-------------------------------------|-----------------------------------|-------------------------|-----|-----|------|------| | V _{RRM} | Peak repetitive reverse voltage | | | | | 1200 | V | | I _{RM} | Reverse leakage current | V _R = 1200 V | T _J = 25 °C | | 10 | 200 | μΑ | | | | | T _J = 175 °C | | 50 | | | | I _F | DC forward current | | T _C = 100 °C | | 15 | | Α | | V _F | Diode forward voltage | I _F = 15 A | | | 1.5 | 1.8 | V | | | | | T _J = 175 °C | | 2 | | | | Qc | Total capacitive charge | V _R = 600 V | | | 73 | | nC | | С | Total capacitance | f = 1 MHz, V _R = 400 V | | | 80 | | pF | | | | f = 1 MHz, V _R = 800 V | | | 59 | | | | R _{thJC} | Junction-to-case thermal resistance | e | | | | 1.55 | °C/W | ## 3.3 Thermal and Package Characteristics The following table shows the package characteristics of the MSCSM120HM50CT3AG device. **Table 6 • Package Characteristics** | Symbol | Characteristic | | | | Max | Unit | |-------------------|---|------|---|-----|-----------------------|------| | V _{ISOL} | RMS isolation voltage, any terminal to case t = 1 min, | 4000 | | V | | | | Тј | Operating junction temperature range | | | | 175 | °C | | T _{JOP} | Recommended junction temperature under switching conditions | | | | T _{Jmax} -25 | | | T _{STG} | Storage temperature range | | | | 125 | | | T _C | Operating case temperature | | | -40 | 125 | | | Torque | Mounting torque | 2 | 3 | N.m | | | | Wt | Package weight | | | | 110 | g | The following table shows the temperature sensor NTC (see application note *APT0406* on www.microsemi.com) of the MSCSM120HM50CT3AG device. **Table 7 • Temperature Sensor NTC** | Symbol | Characteristic I | | Min | Тур | Max | Unit | |------------------------|----------------------------|-------------------------|-----|------|-----|------| | R ₂₅ | Resistance at 25 °C | | | 50 | | kΩ | | $\Delta R_{25}/R_{25}$ | | | | 5 | | % | | B _{25/85} | T ₂₅ = 298.15 K | | | 3952 | | К | | ΔΒ/Β | | T _C = 100 °C | | 4 | | % | $$R_{T} = \frac{R_{25}}{\exp\left[B_{25/85}\left(\frac{1}{T_{25}} - \frac{1}{T}\right)\right]}$$ T: Thermistor temperature R_T: Thermistor value at T ## 3.4 Typical SiC MOSFET Performance Curves This sections shows the typical SiC MOSFET performance curves of the MSCSM120HM50CT3AG device. Figure 4 • Output Characteristics, T_J = 25 °C Figure 5 • Output Characteristics, T_J = 175 °C Figure 6 • Normalized R_{DS(on)} vs. Temperature Figure 7 • Transfer Characteristics Figure 8 • Switching Energy vs. Rg 1.00 0.90 Losses (mJ) 0.80 0.70 _D= 40A 0.60 V_{BUS} = 600V T_J = 150°C 0.50 5 13 15 19 21 23 25 Gate Resistanœ (Ω) Figure 9 • Switching Energy vs. Current V_{GS}=-5/20V Eon R_{Gon}=10Ω R_{Geff}=5.8Ω 1.0 V_{BUS}= 600V Los ses (mJ) T_J = 150°C 0.5 Eoff 0.0 20 40 60 80 Current (A) Figure 10 • Capacitance vs. Drain Source Voltage 10000 Ciss Coss 100 Crss VDS, Drain Source Voltage (V) Figure 14 • Body Diode Characteristics, T_J = 175 °C | Figure 15 • 3rd Quadrant Characteristics, T_J = 175 °C °C -5 -3 0 -5 -3 -2 los, Drain Source Current (A) 0 -5V l_{DS}, Drain Source Current (A) T_J=175°C -20 -20 V_{GS}=0V -40 -40 -60 VGS=18V -60 TJ=175°C V_{GS}=20V -80 -80 V_{DS}, Drain Source Voltage (V) V_{DS}, Drain Source Voltage (V) Figure 16 • Operating Frequency vs. Drain Current 525 V_{BUS}=600V D=50% 450 R_{Gon}=10Ω ZVS R_{Geff}=5.8Ω T_J=150°C 375 Frequency (kHz) T_c=75°C 300 225 zcs 150 75 Hard switching 0 10 30 40 50 20 60 ID, Drain Current (A) #### 3.5 Typical SiC Diode Performance Curves This sections shows the typical SiC diode performance curves of the MSCSM120HM50CT3AG device. Figure 18 • Forward Characteristics 30 IF, Forward Current (A) 25 20 15 TJ=175°C 10 5 0 0 0.5 1.5 2 2.5 3.5 V_F, Forward Voltage (V) # 4 Package Specifications This section shows the package specification of the MSCSM120HM50CT3AG device. #### 4.1 Package Outline Drawing The following figure illustrates the package outline of the MSCSM120HM50CT3AG device. The dimensions are in millimeters. Figure 20 • Package Outline Drawing **Note:** See application note *1906—Mounting Instructions for SP3F Power Modules* on www.microsemi.com #### Microsemi 2355 W. Chandler Blvd. Chandler, AZ 85224 USA Within the USA: +1 (480) 792-7200 Fax: +1 (480) 792-7277 www.microsemi.com © 2020 Microsemi and its corporate affiliates. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation and its corporate affiliates. All other trademarks and service marks are the property of their respective owners. Microsemi's product warranty is set forth in Microsemi's Sales Order Terms and Conditions. Information contained in this publication is provided for the sole purpose of designing with and using Microsemi products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is your responsibility to ensure that your application meets with your specifications. THIS INFORMATION IS PROVIDED "AS IS." MICROSEMI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROSEMI BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE WHATSOEVER RELATED TO THIS INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROSEMI HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROSEMI'S TOTAL LIABILITY ON ALL CLAIMS IN RELATED TO THIS INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, YOU PAID DIRECTLY TO MICROSEMI FOR THIS INFORMATION. Use of Microsemi devices in life support, mission-critical equipment or applications, and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend and indemnify Microsemi from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microsemi intellectual property rights unless otherwise stated. Microsemi Corporation, a subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), and its corporate affiliates are leading providers of smart, connected and secure embedded control solutions. Their easy-to-use development tools and comprehensive product portfolio enable customers to create optimal designs which reduce risk while lowering total system cost and time to market. These solutions serve more than 120,000 customers across the industrial, automotive, consumer, aerospace and defense, communications and computing markets. Headquartered in Chandler, Arizona, the company offers outstanding technical support along with dependable delivery and quality. Learn more at www.microsemi.com. MSCC-0344-DS-01071-1.0-0120