
Adafruit 128x64 OLED Bonnet for
Raspberry Pi

Created by lady ada

https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi

Last updated on 2024-06-03 02:08:41 PM EDT

©Adafruit Industries Page 1 of 15

3

5

14

Table of Contents

Overview

Usage
• Install CircuitPython
• Enable I2C
• Verify I2C Device
• Running Scripts on Boot
• Library Usage
• Pin Setup
• Speeding up the Display

Downloads
• Schematic & Fabrication Print

©Adafruit Industries Page 2 of 15

Overview

If you'd like a compact display, with buttons and a joystick - we've got what you're
looking for. The Adafruit 128x64 OLED Bonnet for Raspberry Pi is the big sister to our
mini PiOLED add-on (http://adafru.it/3527). This version has 128x64 pixels (instead of
128x32) and a much larger screen besides. With the OLED display in the center, we
had some space on either side so we added a 5-way joystick and two pushbuttons.
Great for when you want to have a control interface for your project.

These displays are small, only about 1.3" diagonal, but very readable due to the high
contrast of an OLED display. This screen is made of 128x64 individual white OLED

©Adafruit Industries Page 3 of 15

https://www.adafruit.com/product/3527
https://www.adafruit.com/product/3527

pixels and because the display makes its own light, no backlight is required. This
reduces the power required to run the OLED and is why the display has such high
contrast; we really like this miniature display for its crispness!

Please note that this display is too small to act as a primary display for the Pi (e.g. it
can't act like or display what would normally be on the HDMI screen). Instead, we
recommend using pygame for drawing or writing text.

Using the display and controls in python is very easy, we have a library ready-to-go
for the SSD1306 OLED chipset and the joystick/buttons are connected to GPIO pins
on the Pi. Our example code allows you to draw images, text, whatever you like, using
the Python imaging library. We also have example code for using the joystick/buttons/
OLED together. Our tests showed 15 FPS update rates once you bump the I2C speed
to 1MHz, so you can do animations or simple video.

©Adafruit Industries Page 4 of 15

Comes completely pre-assembled and tested so you don't need to do anything but
plug it in and install our Python code! Works with any Raspberry Pi computer,
including the original Pi 1, B+, Pi 2, Pi 3 and Pi Zero.

Usage

Install CircuitPython

This guide assumes that you've gotten your Raspberry Pi up and running, and have
CircuitPython installed. If not, check out the guide:

CircuitPython Installation Guide
https://adafru.it/Deo

To install the library for the Pi OLED (https://adafru.it/u1f), enter the following into the
terminal:

sudo pip3 install adafruit-circuitpython-ssd1306

If that complains about pip3 not being installed, then run this first to install it:

This guide assumes you have your Raspberry Pi all set up with an operating
system, network connectivity and SSH!

©Adafruit Industries Page 5 of 15

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306

sudo apt-get install python3-pip

We also need PIL to allow using text with custom fonts. There are several system
libraries that PIL relies on, so installing via a package manager is the easiest way to
bring in everything:

sudo apt-get install python3-pil

Enable I2C

To enable i2c, you can follow our detailed guide on configuring the Pi with I2C
support here. (https://adafru.it/dEO)

You also need to install Blinka support as detailed here (https://adafru.it/Deo)

After you've enabled I2C you will need to shutdown with sudo shutdown -h now

Once the Pi has halted, plug in the PiOLED. Now you can power the Pi back up, and
log back in. Run the following command from a terminal prompt to scan/detect the
I2C devices

sudo i2cdetect -y 1

You should see the following, indicating that address 0x3c (the OLED display) was
found

Verify I2C Device

You can run our buttons example, which will let you press various buttons and see
them mimicked on the OLED.

Create a new file with nano ~pi/bonnet_buttons.py and paste this code below in!
Then save it.

©Adafruit Industries Page 6 of 15

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi#enable-i2c-and-spi-3-5

SPDX-FileCopyrightText: 2017 James DeVito for Adafruit Industries
SPDX-License-Identifier: MIT

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

import board
import busio
from digitalio import DigitalInOut, Direction, Pull
from PIL import Image, ImageDraw
import adafruit_ssd1306

Create the I2C interface.
i2c = busio.I2C(board.SCL, board.SDA)
Create the SSD1306 OLED class.
disp = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

Input pins:
button_A = DigitalInOut(board.D5)
button_A.direction = Direction.INPUT
button_A.pull = Pull.UP

button_B = DigitalInOut(board.D6)
button_B.direction = Direction.INPUT
button_B.pull = Pull.UP

button_L = DigitalInOut(board.D27)
button_L.direction = Direction.INPUT
button_L.pull = Pull.UP

button_R = DigitalInOut(board.D23)
button_R.direction = Direction.INPUT
button_R.pull = Pull.UP

button_U = DigitalInOut(board.D17)
button_U.direction = Direction.INPUT
button_U.pull = Pull.UP

button_D = DigitalInOut(board.D22)
button_D.direction = Direction.INPUT
button_D.pull = Pull.UP

button_C = DigitalInOut(board.D4)
button_C.direction = Direction.INPUT
button_C.pull = Pull.UP

Clear display.
disp.fill(0)
disp.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new("1", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

while True:
if button_U.value: # button is released

©Adafruit Industries Page 7 of 15

draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=0) # Up
else: # button is pressed:

draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=1) # Up
filled

if button_L.value: # button is released
draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=0) # left

else: # button is pressed:
draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=1) # left

filled

if button_R.value: # button is released
draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=0) # right

else: # button is pressed:
draw.polygon(

[(60, 30), (42, 21), (42, 41)], outline=255, fill=1
) # right filled

if button_D.value: # button is released
draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=0) # down

else: # button is pressed:
draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=1) # down

filled

if button_C.value: # button is released
draw.rectangle((20, 22, 40, 40), outline=255, fill=0) # center

else: # button is pressed:
draw.rectangle((20, 22, 40, 40), outline=255, fill=1) # center filled

if button_A.value: # button is released
draw.ellipse((70, 40, 90, 60), outline=255, fill=0) # A button

else: # button is pressed:
draw.ellipse((70, 40, 90, 60), outline=255, fill=1) # A button filled

if button_B.value: # button is released
draw.ellipse((100, 20, 120, 40), outline=255, fill=0) # B button

else: # button is pressed:
draw.ellipse((100, 20, 120, 40), outline=255, fill=1) # B button filled

if not button_A.value and not button_B.value and not button_C.value:
catImage = Image.open("happycat_oled_64.ppm").convert("1")
disp.image(catImage)

else:
Display image.
disp.image(image)

disp.show()

Run sudo python3 bonnet_buttons.py to run the demo, you should see
something like the below:

©Adafruit Industries Page 8 of 15

Press buttons to interact with the demo. Press the joystick + buttons at once for an
Easter egg!

Running Scripts on Boot
You can pretty easily make it so this program (or whatever program you end up
writing) run every time you boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local

Run sudo nano /etc/rc.local and add the line

sudo python /home/pi/bonnet_buttons.py &

on its own line right before exit 0

Then save and exit. Reboot to verify that the screen comes up on boot!

©Adafruit Industries Page 9 of 15

For more advanced usage, check out our linux system services guide (https://
adafru.it/wFR)

Library Usage

In the examples subdirectory of the Adafruit_CircuitPython_SSD1306
repository (https://adafru.it/EsZ), you'll find more examples which demonstrate the
usage of the library.

To help you get started, I'll walk through the bonnet_buttons.py code below, that
way you can use this file as the basis of a future project.

Python Library Setup

import board
import busio
from digitalio import DigitalInOut, Direction, Pull
from PIL import Image, ImageDraw
import adafruit_ssd1306

First, a few modules are imported, including the adafruit_ssd1306 module which
contains the OLED driver classes. The code also imports board (containing the
Raspbery Pi pin definitions), busio (communication with the i2c and spi buses), and
digitalio (to control the Raspberry Pi's pins).

©Adafruit Industries Page 10 of 15

file:///home/running-programs-automatically-on-your-tiny-computer/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/master/examples
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/master/examples

You can also see some of the Python Imaging Library modules like Image,
ImageDraw, and ImageFont being imported. Those are, as you can imagine, are for
drawing images, shapes and text/fonts!

Display Setup

Create the I2C interface.
i2c = busio.I2C(board.SCL, board.SDA)
Create the SSD1306 OLED class.
disp = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

The next bit of code creates the I2C interface (which the display on the bonnet
communicates over) and creates a SSD1306 OLED class. Note that we are passing
SSD1306_I2C 128 and 64, those values correspond to the bonnet's OLED display.

Pin Setup

Input pins:
button_A = DigitalInOut(board.D5)
button_A.direction = Direction.INPUT
button_A.pull = Pull.UP

button_B = DigitalInOut(board.D6)
button_B.direction = Direction.INPUT
button_B.pull = Pull.UP

button_L = DigitalInOut(board.D27)
button_L.direction = Direction.INPUT
button_L.pull = Pull.UP

button_R = DigitalInOut(board.D23)
button_R.direction = Direction.INPUT
button_R.pull = Pull.UP

button_U = DigitalInOut(board.D17)
button_U.direction = Direction.INPUT
button_U.pull = Pull.UP

button_D = DigitalInOut(board.D22)
button_D.direction = Direction.INPUT
button_D.pull = Pull.UP

button_C = DigitalInOut(board.D4)
button_C.direction = Direction.INPUT
button_C.pull = Pull.UP

Next up we define the pins that are used for the joystick and buttons. The Joystick
has Left, Right, Center (press in), Up and Down. There's also the A and B buttons on
the right. Each one should be set as an input with pull-up resistor (Pull.UP in the
code)

©Adafruit Industries Page 11 of 15

Display Initialization

Clear display.
disp.fill(0)
disp.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new('1', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

The next chunk of code clears the display by inverting its fill with fill(0) and then
writing to the display with show() .

Then it will configure a PIL drawing class to prepare for drawing graphics. Notice that
the image buffer is created in 1-bit mode with the '1' parameter, this is important
because the display only supports black and white colors.

We then re-draw a large black rectangle to clear the screen. In theory we don't have
to clear the screen again, but its a good example of how to draw a shape!

Button Input and Drawing

while True:
 if button_U.value: # button is released
 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=0) #Up
 else: # button is pressed:
 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=1) #Up filled

 if button_L.value: # button is released
 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=0) #left
 else: # button is pressed:
 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=1) #left
filled

 if button_R.value: # button is released
 draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=0) #right
 else: # button is pressed:
 draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=1) #right
filled

 if button_D.value: # button is released
 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=0) #down
 else: # button is pressed:
 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=1) #down
filled

 if button_C.value: # button is released
 draw.rectangle((20, 22, 40, 40), outline=255, fill=0) #center
 else: # button is pressed:

©Adafruit Industries Page 12 of 15

 draw.rectangle((20, 22, 40, 40), outline=255, fill=1) #center filled

 if button_A.value: # button is released
 draw.ellipse((70, 40, 90, 60), outline=255, fill=0) #A button
 else: # button is pressed:
 draw.ellipse((70, 40, 90, 60), outline=255, fill=1) #A button filled

 if button_B.value: # button is released
 draw.ellipse((100, 20, 120, 40), outline=255, fill=0) #B button
 else: # button is pressed:
 draw.ellipse((100, 20, 120, 40), outline=255, fill=1) #B button filled

 if not button_A.value and not button_B.value and not button_C.value:
 catImage = Image.open('happycat_oled_64.ppm').convert('1')
 disp.image(catImage)
 else:
 # Display image.
 disp.image(image)

 disp.show()

Once the display is initialized and a drawing object is prepared, you can draw shapes,
text and graphics using PIL's drawing commands (https://adafru.it/dfH).

This is a basic polling example - we'll check each button.value in order, and draw a
different shape - a directional arrow or a round circle) depending on whether the
button is pressed. If the button is pressed we have the shape filled in. If the button is
not pressed, we draw an outline only

Then we run disp.image(image) and disp.show() to actually push the updated
image to the OLED. This is required to actually make the changes appear!

Speeding up the Display

For the best performance, especially if you are doing fast animations, you'll want to
tweak the I2C core to run at 1MHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

©Adafruit Industries Page 13 of 15

http://effbot.org/imagingbook/imagedraw.htm

reboot to 'set' the change.

Downloads
Files

EagleCAD PCB files on GitHub (https://adafru.it/wWC)
UG-2864HSWEG01 (https://adafru.it/aJI) Datasheet
UG-2864HSWEG01 (https://adafru.it/wWD) User Guide
SSD1306 (https://adafru.it/aJK) Datasheet
Fritzing objects available in the Adafruit Fritzing Library (https://adafru.it/aP3)

Software

OLED Bonnet Toolkit (https://adafru.it/VbN)

Schematic & Fabrication Print
Dimensions in mm

•
•
•
•
•

•

©Adafruit Industries Page 14 of 15

https://github.com/adafruit/Adafruit-128x64-OLED-Bonnet-for-Raspberry-Pi-PCB
http://www.adafruit.com/datasheets/UG-2864HSWEG01.pdf
http://www.adafruit.com/datasheets/UG-2864HSWEG01%20user%20guide.pdf
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/lukehutch/Adafruit-OLED-Bonnet-Toolkit

©Adafruit Industries Page 15 of 15

	Adafruit 128x64 OLED Bonnet for Raspberry Pi
	Table of Contents
	Overview
	Usage
	Downloads

	Overview
	Usage
	Install CircuitPython
	Enable I2C
	Verify I2C Device

	Running Scripts on Boot
	Library Usage
	Python Library Setup
	Display Setup

	Pin Setup
	Display Initialization
	Button Input and Drawing

	Speeding up the Display

	Downloads
	Files
	Software

	Schematic & Fabrication Print

