
Adafruit AirLift Shield - ESP32 WiFi Co-
Processor

Created by Brent Rubell

https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor

Last updated on 2024-06-03 02:49:06 PM EDT

©Adafruit Industries Page 1 of 50

3

6

11

20

22

34

40

49

Table of Contents

Overview

Pinouts
• Power Pins
• SPI Interface Pins
• ESP32 Control Pins
• SD Card Interface
• LEDs
• Prototyping Area

Assembly
• Installing Standard Headers
• Stack Alert!

CircuitPython WiFi
• CircuitPython Microcontroller Pinout
• CircuitPython Setup
• CircuitPython Usage

Internet Connect!
• What's a secrets file?
• Connect to WiFi
• Requests
• HTTP GET with Requests
• HTTP POST with Requests
• Advanced Requests Usage
• WiFi Manager

CircuitPython BLE
• CircuitPython BLE UART Example
• Update the AirLift Firmware
• Install CircuitPython Libraries
• Install the Adafruit Bluefruit LE Connect App
• BLE Example
• Talk to the AirLift via the Bluefruit LE Connect App

Arduino WiFi
• Library Install
• First Test
• Arduino Microcontroller Pin Definition
• WiFi Connection Test
• Secure Connection Example
• JSON Parsing Example
• Adapting Other Examples

Downloads
• Files
• Schematic
• Fab Print

©Adafruit Industries Page 2 of 50

Overview

Give your Arduino project a lift with the Adafruit AirLift Shield (http://adafru.it/4285) - a
shield that lets you use the powerful ESP32 as a WiFi or BLE co-processor. You
probably have your favorite Arduino-compatible (like the Metro M4 (http://adafru.it/
3382) or the classic Metro 328 (http://adafru.it/2488)) that comes with its own set of
awesome peripherals and lots of libraries. But it doesn't have WiFi or BLE built in! So
let's give that chip a best friend, the ESP32. This chip can handle all the heavy lifting
of connecting to a WiFi network and transferring data from a site, even if it's using the
latest TLS/SSL encryption (it has root certificates pre-burned in).

©Adafruit Industries Page 3 of 50

https://www.adafruit.com/product/4285
https://www.adafruit.com/product/3382
https://www.adafruit.com/product/2488

Having WiFi managed by a separate chip means your code is simpler, you don't have
to cache socket data, or compile in & debug an SSL library. Send basic but powerful
socket-based commands over 8MHz SPI for high speed data transfer. You can use any
3V or 5V Arduino, any chip from the ATmega328 and up (although the '328 will not be
able to do very complex tasks or buffer a lot of data). It also works great with
CircuitPython, a SAMD51/Cortex M4 minimum required since we need a bunch of
RAM. All you need is the SPI bus and 2 control pins plus a power supply that can
provide up to 250mA during WiFi usage.

The ESP32 also supports BLE (Bluetooth Low Energy), though not simultaneously with
WiFi. Many of our CircuitPython builds include native support for ESP32 BLE. You use
a few control pins and the RXI and TXO pins to talk to the ESP32 when it's in BLE
mode.

We placed an ESP32 module on a shield with a separate 3.3V regulator, and a tri-state
chip for MOSI so you can share the SPI bus with other shields. We also tossed on a
micro SD card socket, you can use that to host or store data you get from the Internet.
Arduinos based on the ATmega328 (like the UNO) cannot use both the WiFi module
and SD library at the same time, they don't have enough RAM. Again, we recommend
an M0 or M4 chipset for use with Arduino, M4 for CircuitPython!

©Adafruit Industries Page 4 of 50

Comes fully assembled and tested, pre-programmed with ESP32 SPI WiFi co-
processor firmware that you can use in CircuitPython to use this into WiFi co-
processsor (https://adafru.it/Evl). We also include some header so you can solder it in
and plug right into your Arduino-compatible, but you can also pick up a set of
stacking headers to stack above/below your board.

We've tested this with all our Metros and it should work just fine with them except
the Metro M4 Airlifts (http://adafru.it/4000) (because they already have WiFi!). For use
in Arduino, the '328 and '32u4 you can do basic connectivity and data transfer but
they do not have a lot of RAM so we don't recommend them - use the Metro M0, M4

©Adafruit Industries Page 5 of 50

https://github.com/ladyada/Adafruit_CircuitPython_ESP32SPI
https://github.com/ladyada/Adafruit_CircuitPython_ESP32SPI
https://www.adafruit.com/product/4000

or similar, for best results! For CircuitPython use, a Metro M4 works best - the M0
series does not have enough RAM in CircuitPython.

The firmware on board is a slight variant of the Arduino WiFiNINA core, which works
great! (https://adafru.it/E7O) At this time connection to Enterprise WiFi is not yet
supported.

Pinouts

There's a lot jam-packed into this shield! Let's take a look at what we've got going on.

©Adafruit Industries Page 6 of 50

https://github.com/adafruit/nina-fw
https://github.com/adafruit/nina-fw

Power Pins

GND - Common power/logic ground.
3V - this is the output from the 3.3V regulator. The regulator can supply 500mA
peak but half of that is drawn by the ESP32, and it's a fairly power-hungry chip.
5V - This is the input to the regulator
IOr - This is IORef, the IO voltage we will communicate with and is required.

•
•

•
•

©Adafruit Industries Page 7 of 50

SPI Interface Pins

Both ESP32 and SD card use SPI to send and receive data. These pins are labeled
CLK MISO MOSI and have level shifting so you can use this shield with 3.3V or 5V
microcontroller boards.

By default the 2x3 pin ICSP header on the right hand side is where the SPI signals are
found.

©Adafruit Industries Page 8 of 50

ESP32 Control Pins

Required Control Pins:

BUSY - this pin is an input from the AirLift,
it will let us know when its ready for more
commands to be sent. This is 3.3V logic
out, can be read by 3-5V logic. This
pin must be connected.
RST- this pin is an output to the AirLift. Set
low to put the AirLift into reset. You should
use this pin, even though you might be
able to run for a short while without it, it's
essential to 'kick' the chip if it ever gets
into a locked up state. Level shifted so can
be 3-5V logic
Optional Control Pins:

GPIO0 - this is the ESP32 GPIO0 pin,
which is used to put it into bootloading
mode. It is also used if you like when the
ESP32 is acting as a server, to let you
know data is ready for reading. IIt's not
required for WiFi, but you'll need to
connect it to use BLE mode. Solder the
pad on the bottom of the shield to connect
it.
RX & TX - Serial data in and Serial data
out, used for bootloading new firmware,
and for communication when in BLE mode.
Leave disconnected if not using BLE or
when not uploading new WiFi firmware to
the AirLift (which is a rare occurrence).
You'll need to solder the two pads on the
bottom of the shield to use these pins.

©Adafruit Industries Page 9 of 50

https://learn.adafruit.com//assets/77288
https://learn.adafruit.com//assets/77288

SD Card Interface

There's a lot of space available on this
shield so we also stuck on a micro SD card
holder, great for datalogging or storing
data to transmit over WiFi.

In addition to the shared SPI pins, the SD
(chip select) pin is also used. It can be re-
assigned to any pin by cutting the trace
underneath the board and rewiring. If the
SD card is not used, the SD pin can be
used for any other purpose

LEDs

There is a small RGB LED to the left of the
ESP32. These RGB LEDs are available in
the Arduino and CircuitPython libraries if
you'd like to PWM them for a visual alert.
They're connected to the ESP32's pins 26
(Red), 25 (Green), and 27 (Blue).

Prototyping Area

We have a big grid of prototyping holes
and power rails if you want to make some
custom circuitry!

©Adafruit Industries Page 10 of 50

https://learn.adafruit.com//assets/77218
https://learn.adafruit.com//assets/77218
https://learn.adafruit.com//assets/77216
https://learn.adafruit.com//assets/77216
https://learn.adafruit.com//assets/77215
https://learn.adafruit.com//assets/77215

Assembly

Installing Standard Headers
The shield comes with 0.1" standard header. Standard header does not permit
stacking but it is mechanically stronger and they're much less expensive too! If you
want to stack a shield on top, do not perform this step as it is not possible to uninstall
the headers once soldered in! Skip down to the bottom for the stacking tutorial

©Adafruit Industries Page 11 of 50

Break apart the 0.1" header into 6, 8 and/or
10-pin long pieces and slip the long ends
into the headers of your Arduino.

Place the assembled shield on top of the
header-ed Arduino so that all of the short
parts of the header are sticking through
the outer set of pads

©Adafruit Industries Page 12 of 50

https://learn.adafruit.com//assets/77253
https://learn.adafruit.com//assets/77253
https://learn.adafruit.com//assets/77254
https://learn.adafruit.com//assets/77254
https://learn.adafruit.com//assets/77255
https://learn.adafruit.com//assets/77255

Solder each one of the pins into the shield
to make a secure connection

©Adafruit Industries Page 13 of 50

https://learn.adafruit.com//assets/77257
https://learn.adafruit.com//assets/77257
https://learn.adafruit.com//assets/77258
https://learn.adafruit.com//assets/77258
https://learn.adafruit.com//assets/77259
https://learn.adafruit.com//assets/77259
https://learn.adafruit.com//assets/77261
https://learn.adafruit.com//assets/77261

That's it! Now you can install the 2x3
header

©Adafruit Industries Page 14 of 50

https://learn.adafruit.com//assets/77262
https://learn.adafruit.com//assets/77262
https://learn.adafruit.com//assets/77263
https://learn.adafruit.com//assets/77263

Solder the 2x3 header so that it's pointing
downwards

©Adafruit Industries Page 15 of 50

https://learn.adafruit.com//assets/77264
https://learn.adafruit.com//assets/77264
https://learn.adafruit.com//assets/77265
https://learn.adafruit.com//assets/77265
https://learn.adafruit.com//assets/77266
https://learn.adafruit.com//assets/77266
https://learn.adafruit.com//assets/77267
https://learn.adafruit.com//assets/77267

Stack Alert!

If you want to stack a shield on top of the WiFi Shield, you'll want to pick up some
stacking headers and use those instead of the plain header shown here!

Wanna stack? This tutorial shows how to
use the plain header to connect to an
Arduino. If you want to use stacking
headers (http://adafru.it/85), don't follow
these steps!

Start by sliding the 10 pin, 2 x 8 pin and 6-
pin stacking headers into the outer rows of
the shield from the top. Then flip the board
over so its resting on the four headers. Pull
on the legs if necessary to straighten them
out.

Tack one pin of each header, to get them
set in place before more soldering. If the
headers go crooked you can re-heat the
one pin while re-positioning to straighten
them up

©Adafruit Industries Page 16 of 50

https://learn.adafruit.com//assets/77268
https://learn.adafruit.com//assets/77268
https://www.adafruit.com/product/85
https://www.adafruit.com/product/85
https://learn.adafruit.com//assets/77269
https://learn.adafruit.com//assets/77269
https://learn.adafruit.com//assets/77270
https://learn.adafruit.com//assets/77270

Once you've tacked and straightened all
the headers, go back and solder the
remaining pins for each header.

©Adafruit Industries Page 17 of 50

https://learn.adafruit.com//assets/77271
https://learn.adafruit.com//assets/77271
https://learn.adafruit.com//assets/77272
https://learn.adafruit.com//assets/77272
https://learn.adafruit.com//assets/77273
https://learn.adafruit.com//assets/77273
https://learn.adafruit.com//assets/77274
https://learn.adafruit.com//assets/77274

Insert the 2x3 stacking header as shown.

©Adafruit Industries Page 18 of 50

https://learn.adafruit.com//assets/77275
https://learn.adafruit.com//assets/77275

Solder into place.

©Adafruit Industries Page 19 of 50

https://learn.adafruit.com//assets/77276
https://learn.adafruit.com//assets/77276
https://learn.adafruit.com//assets/77277
https://learn.adafruit.com//assets/77277
https://learn.adafruit.com//assets/77278
https://learn.adafruit.com//assets/77278
https://learn.adafruit.com//assets/77279
https://learn.adafruit.com//assets/77279

CircuitPython WiFi
It's easy to use the Adafruit AirLift breakout with CircuitPython and the Adafruit
CircuitPython ESP32SPI (https://adafru.it/DWV) module. This module allows you to
easily add WiFi to your project.

CircuitPython Microcontroller Pinout

To use the board's pins with the AirLift shield, copy the following lines into your code:

esp32_cs = DigitalInOut(board.D10)
esp32_ready = DigitalInOut(board.D7)
esp32_reset = DigitalInOut(board.D5)

If you wish to use the GPIO0 pin on the ESP32 - solder the jumper on the back of the
shield, highlighted below:

Then, include the following code to use the pin:

esp32_gpio0 = DigitalInOut(board.D6)

The ESP32SPI library requires a microcontroller with ~128KB of RAM or more.
The SAMD21 will not work.

©Adafruit Industries Page 20 of 50

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI

CircuitPython Setup

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware. Thankfully, we
can do this in one go. In the example below, click the Download Project Bundle
button below to download the necessary libraries and the code.py file in a zip file.
Extract the contents of the zip file, and copy the entire lib folder and the code.py file
to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and files:

/adafruit_bus_device
/adafruit_esp32spi
adafruit_requests.mpy

CircuitPython Usage

Copy the following code to your code.py file on your microcontroller:

import board
import busio
from digitalio import DigitalInOut

from adafruit_esp32spi import adafruit_esp32spi

print("ESP32 SPI hardware test")

esp32_cs = DigitalInOut(board.D10)
esp32_ready = DigitalInOut(board.D7)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

•
•
•

©Adafruit Industries Page 21 of 50

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

print("Done!")

Connect to the serial console (https://adafru.it/BlO) to see the output. It should look
something like the following:

Make sure you see the same output! If you don't, check your wiring. Note that we've
changed the pinout in the code example above to reflect the CircuitPython
Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

Internet Connect!
Once you have CircuitPython setup and libraries installed we can get your board
connected to the Internet.

To get connected, you will need to start by creating a secrets file.

If you can read the Firmware and MAC address but fails on scanning SSIDs,
check your power supply, you may be running out of juice to the ESP32 and it's
resetting

©Adafruit Industries Page 22 of 50

https://learn.adafruit.com/welcome-to-circuitpython/interacting-with-the-serial-console

What's a secrets file?
We expect people to share tons of projects as they build CircuitPython WiFi widgets.
What we want to avoid is people accidentally sharing their passwords or secret
tokens and API keys. So, we designed all our examples to use a secrets.py file,
that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can
share your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : 'home ssid',
 'password' : 'my password',
 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones
 'github_token' : 'fawfj23rakjnfawiefa',
 'hackaday_token' : 'h4xx0rs3kret',
 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has
an entry name (say 'ssid') and then a colon to separate it from the entry key 'home
ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you
make projects you may need more tokens and keys, just add them one line at a time.
See for example other tokens such as one for accessing github or the hackaday API.
Other non-secret data like your timezone can also go here, just cause its called
secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://
adafru.it/EcP) and remember that if your city is not listed, look for a city in the same
time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami
are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other
project-sharing sites.

Connect to WiFi
OK now you have your secrets setup - you can connect to the Internet using the
ESP32SPI and the Requests modules.

©Adafruit Industries Page 23 of 50

http://worldtimeapi.org/timezones

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/zdx). Our introduction guide has a great page on how to
install the library bundle (https://adafru.it/ABU) for both express and non-express
boards.

Remember for non-express boards like the, you'll need to manually install the
necessary libraries from the bundle:

adafruit_bus_device
adafruit_esp32_spi
adafruit_requests
neopixel

Before continuing make sure your board's lib folder or root filesystem has the above
files copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the
CircuitPython >>> prompt.

Into your lib folder. Once that's done, load up the following example using Mu or
your favorite editor:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

from os import getenv
import board
import busio
from digitalio import DigitalInOut
import adafruit_connection_manager
import adafruit_requests
from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a settings.toml file
tokens used by this Demo: CIRCUITPY_WIFI_SSID, CIRCUITPY_WIFI_PASSWORD
secrets = {

"ssid": getenv("CIRCUITPY_WIFI_SSID"),
"password": getenv("CIRCUITPY_WIFI_PASSWORD"),

}
if secrets == {"ssid": None, "password": None}:

try:
Fallback on secrets.py until depreciation is over and option is removed
from secrets import secrets

except ImportError:
print("WiFi secrets are kept in settings.toml, please add them there!")
raise

•
•
•
•

©Adafruit Industries Page 24 of 50

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:
esp32_cs = DigitalInOut(board.D10)
esp32_ready = DigitalInOut(board.D7)
esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

If you have an externally connected ESP32:
NOTE: You may need to change the pins to reflect your wiring
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

Secondary (SCK1) SPI used to connect to WiFi board on Arduino Nano Connect RP2040
if "SCK1" in dir(board):

spi = busio.SPI(board.SCK1, board.MOSI1, board.MISO1)
else:

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

pool = adafruit_connection_manager.get_radio_socketpool(esp)
ssl_context = adafruit_connection_manager.get_radio_ssl_context(esp)
requests = adafruit_requests.Session(pool, ssl_context)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version.decode("utf-8"))
print("MAC addr:", ":".join("%02X" % byte for byte in esp.MAC_address))

for ap in esp.scan_networks():
print("\t%-23s RSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")
while not esp.is_connected:

try:
esp.connect_AP(secrets["ssid"], secrets["password"])

except OSError as e:
print("could not connect to AP, retrying: ", e)
continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(

"IP lookup adafruit.com: %s" %
esp.pretty_ip(esp.get_host_by_name("adafruit.com"))
)
print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print("-" * 40)
print(r.text)
print("-" * 40)
r.close()

©Adafruit Industries Page 25 of 50

print()
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print("-" * 40)
print(r.json())
print("-" * 40)
r.close()

print("Done!")

And save it to your board, with the name code.py .

Then go down to this line

esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

and change MY_SSID_NAME and MY_SSID_PASSWORD to your access point name and
password, keeping them within the '' quotes. (This example doesn't use the secrets'
file, but its also very stand-alone so if other things seem to not work you can always
re-load this. You should get something like the following:

In order, the example code...

You may need to change the esp32_cs, esp32_ready and esp32_reset pins in
the code to match your hardware's pinout.

©Adafruit Industries Page 26 of 50

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by
connectivity type - we'll be using the adafruit_esp32spi_socket for this example).
We'll also set the interface to an esp object. This is a little bit of a hack, but it lets us
use requests like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

Performs a scan of all access points it can see and prints out the name and signal
strength:

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts
to do a domain name lookup and ping google.com to check network connectivity
(note sometimes the ping fails or takes a while, this isn't a big deal)

 print("Connecting to AP...")
esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print("IP lookup adafruit.com: %s" %
esp.pretty_ip(esp.get_host_by_name("adafruit.com")))
print("Ping google.com: %d ms" % esp.ping("google.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM
(well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can
implement an interface a lot like requests (https://adafru.it/E9o) - which makes getting
data really really easy

©Adafruit Industries Page 27 of 50

http://docs.python-requests.org/en/master/

To read in all the text from a web URL call requests.get - you can pass in https
URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print('-'*40)
print(r.text)
print('-'*40)
r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python
dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and
other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print('-'*40)
print(r.json())
print('-'*40)
r.close()

Requests
We've written a requests-like (https://adafru.it/Kpa) library for web interfacing named A
dafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send
HTTP/1.1 requests without "crafting" them and provides helpful methods for parsing
the response from the server.

Here's an example of using Requests to perform GET and POST requests to a server.

Temporarily unable to load content:

The code first sets up the ESP32SPI interface. Then, it initializes a request object
using an ESP32 socket and the esp object.

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

©Adafruit Industries Page 28 of 50

https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests
https://github.com/adafruit/Adafruit_CircuitPython_Requests

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
 except RuntimeError as e:
 print("could not connect to AP, retrying: ",e)
 continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

Make sure to set the ESP32 pinout to match your AirLift breakout's connection:

esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website - http://
wifitest.adafruit.com/testwifi/index.html (https://adafru.it/Fp-).

To do this, we'll pass the URL into requests.get() . We're also going to save the
response from the server into a variable named response .

While we requested data from the server, we'd what the server responded with. Since
we already saved the server's response , we can read it back. Luckily for us,
requests automatically decodes the server's response into human-readable text, you
can read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes,
deletes, and collect's the response's data.

 print("Fetching text from %s"%TEXT_URL)
response = requests.get(TEXT_URL)
print('-'*40)

print("Text Response: ", response.text)
print('-'*40)
response.close()

While some servers respond with text, some respond with json-formatted data
consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into
a CPython dict. object.

©Adafruit Industries Page 29 of 50

http://wifitest.adafruit.com/testwifi/index.html
http://wifitest.adafruit.com/testwifi/index.html

We can also fetch and parse json data. We'll send a HTTP get to a url we know
returns a json-formatted response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython
dict .

 print("Fetching JSON data from %s"%JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print('-'*40)

print("JSON Response: ", response.json())
print('-'*40)
response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method,
passing it a data value.

data = '31F'
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print('-'*40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp['data'])
print('-'*40)
response.close()

You can also post json-formatted data to a server by passing json data into the
requests.post method.

json_data = {"Date" : "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print('-'*40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp['json'])
print('-'*40)
response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a
response's http status code in your CircuitPython code?

©Adafruit Industries Page 30 of 50

We've written an example to show advanced usage of the requests module below.

Temporarily unable to load content:

WiFi Manager
That simpletest example works but its a little finicky - you need to constantly check
WiFi status and have many loops to manage connections and disconnections. For
more advanced uses, we recommend using the WiFiManager object. It will wrap the
connection/status/requests loop for you - reconnecting if WiFi drops, resetting the
ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST
data with some extra headers:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
from os import getenv
import board
import busio
from digitalio import DigitalInOut
import neopixel
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a settings.toml file
tokens used by this Demo: CIRCUITPY_WIFI_SSID, CIRCUITPY_WIFI_PASSWORD
CIRCUITPY_AIO_USERNAME, CIRCUITPY_AIO_KEY
secrets = {}
for token in ["ssid", "password"]:

if getenv("CIRCUITPY_WIFI_" + token.upper()):
secrets[token] = getenv("CIRCUITPY_WIFI_" + token.upper())

for token in ["aio_username", "aio_key"]:
if getenv("CIRCUITPY_" + token.upper()):

secrets[token] = getenv("CIRCUITPY_" + token.upper())

if not secrets:
try:

Fallback on secrets.py until depreciation is over and option is removed
from secrets import secrets

except ImportError:
print("WiFi secrets are kept in settings.toml, please add them there!")
raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

©Adafruit Industries Page 31 of 50

Secondary (SCK1) SPI used to connect to WiFi board on Arduino Nano Connect RP2040
if "SCK1" in dir(board):

spi = busio.SPI(board.SCK1, board.MOSI1, board.MISO1)
else:

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
"""Use below for Most Boards"""
status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2)
"""Uncomment below for ItsyBitsy M4"""
status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1,
brightness=0.2)
"""Uncomment below for an externally defined RGB LED (including Arduino Nano
Connect)"""
import adafruit_rgbled
from adafruit_esp32spi import PWMOut
RED_LED = PWMOut.PWMOut(esp, 26)
GREEN_LED = PWMOut.PWMOut(esp, 27)
BLUE_LED = PWMOut.PWMOut(esp, 25)
status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)

wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

while True:
try:

print("Posting data...", end="")
data = counter
feed = "test"
payload = {"value": data}
response = wifi.post(

"https://io.adafruit.com/api/v2/"
+ secrets["aio_username"]
+ "/feeds/"
+ feed
+ "/data",
json=payload,
headers={"X-AIO-KEY": secrets["aio_key"]},

)
print(response.json())
response.close()
counter = counter + 1
print("OK")

except OSError as e:
print("Failed to get data, retrying\n", e)
wifi.reset()
continue

response = None
time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is
given the ESP32 object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the
code can query the Adafruit IO API:

aio_username

aio_key

•
•

©Adafruit Industries Page 32 of 50

You can go to your adafruit.io View AIO Key link to get those two values and add
them to the secrets file, which will now look something like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : '_your_ssid_',
 'password' : '_your_wifi_password_',
 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones
 'aio_username' : '_your_aio_username_',
 'aio_key' : '_your_aio_key_',
 }

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when
you've set up a feed named test . (https://adafru.it/f5k)

We can then have a simple loop for posting data to Adafruit IO without having to deal
with connecting or initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each
time the CircuitPython board posts data to it!

•

©Adafruit Industries Page 33 of 50

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

CircuitPython BLE
CircuitPython BLE UART Example

It's easy to use Adafruit AirLift ESP32 co-processor boards for Bluetooth Low Energy
(BLE) with CircuitPython. When you reset the ESP32, you can put it in WiFi mode (the
default), or in BLE mode; you cannot use both modes simultaneously.

Here's a simple example of using BLE to connect CircuitPython with the Bluefruit
Connect app. Use CircuitPython 6.0.0 or later.

Note: Don't confuse the ESP32 with the ESP32-S2, which is a different module with a
similar name. The ESP32-S2 does not support BLE.

Adafruit AirLift ESP32 Shield Wiring
If you have an Adafruit AirLift ESP32 Shield, you will need to solder three jumpers
closed on the bottom side of the board to enable BLE. The rest of the ESP32 pins you
need are already jumpered to certain shield pins.

Update the AirLift Firmware

You will need to update the AirLift's firmware to at least version 1.7.1. Previous versions
of the AirLift firmware do not support BLE.

Follow the instructions in the guide below, and come back to this page when you've
upgraded the AirLift's firmware:

Upgrade External AirLift Firmware

Currently, AirLift BLE support is not currently available on boards with Espressif
chips. If the Espressif board provides _bleio, it is for native BLE support (e.g.
ESP32-S3), not AirLift.

Currently the AirLift support for CircuitPython only provides BLE peripheral
support. BLE central is under development. So you cannot connect to BLE
devices like Heart Rate monitors, etc., but you can act as a BLE peripheral
yourself.

©Adafruit Industries Page 34 of 50

https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-external-esp32-airlift-firmware-2

https://adafru.it/11BY

Install CircuitPython Libraries

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware. Thankfully, we
can do this in one go. In the example below, click the Download Project Bundle
button below to download the necessary libraries and the code.py file in a zip file.
Extract the contents of the zip file, and copy the entire lib folder and the code.py file
to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and files:

/adafruit_airlift
/adafruit_ble
/adafruit_bus_device
/adafruit_esp32spi
adafruit_requests.mpy

Install the Adafruit Bluefruit LE Connect App

The Adafruit Bluefruit LE Connect iOS and Android apps allow you to connect to BLE
peripherals that provide a over-the-air "UART" service. Follow the instructions in the

Ensure the AirLift firmware is version 1.7.1 or higher for BLE to work.

•
•
•
•
•

©Adafruit Industries Page 35 of 50

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Bluefruit LE Connect Guide (https://adafru.it/Eg5) to download and install the app on
your phone or tablet.

BLE Example

SPDX-FileCopyrightText: 2020 Dan Halbert, written for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

pylint: disable=unused-import
import board
import busio
from digitalio import DigitalInOut
from adafruit_ble import BLERadio
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble.services.nordic import UARTService
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_airlift.esp32 import ESP32

If you are using a Metro M4 Airlift Lite, PyPortal,
or MatrixPortal, you can use the default pin settings.
Leave this DEFAULT line uncommented.
If you are using a board with pre-defined ESP32 Pins:
esp32 = ESP32()

If you are using a Metro M7 **OR**
if you are using CircuitPython 6.0.0 or earlier,
on PyPortal and PyPortal Titano only, use the pin settings
below. Comment out the DEFAULT line above and uncomment
the line below. For CircuitPython 6.1.0, the pin names
have changed for these boards, and the DEFAULT line
above is correct.
esp32 = ESP32(tx=board.TX, rx=board.RX)

If you are using an AirLift FeatherWing or AirLift Bitsy Add-On,
use the pin settings below. Comment out the DEFAULT line above
and uncomment the lines below.
If you are using an AirLift Breakout, check that these
choices match the wiring to your microcontroller board,
or change them as appropriate.
esp32 = ESP32(
reset=board.D12,
gpio0=board.D10,
busy=board.D11,
chip_select=board.D13,
tx=board.TX,
rx=board.RX,
)

If you are using an AirLift Shield,
use the pin settings below. Comment out the DEFAULT line above
and uncomment the lines below.
esp32 = ESP32(
reset=board.D5,
gpio0=board.D6,
busy=board.D7,
chip_select=board.D10,
tx=board.TX,
rx=board.RX,

TAKE NOTE: Adjust the program as needed to suit the AirLift board you have.
Comment and uncomment lines 19-55 below as necessary.

©Adafruit Industries Page 36 of 50

https://learn.adafruit.com/bluefruit-le-connect/

)

adapter = esp32.start_bluetooth()

ble = BLERadio(adapter)
uart = UARTService()
advertisement = ProvideServicesAdvertisement(uart)

while True:
ble.start_advertising(advertisement)
print("waiting to connect")
while not ble.connected:

pass
print("connected: trying to read input")
while ble.connected:

Returns b'' if nothing was read.
one_byte = uart.read(1)
if one_byte:

print(one_byte)
uart.write(one_byte)

Talk to the AirLift via the Bluefruit LE Connect App

Start the Bluefruit LE Connect App on your phone or tablet. You should see a
CIRCUITPY device available to connect to. Tap the Connect button (1):

©Adafruit Industries Page 37 of 50

You'll then see a list of Bluefruit Connect functions ("modules"). Choose the UART
module (2):

©Adafruit Industries Page 38 of 50

On the UART module page, you can type a string and press Send (3). You'll see that
string entered, and then see it echoed back (echoing is in gray).

©Adafruit Industries Page 39 of 50

Arduino WiFi
You can use an AirLift with Arduino. Unlike CircuitPython, it will work with just about
any Arduino board, even a classic Arduino UNO. However, if you want to use libraries
like Adafruit IO Arduino, ArduinoJSON, or add sensors and SD card, you'll really want
an ATSAMD21 (Cortex M0) or ATSAMD51 (Cortex M4), both of which have plenty or
RAM.

Library Install
We're using a variant of the Arduino WiFiNINA library, which is amazing and written by
the Arduino team! The official WiFi101 library won't work because it doesn't support
the ability to change the pins.

So! We made a fork that you can install.

©Adafruit Industries Page 40 of 50

Click here to download the library:

Download Adafruit's version of
WiFiNINA

https://adafru.it/Evm

Within the Arduino IDE, select Sketch->Include Library -> Add .ZIP library...

And select the zip you just downloaded.

First Test
OK now you have it wired and library installed, time to test it out!

Lets start by scanning the local networks. Load up the ScanNetworks example

©Adafruit Industries Page 41 of 50

https://github.com/adafruit/WiFiNINA/archive/master.zip

 (https://
adafru.it/EVu)

At the top you'll see a section where the GPIO pins are defined

 (https://adafru.it/EVv)

If you don't see this, you may have the wrong WiFiNINA library installed. Uninstall it
and re-install the Adafruit one as above.

Arduino Microcontroller Pin Definition

Next, you'll need to need to modify the pin definition above for the AirLift Shield.
Replace the configuration in the sketch with the pinouts below:

#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 10 // Chip select pin
#define ESP32_RESETN 5 // Reset pin
#define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 6

Compile and upload to your board wired up to the AirLift

©Adafruit Industries Page 42 of 50

https://learn.adafruit.com/assets/74345
https://learn.adafruit.com/assets/74345
https://learn.adafruit.com/assets/74351
https://learn.adafruit.com/assets/74351

 (https://
adafru.it/EVw)

If you don't even get the MAC address printed out, check your wiring.

If you get the MAC address but cannot scan any networks, check your power supply.
You need a solid 3-5VDC into Vin in order for the ESP32 not to brown out.

WiFi Connection Test
Now that you have your wiring checked, time to connect to the Internet!

Open up the WiFiWebClient example

©Adafruit Industries Page 43 of 50

https://learn.adafruit.com/assets/74349
https://learn.adafruit.com/assets/74349

 (https://
adafru.it/EVx)

Open up the secondary tab, arduino_secrets.h. This is where you will store private
data like the SSID/password to your network.

 (https://adafru.it/EVy)

You must change these string values before updating to your board!

After you've set it correctly, upload and check the serial monitor. You should see the
following. If not, go back, check wiring, power and your SSID/password

©Adafruit Industries Page 44 of 50

https://learn.adafruit.com/assets/74355
https://learn.adafruit.com/assets/74355
https://learn.adafruit.com/assets/74356
https://learn.adafruit.com/assets/74356

 (https://adafru.it/
EVz)

Secure Connection Example
Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a
great TLS/SSL stack so you can have that all taken care of for you. Here's an example
of a secure WiFi connection:

©Adafruit Industries Page 45 of 50

https://learn.adafruit.com/assets/74357
https://learn.adafruit.com/assets/74357

 (https://
adafru.it/EVA)

Note we use WiFiSSLClient client; instead of WiFiClient client; to require
an SSL connection!

©Adafruit Industries Page 46 of 50

https://learn.adafruit.com/assets/74359
https://learn.adafruit.com/assets/74359

 (https://
adafru.it/EVB)

©Adafruit Industries Page 47 of 50

https://learn.adafruit.com/assets/74358
https://learn.adafruit.com/assets/74358

JSON Parsing Example

This example is a little more advanced - many sites will have API's that give you JSON
data. We'll use ArduinoJSON (https://adafru.it/Evn) to convert that to a format we can
use and then display that data on the serial port (which can then be re-directed to a
display of some sort)

First up, use the Library manager to install ArduinoJSON (https://adafru.it/Evo).

Then load the example JSONdemo

 (https://
adafru.it/EVC)

By default it will connect to to the Twitter banner image API, parse the username and
followers and display them.

 (https://adafru.it/
EVD)

©Adafruit Industries Page 48 of 50

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/
https://learn.adafruit.com/assets/74362
https://learn.adafruit.com/assets/74362
https://learn.adafruit.com/assets/74361
https://learn.adafruit.com/assets/74361

Adapting Other Examples

Once you've got it connecting to the Internet you can check out the other examples.
The only change you'll want to make is at the top of the sketches, add:

#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 10 // Chip select pin
#define ESP32_RESETN 5 // Reset pin
#define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 6

And then before you check the status() of the module, call the
function WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK, ESP32_RESETN,
ESP32_GPIO0, &SPIWIFI); like so:

// check for the WiFi module:
 WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK, ESP32_RESETN, ESP32_GPIO0, &SPIWIFI);
 while (WiFi.status() == WL_NO_MODULE) {
 Serial.println("Communication with WiFi module failed!");
 // don't continue
 delay(1000);
 }

Downloads
Files

ESP32 WROOM32 Datasheet (https://adafru.it/EVE)
EagleCAD files on GitHub (https://adafru.it/F6p)
Fritzing object in Adafruit Fritzing Library (https://adafru.it/F6q)

•
•
•

©Adafruit Industries Page 49 of 50

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://github.com/adafruit/Adafruit-Airlift-Shield-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Airlift%20Shield.fzpz

Schematic

Fab Print

©Adafruit Industries Page 50 of 50

	Adafruit AirLift Shield - ESP32 WiFi Co-Processor
	Table of Contents
	Overview
	Pinouts
	Assembly
	CircuitPython WiFi
	Internet Connect!
	CircuitPython BLE
	Arduino WiFi
	Downloads

	Overview
	Pinouts
	Power Pins
	SPI Interface Pins
	ESP32 Control Pins
	SD Card Interface
	LEDs
	Prototyping Area

	Assembly
	Installing Standard Headers
	Stack Alert!

	CircuitPython WiFi
	CircuitPython Microcontroller Pinout
	CircuitPython Setup
	CircuitPython Usage

	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	CircuitPython BLE
	CircuitPython BLE UART Example

	Adafruit AirLift ESP32 Shield Wiring
	Update the AirLift Firmware
	Install CircuitPython Libraries
	Install the Adafruit Bluefruit LE Connect App
	BLE Example
	Talk to the AirLift via the Bluefruit LE Connect App

	Arduino WiFi
	Library Install
	First Test
	Arduino Microcontroller Pin Definition

	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Example
	Adapting Other Examples

	Downloads
	Files
	Schematic
	Fab Print

