Adafruit 128x64 OLED Bonnet for
Raspberry Pi

Created by lady ada

.'u.crr'ui(
128x64

1.3” OLED| «
Bonnet | r—

https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi

Last updated on 2024-06-03 02:08:41 PM EDT

©Adafruit Industries Page 1 of 15

Table of Contents

Overview 3
Usage 5
« Install CircuitPython

- Enable 12C

« Verify 12C Device

« Running Scripts on Boot
« Library Usage

« Pin Setup

« Speeding up the Display

Downloads 14

« Schematic & Fabrication Print

©Adafruit Industries Page 2 of 15

Overview

If you'd like a compact display, with buttons and a joystick - we've got what you're
looking for. The Adafruit 128x64 OLED Bonnet for Raspberry Pi is the big sister to our
mini PIOLED add-on (http://adafru.it/3527). This version has 128x64 pixels (instead of
128x32) and a much larger screen besides. With the OLED display in the center, we
had some space on either side so we added a 5-way joystick and two pushbuttons.
Great for when you want to have a control interface for your project.

These displays are small, only about 1.3" diagonal, but very readable due to the high
contrast of an OLED display. This screen is made of 128x64 individual white OLED

©Adafruit Industries Page 3 of 15

https://www.adafruit.com/product/3527
https://www.adafruit.com/product/3527

pixels and because the display makes its own light, no backlight is required. This
reduces the power required to run the OLED and is why the display has such high
contrast; we really like this miniature display for its crispness!

1.3” OLED| .
Bonnet o,

Please note that this display is too small to act as a primary display for the Pi (e.g. it
can't act like or display what would normally be on the HDMI screen). Instead, we
recommend using pygame for drawing or writing text.

Using the display and controls in python is very easy, we have a library ready-to-go
for the SSD1306 OLED chipset and the joystick/buttons are connected to GPIO pins
on the Pi. Our example code allows you to draw images, text, whatever you like, using
the Python imaging library. We also have example code for using the joystick/buttons/
OLED together. Our tests showed 15 FPS update rates once you bump the I12C speed
to TMHz, so you can do animations or simple video.

©Adafruit Industries Page 4 of 15

CRCRCECRON N RCRCR BORCHCRCRORCN- NONON °

Comes completely pre-assembled and tested so you don't need to do anything but
plug it in and install our Python code! Works with any Raspberry Pi computer,
including the original Pi 1, B+, Pi 2, Pi 3 and Pi Zero.

Usage

This guide assumes you have your Raspberry Pi all set up with an operating
system, network connectivity and SSH!

Install CircuitPython

This guide assumes that you've gotten your Raspberry Pi up and running, and have
CircuitPython installed. If not, check out the guide:

CircuitPython Installation Guide
https://adafru.it/Deo

To install the library for the Pi OLED (https://adafru.it/uif), enter the following into the
terminal:

sudo pip3 install adafruit-circuitpython-ssd1306

If that complains about pip3 not being installed, then run this first to install it:

©Adafruit Industries Page 5 of 15

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306

sudo apt-get install python3-pip

We also need PIL to allow using text with custom fonts. There are several system
libraries that PIL relies on, so installing via a package manager is the easiest way to
bring in everything:

sudo apt-get install python3-pil

Enable 12C

To enable i2c, you can follow our detailed guide on configuring the Pi with 12C
support here. (https://adafru.it/dEO)

You also need to install Blinka support as detailed here (https://adafru.it/Deo)

After you've enabled I12C you will need to shutdown with sudo shutdown -h now
Once the Pi has halted, plug in the PIOLED. Now you can power the Pi back up, and
log back in. Run the following command from a terminal prompt to scan/detect the
I12C devices

sudo i2cdetect -y 1

You should see the following, indicating that address Ox3c (the OLED display) was
found

s B
@ pi@raspberrypi: ~ l o|E &]

Verify 12C Device

You can run our buttons example, which will let you press various buttons and see
them mimicked on the OLED.

Create a new file with nano “pi/bonnet_buttons.py and paste this code below in!
Then save it.

©Adafruit Industries Page 6 of 15

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi#enable-i2c-and-spi-3-5

SPDX-FileCopyrightText: 2017 James DeVito for Adafruit Industries
SPDX-License-Identifier: MIT

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

import board

import busio

from digitalio import DigitalInOut, Direction, Pull
from PIL import Image, ImageDraw

import adafruit ssd1306

Create the I2C interface.

i2c = busio.I2C(board.SCL, board.SDA)

Create the SSD1306 OLED class.

disp = adafruit ssd1306.SSD1306 I2C(128, 64, i2c)

Input pins:

button A = DigitalInOut(board.D5)
button A.direction = Direction.INPUT
button A.pull = Pull.UP

button B = DigitalInOut(board.D6)
button B.direction = Direction.INPUT
button B.pull = Pull.UP

button L = DigitalInOut(board.D27)
button L.direction = Direction.INPUT
button L.pull = Pull.UP

button R = DigitalInQut(board.D23)
button R.direction = Direction.INPUT
button R.pull = Pull.UP

button U = DigitalInOut(board.D17)
button U.direction = Direction.INPUT
button U.pull = Pull.UP

button D = DigitalInOut(board.D22)
button D.direction = Direction.INPUT
button D.pull = Pull.UP

button C = DigitalInOut(board.D4)
button C.direction = Direction.INPUT
button C.pull = Pull.UP

Clear display.
disp.fill(0)
disp.show()

Create blank image for drawing.

Make sure to create image with mode '1l' for 1-bit color.
width = disp.width

height = disp.height

image = Image.new("1l", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

while True:
if button U.value: # button is released

©Adafruit Industries Page 7 of 15

draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=0) # Up
else: # button is pressed:
draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=1l) # Up
filled

if button L.value: # button is released
draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=0) # left
else: # button is pressed:
draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=1l) # left
filled

if button R.value: # button is released
draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=0) # right
else: # button is pressed:
draw.polygon (
[(60, 30), (42, 21), (42, 41)], outline=255, fill=1
) # right filled

if button D.value: # button is released
draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=0) # down
else: # button is pressed:
draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=1l) # down
filled

if button C.value: # button is released
draw.rectangle((20, 22, 40, 40), outline=255, fill=0) # center
else: # button is pressed:
draw.rectangle((20, 22, 40, 40), outline=255, fill=1l) # center filled

if button A.value: # button is released
draw.ellipse((70, 40, 90, 60), outline=255, fill=0) # A button
else: # button is pressed:
draw.ellipse((70, 40, 90, 60), outline=255, fill=1l) # A button filled

if button B.value: # button is released
draw.ellipse((100, 20, 120, 40), outline=255, fill=0) # B button
else: # button is pressed:
draw.ellipse((100, 20, 120, 40), outline=255, fill=1l) # B button filled

if not button A.value and not button B.value and not button C.value:
catImage = Image.open("happycat oled 64.ppm").convert("1")
disp.image(catImage)

else:
Display image.
disp.image(image)

disp.show()

Run sudo python3 bonnet buttons.py to runthe demo, you should see
something like the below:

©Adafruit Industries Page 8 of 15

Press buttons to interact with the demo. Press the joystick + buttons at once for an
Easter egg!

Running Scripts on Boot

You can pretty easily make it so this program (or whatever program you end up
writing) run every time you boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local
Run sudo nano /etc/rc.local and add the line

sudo python /home/pi/bonnet buttons.py &
on its own line right before exit O

Then save and exit. Reboot to verify that the screen comes up on boot!

©Adafruit Industries Page 9 of 15

GNU nano 2.7.4 File: /etc/rc.local

#1/bin/sh -e

rc.local

#

#

#

This script is executed at the end of each multiuser runlevel.
Make sure that the script will “exit @" on success or any other
value on error,
#
3
#
#
B

In order to enable or disable this script just change the execution
bits.

By default this script does nothing.

Print the IP address
_IP=$(Chostname -I) || true
if ["$_IP"]; then
printf "My IP address is %s\n" “$_IP"
fi

sudo python3 /home/pi/bonnet_buttons.py &

exit @

For more advanced usage, check out our linux system services guide (https://
adafru.it/wFR)

Library Usage

In the examples subdirectory of the Adafruit_CircuitPython_SSD1306
repository (https://adafru.it/EsZ), you'll find more examples which demonstrate the
usage of the library.

To help you get started, I'll walk through the bonnet_buttons.py code below, that
way you can use this file as the basis of a future project.

Python Library Setup

import board

import busio

from digitalio import DigitalInOut, Direction, Pull
from PIL import Image, ImageDraw

import adafruit ssd1306

First, a few modules are imported, including the adafruit ssd1306 module which
contains the OLED driver classes. The code also imports board (containing the
Raspbery Pi pin definitions), busio (communication with the i2c and spi buses), and
digitalio (to control the Raspberry Pi's pins).

©Adafruit Industries Page 10 of 15

file:///home/running-programs-automatically-on-your-tiny-computer/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/master/examples
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/master/examples

You can also see some of the Python Imaging Library modules like Image,
ImageDraw, and ImageFont being imported. Those are, as you can imagine, are for
drawing images, shapes and text/fonts!

Display Setup

Create the I2C interface.

i2c = busio.I2C(board.SCL, board.SDA)

Create the SSD1306 OLED class.

disp = adafruit ssd1306.SSD1306 I2C(128, 64, i2c)

The next bit of code creates the 12C interface (which the display on the bonnet
communicates over) and creates a SSD1306 OLED class. Note that we are passing
SSD1306 I2C 128 and 64, those values correspond to the bonnet's OLED display.

Pin Setup

Input pins:

button A = DigitalInOut(board.D5)
button A.direction = Direction.INPUT
button A.pull = Pull.UP

button B = DigitalInQut(board.D6)
button B.direction = Direction.INPUT
button B.pull = Pull.UP

button L = DigitalInOut(board.D27)
button L.direction = Direction.INPUT
button L.pull = Pull.UP

button R = DigitalInOQut(board.D23)
button R.direction = Direction.INPUT
button R.pull = Pull.UP

button U = DigitalInOut(board.D17)
button U.direction = Direction.INPUT
button U.pull = Pull.UP

button D = DigitalInOut(board.D22)
button D.direction = Direction.INPUT
button D.pull = Pull.UP

button C = DigitalInQut(board.D4)
button C.direction = Direction.INPUT
button C.pull = Pull.UP

Next up we define the pins that are used for the joystick and buttons. The Joystick
has Left, Right, Center (press in), Up and Down. There's also the A and B buttons on
the right. Each one should be set as an input with pull-up resistor (Pull.UP in the
code)

©Adafruit Industries Page 11 of 15

Display Initialization

Clear display.
disp.fill(0)
disp.show()

Create blank image for drawing.

Make sure to create image with mode 'l' for 1-bit color.
width = disp.width

height = disp.height

image = Image.new('l', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

The next chunk of code clears the display by inverting its fill with fill(0) and then
writing to the display with show() .

Then it will configure a PIL drawing class to prepare for drawing graphics. Notice that
the image buffer is created in 1-bit mode with the '1' parameter, this is important
because the display only supports black and white colors.

We then re-draw a large black rectangle to clear the screen. In theory we don't have
to clear the screen again, but its a good example of how to draw a shape!

Button Input and Drawing

while True:
if button U.value: # button is released
draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=0) #Up
else: # button is pressed:
draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=1l) #Up filled

if button L.value: # button is released
draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=0) #left
else: # button is pressed:
draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=1l) #left
filled

if button R.value: # button is released
draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=0) #right
else: # button is pressed:
draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=1l) #right
filled

if button D.value: # button is released
draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=0) #down
else: # button is pressed:
draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=1) #down
filled

if button C.value: # button is released

draw.rectangle((20, 22, 40, 40), outline=255, fill=0) #center
else: # button is pressed:

©Adafruit Industries Page 12 of 15

draw.rectangle((20, 22, 40, 40), outline=255, fill=1l) #center filled

if button A.value: # button is released
draw.ellipse((70, 40, 90, 60), outline=255, fill=0) #A button
else: # button is pressed:
draw.ellipse((70, 40, 90, 60), outline=255, fill=1l) #A button filled

if button B.value: # button is released
draw.ellipse((100, 20, 120, 40), outline=255, fill=0) #B button
else: # button is pressed:
draw.ellipse((100, 20, 120, 40), outline=255, fill=1l) #B button filled

if not button A.value and not button B.value and not button C.value:
catImage = Image.open('happycat oled 64.ppm').convert('l")
disp.image(catImage)

else:
Display image.
disp.image(image)

disp.show()

Once the display is initialized and a drawing object is prepared, you can draw shapes,
text and graphics using PIL's drawing commands (https://adafru.it/dfH).

This is a basic polling example - we'll check each button.value in order, and draw a
different shape - a directional arrow or a round circle) depending on whether the
button is pressed. If the button is pressed we have the shape filled in. If the button is
not pressed, we draw an outline only

Then we run disp.image(image) and disp.show() to actually push the updated
image to the OLED. This is required to actually make the changes appear!

Speeding up the Display

For the best performance, especially if you are doing fast animations, you'll want to
tweak the 12C core to run at 1IMHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt
and add to the end of the file

dtparam=i2c_baudrate=1000000

©Adafruit Industries Page 13 of 15

http://effbot.org/imagingbook/imagedraw.htm

@)
EP pi@raspberrypi: ~ o | 5 |3

GNU nano 2.2.6

File: /boot/config.txt Modified

reboot to 'set' the change.

Downloads

Files

- EagleCAD PCB files on GitHub (https://adafru.it/wWCQC)
+ UG-2864HSWEGO1 (https://adafru.it/all) Datasheet

« UG-2864HSWEGO1 (https://adafru.it/wWD) User Guide
« SSD1306 (https://adafru.it/aJK) Datasheet

« Fritzing objects available in the Adafruit Fritzing Library (https://adafru.it/aP3)

Software

« OLED Bonnet Toolkit (https://adafru.it/VbN)

Schematic & Fabrication Print

Dimensions in mm

©Adafruit Industries Page 14 of 15

https://github.com/adafruit/Adafruit-128x64-OLED-Bonnet-for-Raspberry-Pi-PCB
http://www.adafruit.com/datasheets/UG-2864HSWEG01.pdf
http://www.adafruit.com/datasheets/UG-2864HSWEG01%20user%20guide.pdf
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/lukehutch/Adafruit-OLED-Bonnet-Toolkit

A
A -y A
"
128x64 OLED
T ["
D I -
: "
A - t
o
f . ~
~ 1
+ | + =
| : n
| + Cw

- : b :
0 adafruit o
~ B

128x64 OLED Bonnet rev

4/11/2017 12:1@:4@ AM| Sheet: 1/1

Orauing: >AUTHOR Adafruit Industries
1 2 3 4 5 6

Adafruit
128x64
1.3” OLED
Bonnet

©Adafruit Industries Page 15 of 15

	Adafruit 128x64 OLED Bonnet for Raspberry Pi
	Table of Contents
	Overview
	Usage
	Downloads

	Overview
	Usage
	Install CircuitPython
	Enable I2C
	Verify I2C Device

	Running Scripts on Boot
	Library Usage
	Python Library Setup
	Display Setup

	Pin Setup
	Display Initialization
	Button Input and Drawing

	Speeding up the Display

	Downloads
	Files
	Software

	Schematic & Fabrication Print

