

Adafruit 2.4" TFT FeatherWing

Created by lady ada

https://learn.adafruit.com/adafruit-2-4-tft-touch-screen-featherwing

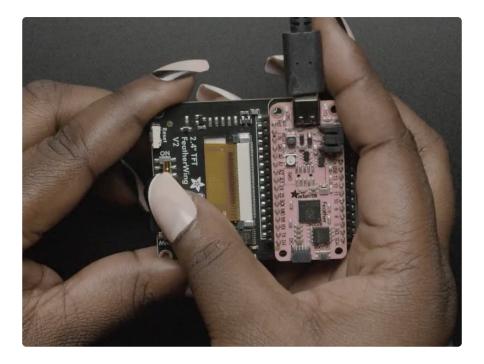
Last updated on 2024-06-03 02:01:52 PM EDT

© Adafruit Industries Page 1 of 46

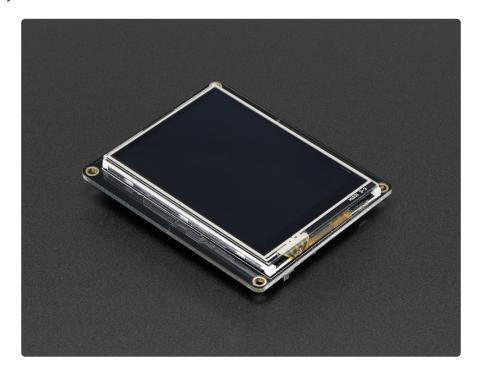
Table of Contents

Overview	5
Pinouts - V1	7
Power Pins	
• SPI Pins	
• TFT Control Pins	
Touch Screen control pins	
SD Card control pins	
Pinouts - V2	13
STEMMA QT Connector	
Default SPI Pins	
• TFT Control Pins and Jumpers	
microSD Card Slot	
• SD Card Pins and Jumper	
Touch Screen Interrupt Jumper	
TSC2007 Address Jumpers	
Reset Button	
• On/Off Switch	
TFT Graphics Test	16
Install Libraries	
Install Adafruit ILI9341 TFT Library	
Basic Graphics Test	
Adafruit GFX Library	20
Resistive Touch Screen - V1	21
Touchscreen Paint Demo	
Resistive Touch Screen - V2	24
	24
Hardware Setup	
Library Installation	
• Example Code	
Drawing Bitmaps	30
CircuitPython Displayio Quickstart - V1	32
• Parts	
Required CircuitPython Libraries	
Code Example Additional Libraries	
CircuitPython Code Example	
Code Details	
Using Touch Where to go from here	
Where to go from here	
CircuitPython Displayio Quickstart - V2	40
Hardware Setup	
CircuitPython Usage	
• Example Code	

© Adafruit Industries Page 2 of 46


44
44

- Datasheets & More
- Schematic and Fab Print

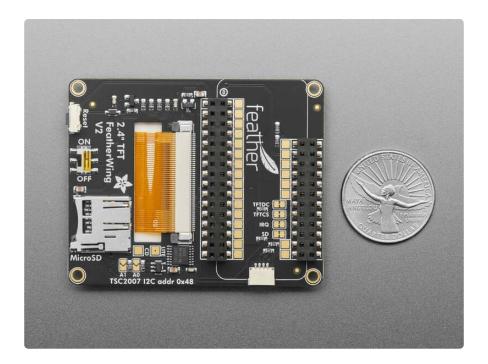

© Adafruit Industries Page 3 of 46

© Adafruit Industries Page 4 of 46

Overview

A Feather board without ambition is a Feather board without FeatherWings! Spice up your Feather project with a beautiful 2.4" touchscreen display shield with built in microSD card socket. This TFT display is 2.4" diagonal with a bright 4 white-LED backlight. You get 240x320 pixels with individual 16-bit color pixel control. It has way more resolution than a black and white 128x64 display. As a bonus, this display comes with a resistive touchscreen attached to it already, so you can detect finger presses anywhere on the screen.

© Adafruit Industries Page 5 of 46

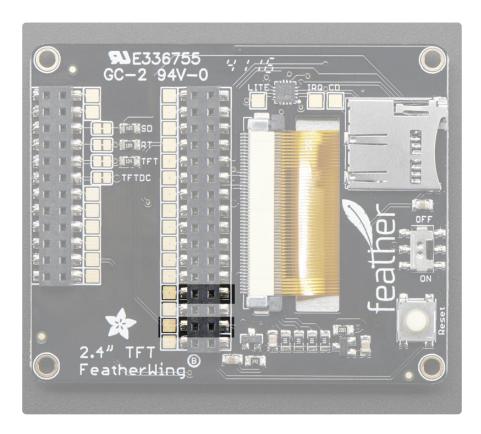

This FeatherWing uses a SPI display, touchscreen and SD card socket so it works nice and fast on all our Feathers (including nRF52, ESP8266, 32u4, 328p, M0, M4, WICED and Teensy 3.x) We also include an SPI resistive touchscreen controller so you only need one additional pin to add a high quality touchscreen controller. One more pin is used for an optional SD card that can be used for storing images for display.

This Wing comes fully assembled with dual sockets for your Feather to plug into. You get two sockets per pin so you can plug in wires if you want to connect to Feather pins. Alternatively, each pin has a large square pad on the PCB for direct soldering.

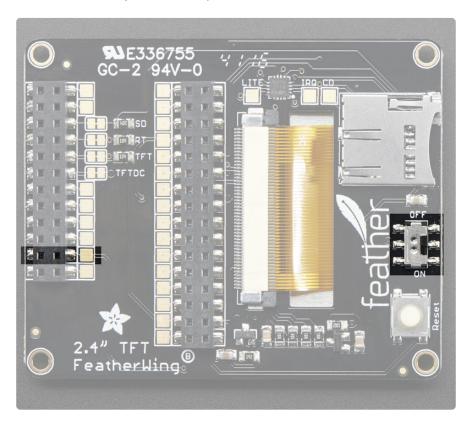
Four mounting holes make it easy to attach this Wing anywhere. We also include a big reset button and an on/off switch connected to the Feather Enable pin (note that the Teensy 3.x Feather does not use the Enable pin so the switch will not do anything with that type).

© Adafruit Industries Page 6 of 46

New! As of Oct 11, 2023 we've made a big redesign to this product: We now use the TSC2007 instead of the discontinued STMPE811 touchscreen controller. The screen and micro SD card are the same but any touchscreen code will need to be updated to use our Arduino or CircuitPython library. We've also updated the reset button to be right-angle and added a STEMMA QT port.

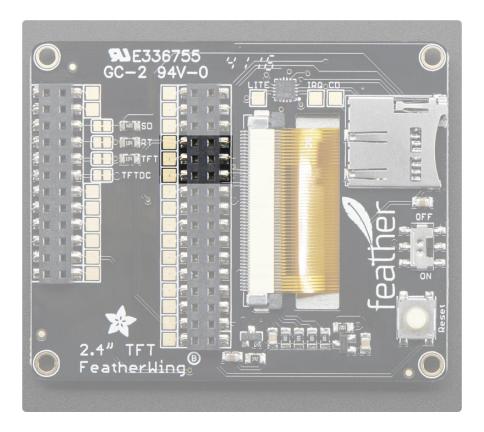

Pinouts - V1

Unlike most FeatherWings, the TFT FeatherWing is fully assembled and has a dual socket set for your Feather to plug into.


This makes it really easy to use, but a little different to change if you don't want the default setup

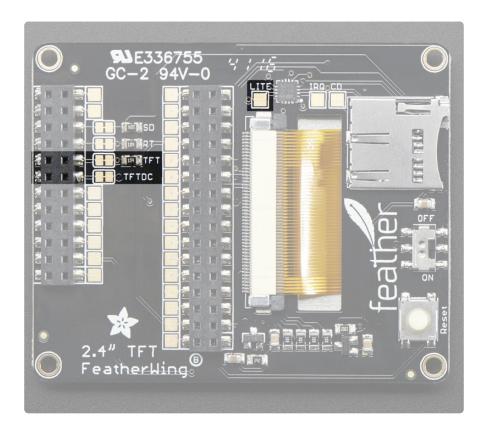
© Adafruit Industries Page 7 of 46

Power Pins


All power for the FeatherWing comes from the **3.3V** and **GND** pins. That includes the backlight (which can draw up to 100mA)!

© Adafruit Industries Page 8 of 46

You can turn off the 3.3V power supply with the **EN** pin or the switch attached to that pin. Note that on the Teensy 3x Feather Adapter, this pin doesn't do anything and on the FONA feather, this will not disable the VBAT power supply which is used to power the cellular module


SPI Pins

The TFT display, SD card and touch screen use the SPI interface to communicate. That means MISO, MOSI and SCK are used whenever either are accessed.

© Adafruit Industries Page 9 of 46

TFT Control Pins

In addition, for the TFT display there is are **D/C** (Data/Command) and **CS** (Chip Select) pins. These are used to select the display and tell it what kind of data is being sent. These pins can theoretically be changed by cutting the jumper trace and soldering a small wire from the right-hand pad to the pin you'd like to use.

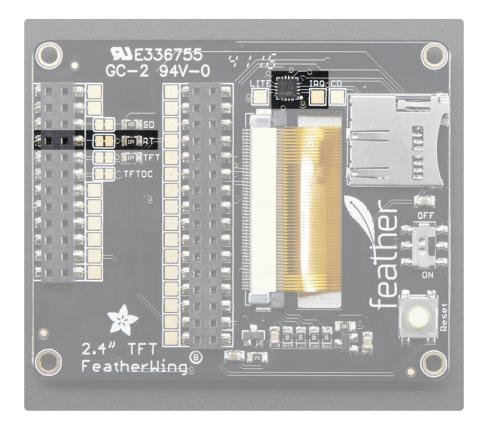
On the ESP8266, TFT_CS is pin #0, TFT_DC is pin #15

On the ESP32, TFT_CS is pin #15, TFT_DC is pin #33

On the Atmega 32u4, ATmega 328P, SAMD 21 MO, nRF 5284O or SAMD 51 M4 Feather, TFT_CS is pin #9, TFT_DC is pin #10

On the **Teensy Feather**, TFT_CS is pin #4, TFT_DC is pin #10

On the WICED Feather, TFT_CS is PA15 and TFT_DC is PB4


On the nRF52832 Feather, TFT_CS is #31 and TFT_DC is #11

There is also **LITE** pin which is not connected to any pads but you can use to control the backlight. Pull low to turn off the backlight. You can connect it to a PWM output pin.

©Adafruit Industries Page 10 of 46

Note: Pin 9 is used for communication with the SIM800 chip on the Feather Fona. You will have to remap pin 9 to an unused pin when using with a Feather Fona.

Touch Screen control pins

The touch screen also has a Chip Select line, labeled **RT**. This pin can theoretically be changed by cutting the jumper trace and soldering a small wire from the right-hand pad to the pin you'd like to use.

On the **ESP8266**, RT is pin #16

On the ESP32, RT is pin #32

On the Atmega 32u4, ATmega 328P, nRF52840 SAMD 21 MO or SAMD 51 M4 Feather, RT is pin #6

On the **Teensy Feather**, RT is pin #3


On the WICED Feather, RT is PC7

On the nRF52832 Feather, RT is #30

© Adafruit Industries Page 11 of 46

There is also an **IRQ** pin which is not connected to any pads but you can use to detect when touch events have occured.

SD Card control pins

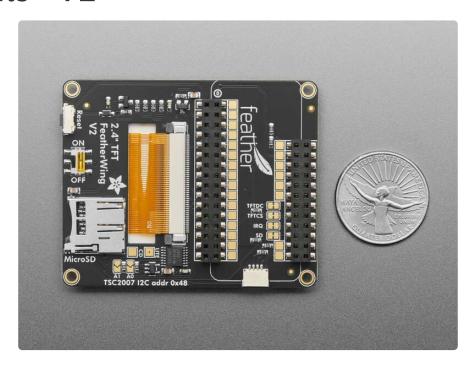
The SD Card also has a Chip Select line, labeled **SD**. This pin can theoretically be changed by cutting the jumper trace and soldering a small wire from the right-hand pad to the pin you'd like to use.

On the **ESP8266**, SD is pin #2

On the ESP32 SD is pin #14

On the Atmega32u4, ATmega328P, nRF52840, SAMD21 M0 or SAMD51 M4 Feather, SD is pin #5

On the **Teensy Feather**, SD is pin #8


On the WICED Feather, SD is PC5

On the **nRF52 Feather**, SD is pin #27

© Adafruit Industries Page 12 of 46

There is also an Card Detect (CD) pin which is not connected to any pads but you can use to detect when a microSD card has been inserted have occured. It will be shorted to ground when a card is not inserted.

Pinouts - V2

The default I2C address for the TSC2007 touchscreen controller is 0x48.

STEMMA QT Connector

- <u>STEMMA QT</u> (https://adafru.it/Ft4) This connector, on the bottom of the FeatherWing, allows you to connect to sensors and breakout boards with STEMMA QT / Qwiic connectors or to other things with <u>various associated</u> accessories (https://adafru.it/JRA).
- SDA/SCL The I2C pins for the STEMMA QT connector are connected to the default I2C GPIO pins directly next to pin 5.
- 3.3V/GND The power for the STEMMA QT connector is 3.3V. Ground is the common ground for power and logic.

Default SPI Pins

The TFT (connected to an ILI9341 chipset) and microSD card on the FeatherWing are controlled via SPI.

• MOSI - This is the SPI MOSI (Microcontroller Out / Serial In) pin.

©Adafruit Industries Page 13 of 46

- MISO This is the SPI MISO (Microcontroller In / Serial Out) pin.
- SCK This is the SPI clock input pin.

TFT Control Pins and Jumpers

- TFTDC This is the display SPI data/command selector pin. By default, it is connected to pin 10. To change this, cut the jumper. Then, connect the signal pad (closest to the label on the board silk) to one of the available and compatible GPIO pads.
- TFTCS This is the TFT SPI chip select pin. By default, is connected to pin 9. To change this, cut the jumper. Then, connect the signal pad (closest to the label on the board silk) to one of the available and compatible GPIO pads.
- LITE This is the TFT backlight pad, located between the CD pad and the TSC2007 chip. It is not connected to any pins by default. Pull this pin low to turn off the backlight.

microSD Card Slot

• On the back of the FeatherWing, below the on/off switch, is the microSD card slot. You can use any microSD card that supports SPI mode with one CS pin.

SD Card Pins and Jumper

- **SD** This is the SD card **c**hip **s**elect pin. By default, it is connected to **pin 5**. To change this, cut the jumper. Then, connect the signal pad (closest to the label on the board silk) to one of the available and compatible GPIO pads.
- CD This is the card detect pad, located to the left of the LITE pad and above the AO jumper. It is not connected to any pins by default. This pin will read low when a card is not inserted.

Touch Screen Interrupt Jumper

• IRQ - This is the touchscreen interrupt pin. By default, it is connected to pin 6.

To change this, cut the jumper. Then, connect the signal pad (closest to the label on the board silk) to one of the available and compatible GPIO pads.

© Adafruit Industries Page 14 of 46

TSC2007 Address Jumpers

On the back of the board are **two address jumpers**, labeled **A0** and **A1**, to the right of the board name label on the silk. These jumpers allow you to change the default I2C address of the TSC2007 on the FeatherWing. To do so, you solder the jumpers "closed" by connecting the two pads.

The default I2C address is **0x48**. The other address options can be calculated by "adding" the **A0/A1** to the base of **0x48**.

A0 sets the lowest bit with a value of 1, A1 sets the next bit with a value of 2. The final address is 0x48 + A1 + A0 which would be 0x4B.

If only A0 is soldered closed, the address is 0x48 + 1 = 0x49

If only A1 is soldered closed, the address is 0x48 + 2 = 0x4A

The table below shows all possible addresses, and whether the pin(s) should be high (closed) or low (open).

ADDR	A0	A1
0x48	L	L
0x49	Н	L
0x4A	L	Н
0x4B	Н	Н

© Adafruit Industries Page 15 of 46

Reset Button

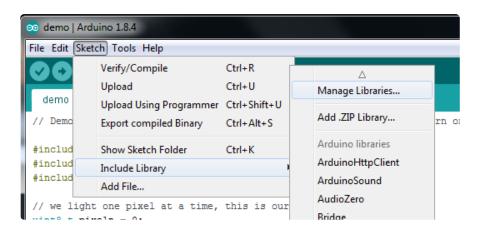
 Reset - The reset button, located in the top left corner on the FeatherWing, is connected to the reset pin. It is mounted at a right angle so that it is easier to press.

On/Off Switch

 ON/OFF - The On/Off switch, located on the left side of the FeatherWing, is connected to the EN pin. You can disconnect 3.3V power by setting the switch to OFF.

TFT Graphics Test

The TFT FeatherWing is basically a combination of our <u>2.4" TFT Breakout</u> (https://adafru.it/sjD) with the <u>STMPE610 resistive touch-screen breakout attached</u> (http://adafru.it/1571).

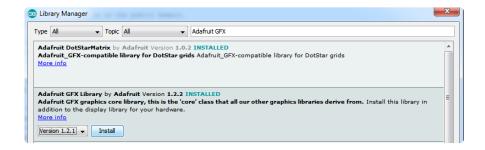

Install Libraries

You'll need a few libraries to use this FeatherWing!

Install Adafruit ILI9341 TFT Library

We have example code ready to go for use with these TFTs.

From within the Arduino IDE, open up the Library Manager...

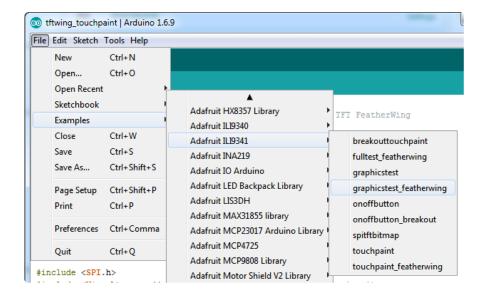

Search for ILI9341 and install the Adafruit ILI9341 library that pops up!

© Adafruit Industries Page 16 of 46

Next up, search for **Adafruit GFX** and locate the core library. A lot of libraries may pop up because we reference it in the description so just make sure you see **Adafruit GFX Library** in bold at the top.

Install it!

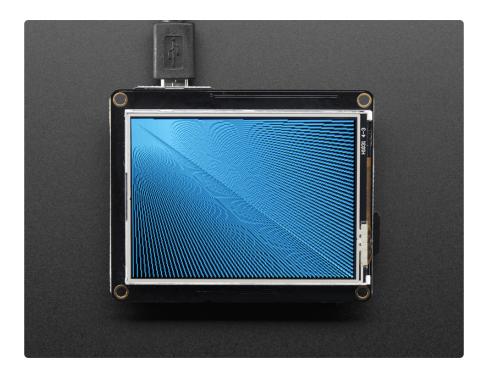
If using an earlier version of the Arduino IDE (pre-1.8.10), locate and install **Adafruit_BusIO** (newer versions handle this prerequisite automatically).

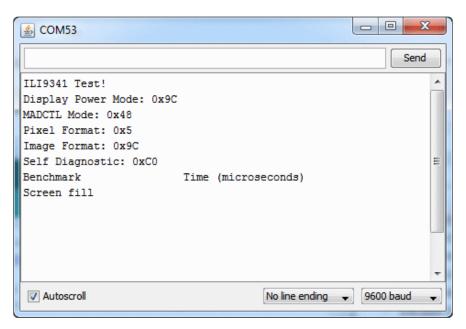

Repeat the search and install steps for the Adafruit_ImageReader library.

For more details about this process, we have a tutorial introducing Arduino library concepts and installation (https://adafru.it/aYM).

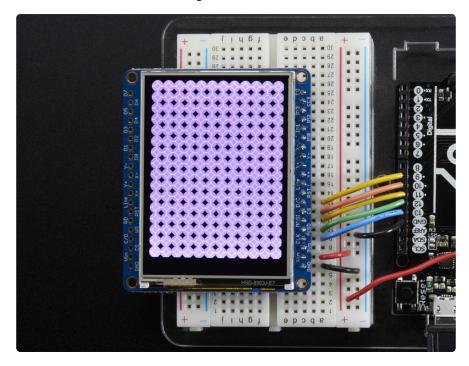
Basic Graphics Test

After installing these libraries, you should see a new **example** folder called **Adafruit_ILI9341** and inside, an example called **graphicstest_featherwing**.

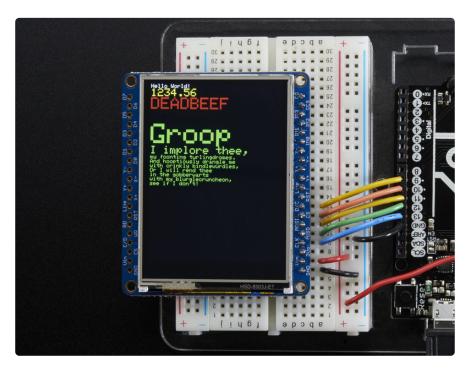

© Adafruit Industries Page 17 of 46


Upload that sketch to your Feather. You should see a collection of graphical tests draw out on the TFT.

© Adafruit Industries Page 18 of 46


If you're having difficulties, check the serial console. The first thing the sketch does is read the driver configuration from the TFT, you should see the same numbers as below. That will help you determine if the TFT is found, if not, check your Feather soldering!

Once you've got the demo working, check out the detailed documentation over at http://learn.adafruit.com/adafruit-gfx-graphics-library (https://adafru.it/aPx) for more information on how to use the GFX library to draw whatever you like!


© Adafruit Industries Page 19 of 46

Adafruit GFX Library

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics functions for all of our TFT, LCD and OLED displays. This allows Arduino sketches to easily be adapted between display types with minimal fuss...and any new features, performance improvements and bug fixes will immediately apply across our complete offering of color displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects, triangles, text, etc.

© Adafruit Industries Page 20 of 46

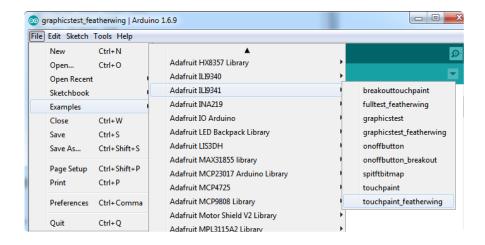
Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-graphics-library (https://adafru.it/aPx)

It covers the latest and greatest of the GFX library. The GFX library is used in both 8-bit and SPI modes so the underlying commands (drawLine() for example) are identical!

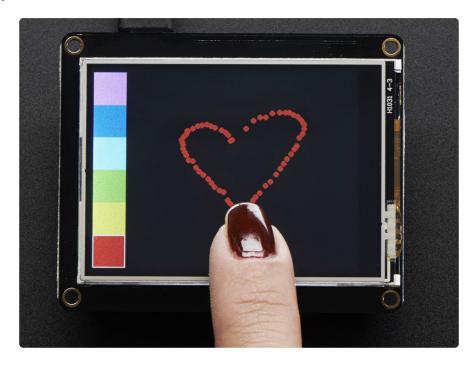
Resistive Touch Screen - V1

The LCD has a 4-wire resistive touch screen glued onto it. You can use this for detecting finger-presses, stylus', etc. Normally, you'll need 4 pins to talk to the touch panel **but** we decided to go all snazzy and put a dedicated touch screen driver onto the shield. The driver shares the SPI pins with the TFT and SD card, so only one extra pin is needed. This allows you to query the controller when you're ready to read touchscreen data, and saves 3 pins.

To control the touchscreen you'll need one more library (https://adafru.it/d4f) - the STMPE610 controller library which does all the low level chatting with the STMPE610 driver chip. Use the library manager to install the **Adafruit STMPE610** library



Touchscreen Paint Demo


Now that you've got the basic TFT graphics demo working, let's add in the touchscreen. Run and upload the **touchpaint_featherwing** demo

- If you have the 2.4" TFT Featherwing, run the Adafruit ILI9341 >touchpaint_featherwing demo
- If you have the 3.5" TFT Featherwing, run the Adafruit HX8357->touchpaint_featherwing demo

© Adafruit Industries Page 21 of 46

Upload to your Feather and have fun!

The touch screen is made of a thin glass sheet, and its very fragile - a small crack or break will make the entire touch screen unusable. Don't drop or roughly handle the TFT and be especially careful of the corners and edges. When pressing on the touchscreen, sometimes people can use the tip of their fingers, or a fingernail. If you don't find the touchscreen responds well to your fingers, you can use a rounded stylus which will certainly work. Do not press harder and harder until the screen cracks!

Getting data from the touchscreen is fairly straight forward. Start by creating the touchscreen object with

Adafruit_STMPE610 ts = Adafruit_STMPE610(STMPE_CS);

© Adafruit Industries Page 22 of 46

We're using hardware SPI so the clock, mosi and miso pins are not defined here. Then you can start the touchscreen with

```
ts.begin()
```

Check to make sure this returns a True value, which means the driver was found. If it wasn't, make sure you have the Feather soldered right and the correct CS pin!

Now you can call

```
if (! ts.bufferEmpty())
```

to check if there's any data in the buffer. The touchscreen driver will store touchpoints at all times. When you're ready to get the data, just check if there's any data in the buffer. If there is, you can call

```
TS_Point p = ts.getPoint();
```

To get the oldest point from the buffer. TS_Point has .x .y and .z data points. The x and y points range from 0 to 4095. The STMPE610 does not store any calibration data in it and it doesn't know about rotation. So if you want to rotate the screen you'll need to manually rotate the x/y points! The z point is 'pressure' and ranges from 0 to 255, we don't use it here but you can experiment with it on your own, the harder you press, the lower the number.

Since data from the STMPE610 comes in 0-4095 but our screen is 320 pixels by 240 pixels, we can use **map** to convert 0-4095 to 0-320 or 0-240. Something like

```
p.x = map(p.x, 0, 4095, 0, tft.width());
p.y = map(p.y, 0, 4095, 0, tft.height());
```

However, the touchscreen is a bit bigger than the screen, so we actually need to ignore presses beyond the touchscreen itself. We found that these numbers reflected the true range that overlaps the screen

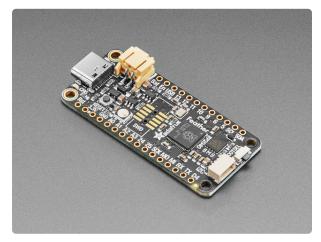
```
#define TS_MINX 150
#define TS_MINY 130
#define TS_MAXX 3800
#define TS_MAXY 4000
```

So we use

© Adafruit Industries Page 23 of 46

```
p.x = map(p.x, TS_MINX, TS_MAXX, 0, tft.width());
p.y = map(p.y, TS_MINY, TS_MAXY, 0, tft.height());
```

instead.

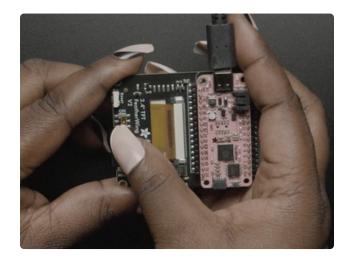

One last point (pun intended!) since the touchscreen driver stores points in a buffer, you may want to ask the driver "is the touchscreen being pressed RIGHT NOW?" You can do that with

if (ts.touched())

Resistive Touch Screen - V2

Using the 2.4" TFT FeatherWing V2 with Arduino involves plugging a Feather board into the FeatherWing. Then, you'll install the necessary libraries and upload the example code to the Feather board.

This page uses the Feather RP2040 for demonstrating Arduino usage. You can use the same concepts to get going with any Feather board.

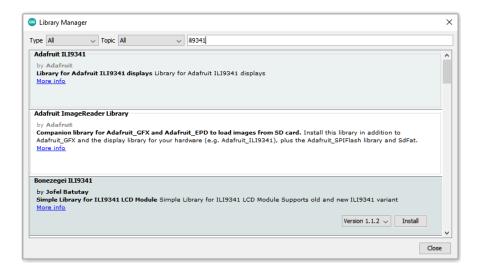

Adafruit Feather RP2040

A new chip means a new Feather, and the Raspberry Pi RP2040 is no exception. When we saw this chip we thought "this chip is going to be awesome when we give it the Feather...

https://www.adafruit.com/product/4884

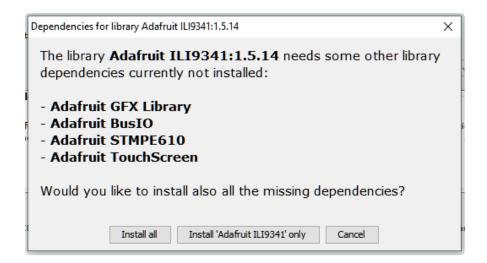
© Adafruit Industries Page 24 of 46

Hardware Setup


Plug your Feather into the FeatherWing. The bottom of the Feather will be above the FeatherWing STEMMA QT port.

Library Installation

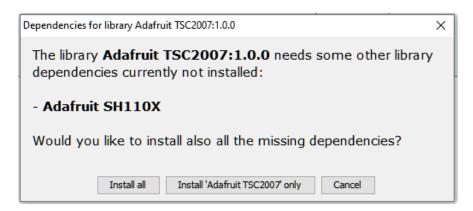
You can install the **Adafruit ILI9341** library for Arduino using the Library Manager in the Arduino IDE.



Click the **Manage Libraries...** menu item, search for **Adafruit ILI9341**, and select the **Adafruit_ILI9341** library:

If asked about dependencies, click "Install all".

© Adafruit Industries Page 25 of 46



If the "Dependencies" window does not come up, then you already have the dependencies installed.

Then you'll install the Adafruit TSC2007 library for the touch screen. Click the **Manage Libraries...** menu item, search for **Adafruit TSC2007**, and select the **Adafruit TSC2007** library:

If asked about dependencies, click "Install all".

© Adafruit Industries Page 26 of 46

If the "Dependencies" window does not come up, then you already have the dependencies installed.

If the dependencies are already installed, you must make sure you update them through the Arduino Library Manager before loading the example!

Example Code

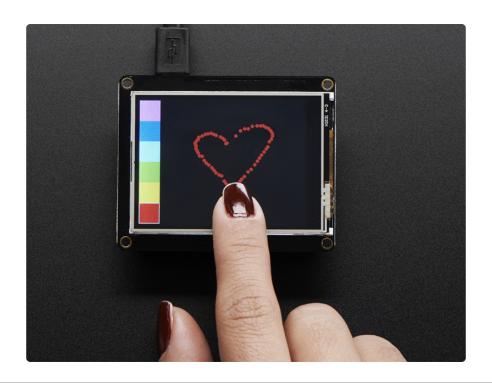
```
// SPDX-FileCopyrightText: 2023 Limor Fried/Ladyada for Adafruit Industries
// SPDX-License-Identifier: MIT
/**********************************
  This is our touchscreen painting example for the updated Adafruit
 TFT FeatherWing V2 with TSC2007
  ----> http://www.adafruit.com/products/3315
  Adafruit invests time and resources providing this open source code,
  please support Adafruit and open-source hardware by purchasing
  products from Adafruit!
 Written by Limor Fried/Ladyada for Adafruit Industries.
 MIT license, all text above must be included in any redistribution
 #include <Adafruit GFX.h>
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_ILI9341.h>
#include <Adafruit_TSC2007.h>
// This is calibration data for the raw touch data to the screen coordinates
#define TS_MINX 150
#define TS_MINY 130
#define TS_MAXX 3800
#define TS_MAXY 4000
#define TS MIN PRESSURE 200
Adafruit TSC2007 ts;
// The display also uses hardware SPI, plus #9 & #10
#define TFT_CS 9
#define TFT_DC 10
Adafruit_ILT9341 tft = Adafruit_ILT9341(TFT CS, TFT DC);
// Size of the color selection boxes and the paintbrush size
#define BOXSIZE 40
#define PENRADIUS 3
int oldcolor, currentcolor;
void setup(void) {
  Serial.begin(115200);
  // while (!Serial) delay(10);
 tft.begin();
  if (!ts.begin()) {
    Serial.println("Couldn't start touchscreen controller");
   while (1);
  Serial.println("Touchscreen started");
```

© Adafruit Industries Page 27 of 46

```
tft.fillScreen(ILI9341 BLACK);
  // make the color selection boxes
  tft.fillRect(0, 0, BOXSIZE, BOXSIZE, ILI9341 RED);
  tft.fillRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, ILI9341_YELLOW);
  tft.fillRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, ILI9341_GREEN);
  tft.fillRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, ILI9341_CYAN);
tft.fillRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, ILI9341_BLUE);
tft.fillRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, ILI9341_MAGENTA);
  // select the current color 'red'
  tft.drawRect(0, 0, BOXSIZE, BOXSIZE, ILI9341 WHITE);
  currentcolor = ILI9341 RED;
void loop(){
  uint16_t x, y, z1, z2;
  if (ts.read touch(\&x, \&y, \&z1, \&z2) \&\& (z1 > TS MIN PRESSURE)) {
    Serial.print("Touch point: (");
    Serial.print(x); Serial.print(",
    Serial.print(x), Serial.print(", ");
Serial.print(z1); Serial.print(" / ");
Serial.print(z2); Serial.println(")");
    // Scale from ~0->4000 to tft.width using the calibration #'s
    x = map(x, TS_MINX, TS_MAXX, 0, tft.width());
    y = map(y, TS_MINY, TS_MAXY, 0, tft.height());
    if (y < BOXSIZE) {
       oldcolor = currentcolor;
       if (x < BOXSIZE) {
          currentcolor = ILI9341 RED;
          tft.drawRect(0, 0, BOXSIZE, BOXSIZE, ILI9341 WHITE);
       } else if (x < BOXSIZE*2) {</pre>
          currentcolor = ILI9341 YELLOW;
          tft.drawRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, ILI9341 WHITE);
       } else if (x < BOXSIZE*3)</pre>
          currentcolor = ILI9341 GREEN;
          tft.drawRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, ILI9341 WHITE);
       } else if (x < BOXSIZE*4) {</pre>
          currentcolor = ILI9341_CYAN;
          tft.drawRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, ILI9341_WHITE);
        } else if (x < BOXSIZE*5)</pre>
          currentcolor = ILI9341 BLUE;
          tft.drawRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, ILI9341 WHITE);
        } else if (x < BOXSIZE*6)
          currentcolor = ILI9341 MAGENTA;
          tft.drawRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, ILI9341 WHITE);
       if (oldcolor != currentcolor)
           if (oldcolor == ILI9341 RED)
             tft.fillRect(0, 0, BOXSIZE, BOXSIZE, ILI9341 RED);
           if (oldcolor == ILI9341_YELLOW)
             tft.fillRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, ILI9341_YELLOW);
           if (oldcolor == ILI9341_GREEN)
             tft.fillRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, ILI9341_GREEN);
           if (oldcolor == ILI9341 CYAN)
             tft.fillRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, ILI9341_CYAN);
           if (oldcolor == ILI9341_BLUE)
             tft.fillRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, ILI9341 BLUE);
           if (oldcolor == ILI9341 MAGENTA)
             tft.fillRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, ILI9341 MAGENTA);
    if (((y-PENRADIUS) > BOXSIZE) & ((y+PENRADIUS) < tft.height())) {
```

© Adafruit Industries Page 28 of 46

```
tft.fillCircle(x, y, PENRADIUS, currentcolor);
}
}
```


```
COM54
                                                                             X
Touchscreen started
Touch point: (2606, 492, 509 / 2568)
Touch point: (2610, 492, 576 / 2417)
Touch point: (2612, 492, 582 / 2404)
Touch point: (2614, 493, 586 / 2394)
Touch point: (2617, 495, 585 / 2397)
Touch point: (2619, 496, 585 / 2401)
Touch point: (2623, 497, 587 / 2400)
Touch point: (2625, 498, 584 / 2412)
Touch point: (2627, 501, 584 / 2407)
Touch point: (2628, 502, 587 / 2407)
Touch point: (2630, 504, 583 / 2419)
Touch point: (2632, 505, 583 / 2419)
Touch point: (2633, 505, 586 / 2412)
Touch point: (2634, 506, 587 / 2409)
Touch point: (2635, 507, 590 / 2400)
Touch point: (2635, 507, 588 / 2405)
Touch point: (2636, 508, 589 / 2405)
Touch point: (2636, 508, 588 / 2415)
Touch point: (2636, 510, 582 / 2431)
Touch point: (2636, 511, 569 / 2474)
Touch point: (2635, 512, 540 / 2559)
Touch point: (2635, 516, 475 / 2764)
Touch point: (2354, 1001, 263 / 3255)
Touch point: (2208, 1946, 314 / 3448)
✓ Autoscroll Show timestamp
                                                     Newline V 115200 baud V Clear output
```

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial Monitor) at 115200 baud. In the Serial Monitor, you should see the values from the touch screen being printed out.

The first number is the X coordinate, the second number is the Y coordinate and the last two numbers are Z "pressure" coordinates that can tell you how hard the touch pad is being pressed.

On the TFT, you'll be able to doodle with the different colors on the left side of the screen.

© Adafruit Industries Page 29 of 46

Drawing Bitmaps

There is a built-in microSD card slot on the FeatherWing, and we can use that to load bitmap images! You will need a **microSD** card formatted **FAT16** or **FAT32** (they almost always are by default), and an SD card reader on whatever computer you're currently reading this with.

Its really easy to draw bitmaps. Lets start by downloading this image of pretty flowers:

Download these two smaller images as well:

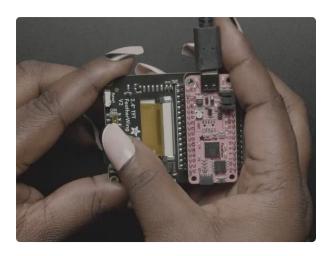
© Adafruit Industries Page 30 of 46

The files should be renamed (if needed) to "purple.bmp", "parrot.bmp" and "wales.bmp", respectively, and copied to the base directory of the microSD card (not inside a folder).

(If it's easier, you can also find these images in the "images" folder within the Adafruit_ImageReader library folder.)

Insert the microSD card into the socket in the shield. Now select the sketch file→examples→Adafruit_ImageReader→FeatherWingILI9341 and upload this example to your Feather + Wing. You will see the flowers appear! (Plus parrots...and if you're using one of the more powerful Feather boards, a whole lot of dragons.)

The Adafruit_ImageReader library, which is being used here to display .BMP images, is fully explained in its own page of the Adafruit_GFX guide (https://adafru.it/DpM).

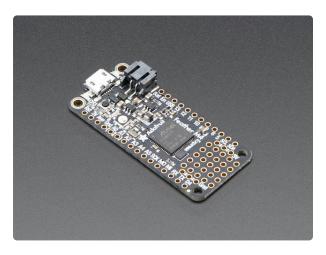

© Adafruit Industries Page 31 of 46

CircuitPython Displayio Quickstart - V1

We'll start with the 2.4" TFT FeatherWing which has an ILI9341 display on it. If you would like more information on this display, be sure to check out our Adafruit 2.4" TFT FeatherWing guide (https://adafru.it/vvE).

Parts

To use this display with displayio, you will only need two main parts. First, you will need the TFT FeatherWing itself.



TFT FeatherWing - 2.4" 320x240 Touchscreen For All Feathers

A Feather board without ambition is a Feather board without FeatherWings! Spice up your Feather project with a beautiful 2.4" touchscreen display shield with built in microSD card...

https://www.adafruit.com/product/3315

And second, you will need a Feather such as the Feather M0 Express or the Feather M4 Express. We recommend the Feather M4 Express because it's much faster and works better for driving a display.

Adafruit Feather M4 Express - Featuring ATSAMD51

It's what you've been waiting for, the Feather M4 Express featuring ATSAMD51. This Feather is fast like a swift, smart like an owl, strong like a ox-bird (it's half ox,... https://www.adafruit.com/product/3857

For this guide, we'll assume you have a Feather M4 Express. The steps should be about the same for the Feather M0 Express. To start, if you haven't already done so, follow the assembly instructions for the Feather M4 Express in our Feather M4

©Adafruit Industries Page 32 of 46

Express guide (https://adafru.it/EEm). We'll start by looking at the back of the 2.4" TFT FeatherWing.

After that, it's just a matter of inserting the Feather M4 Express into the back of the TFT FeatherWing.

Required CircuitPython Libraries

To use this display with displayio, there is only one required library.

Adafruit_CircuitPython_ILI9341

© Adafruit Industries Page 33 of 46

https://adafru.it/EGe

First, make sure you are running the <u>latest version of Adafruit CircuitPython</u> (https://adafru.it/Amd) for your board.

Next, you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great page on how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards, you'll need to manually install the necessary libraries from the bundle:

adafruit ili9341

Before continuing make sure your board's lib folder or root filesystem has the adafruit_ili9341 file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of a library so the code didn't get overly complicated.

Adafruit_CircuitPython_Display_Text

https://adafru.it/FiA

Go ahead and install this in the same manner as the driver library by copying the adafruit_display_text folder over to the lib folder on your CircuitPython device.

CircuitPython Code Example

```
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

This test will initialize the display using displayio and draw a solid green background, a smaller purple rectangle, and some yellow text. All drawing is done using native displayio modules.

Pinouts are for the 2.4" TFT FeatherWing or Breakout with a Feather M4 or M0.

"""
import board
import terminalio
import displayio
```

©Adafruit Industries Page 34 of 46

```
from adafruit display text import label
import adafruit ili9341
# Support both 8.x.x and 9.x.x. Change when 8.x.x is discontinued as a stable
    from fourwire import FourWire
except ImportError:
    from displayio import FourWire
# Release any resources currently in use for the displays
displayio.release_displays()
spi = board.SPI()
tft_cs = board.D9
tft dc = board.D10
display_bus = FourWire(spi, command=tft_dc, chip_select=tft_cs, reset=board.D6)
display = adafruit_ili9341.ILI9341(display_bus, width=320, height=240)
# Make the display context
splash = displayio.Group()
display.root_group = splash
# Draw a green background
color bitmap = displayio.Bitmap(320, 240, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0x00FF00 # Bright Green
bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)
splash.append(bg_sprite)
# Draw a smaller inner rectangle
inner bitmap = displayio.Bitmap(280, 200, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0xAA0088 # Purple
inner_sprite = displayio.TileGrid(inner_bitmap, pixel shader=inner palette, x=20,
y = 20)
splash.append(inner sprite)
# Draw a label
text group = displayio.Group(scale=3, x=57, y=120)
text = "Hello World!"
text area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)
text group.append(text area) # Subgroup for text scaling
splash.append(text group)
while True:
    pass
```

Code Details

Let's take a look at the sections of code one by one. We start by importing the board so that we can initialize <code>SPI</code>, <code>displayio</code>, <code>terminalio</code> for the font, a <code>label</code>, and the <code>adafruit_ili9341</code> driver.

```
import board
import displayio
import fourwire
import terminalio
```

© Adafruit Industries Page 35 of 46

```
from adafruit_display_text import label
import adafruit_ili9341
```

Next we release any previously used displays. This is important because if the Feather is reset, the display pins are not automatically released and this makes them available for use again.

```
displayio.release_displays()
```

Next, we set the SPI object to the board's SPI with the easy shortcut function board.SPI(). By using this function, it finds the SPI module and initializes using the default SPI parameters. Next we set the Chip Select and Data/Command pins that will be used.

```
spi = board.SPI()
tft_cs = board.D9
tft_dc = board.D10
```

In the next line, we set the display bus to FourWire which makes use of the SPI bus. The reset parameter is actually not needed for the FeatherWing, but was added to make it compatible with the breakout displays. You can either leave it or remove it if you need access to an additional GPIO pin.

```
display_bus = fourwire.FourWire(spi, command=tft_dc, chip_select=tft_cs,
reset=board.D6)
```

Finally, we initialize the driver with a width of 320 and a height of 240. If we stopped at this point and ran the code, we would have a terminal that we could type at and have the screen update.

```
display = adafruit_ili9341.ILI9341(display_bus, width=320, height=240)
```

© Adafruit Industries Page 36 of 46

Next we create a background splash image. We do this by creating a group that we can add elements to and adding that group to the display. The display will automatically handle updating the group.

```
splash = displayio.Group()
display.root_group = splash
```

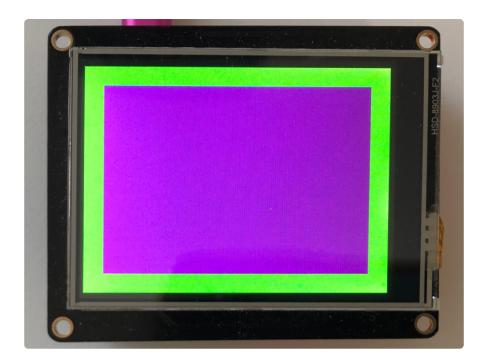
Next we create a Bitmap which is like a canvas that we can draw on. In this case we are creating the Bitmap to be the same size as the screen, but only have one color. The Bitmaps can currently handle up to 256 different colors. We create a Palette with one color and set that color to 0x00FF00 which happens to be green. Colors are Hexadecimal values in the format of RRGGBB. Even though the Bitmaps can only handle 256 colors at a time, you get to define what those 256 different colors are.

```
color_bitmap = displayio.Bitmap(320, 240, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0x00FF00 # Bright Green
```

With all those pieces in place, we create a TileGrid by passing the bitmap and palette and draw it at (0, 0) which represents the display's upper left.

This creates a solid green background which we will draw on top of.

©Adafruit Industries Page 37 of 46



Next we will create a smaller purple rectangle. The easiest way to do this is the create a new bitmap that is a little smaller than the full screen with a single color and place it in a specific location. In this case we will create a bitmap that is 20 pixels smaller on each side. The screen is 320x240, so we'll want to subtract 40 from each of those numbers.

We'll also want to place it at the position (20, 20) so that it ends up centered.

Since we are adding this after the first rectangle, it's automatically drawn on top. Here's what it looks like now.

© Adafruit Industries Page 38 of 46

Next let's add a label that says "Hello World!" on top of that. We're going to use the built-in Terminal Font and scale it up by a factor of three. To scale the label only, we will make use of a subgroup, which we will then add to the main group.

Labels are centered vertically, so we'll place it at 120 for the Y coordinate, and around 57 pixels make it appear to be centered horizontally, but if you want to change the text, change this to whatever looks good to you. Let's go with some yellow text, so we'll pass it a value of <code>0xffff00</code>.

```
text_group = displayio.Group(scale=3, x=57, y=120)
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)
text_group.append(text_area) # Subgroup for text scaling
splash.append(text_group)
```

Finally, we place an infinite loop at the end so that the graphics screen remains in place and isn't replaced by a terminal.

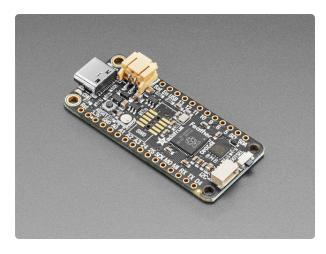
```
while True:
pass
```

© Adafruit Industries Page 39 of 46

Using Touch

We won't be covering how to use the touchscreen on the shield with CircuitPython in this guide, but the library required for enabling resistive touch is the Adafruit_CircuitPython_STMPE610 (https://adafru.it/Fsz) library.

Where to go from here

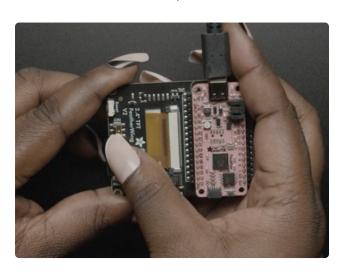

Be sure to check out this excellent guide to CircuitPython Display Support Using displayio (https://adafru.it/EGh)

CircuitPython Displayio Quickstart - V2

Using the 2.4" TFT FeatherWing V2 with CircuitPython involves plugging a Feather board into the FeatherWing. Then, you load the code and necessary libraries onto your Feather board to run the example.

This page uses the Feather RP2040 for demonstrating CircuitPython usage. You can use the same concepts to get going with any classic Feather board.

© Adafruit Industries Page 40 of 46



Adafruit Feather RP2040

A new chip means a new Feather, and the Raspberry Pi RP2040 is no exception. When we saw this chip we thought "this chip is going to be awesome when we give it the Feather...

https://www.adafruit.com/product/4884

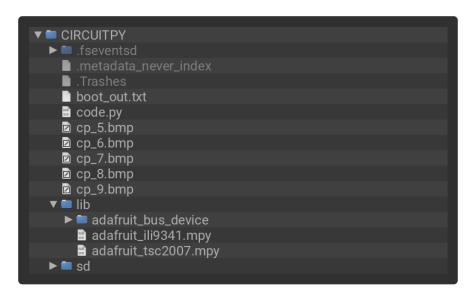
Hardware Setup

Plug your Feather into the FeatherWing. The bottom of the Feather will be above the FeatherWing STEMMA QT port.

CircuitPython Usage

To use with CircuitPython, you need to first install the necessary libraries, and their dependencies, into the **lib** folder on your **CIRCUITPY** drive. Then you need to update **code.py** with the example script.

Thankfully, we can do this in one go. In the example below, click the **Download Project Bundle** button below to download the necessary libraries and the **code.py** file in a zip file. Extract the contents of the zip file.


Connect the microcontroller to your computer via a known-good USB power+data cable. The board shows up as a thumb drive named CIRCUITPY. Copy the entire lib folder, the bitmap image files, and the code.py file to your CIRCUITPY drive.

© Adafruit Industries Page 41 of 46

Your CIRCUITPY/lib folder should contain the following folder and files:

- /adafruit_bus_device
- adafruit_ili9341.mpy
- adafruit_tsc2007.mpy

Once you have copied over the necessary folders and files, your **CIRCUITPY** drive should resemble the following:

Example Code

```
# SPDX-FileCopyrightText: 2023 Liz Clark for Adafruit Industries
# SPDX-License-Identifier: MIT
This test will initialize the display using displayio and display
a bitmap image. The image advances when the touch screen is touched.
Pinouts are for the 2.4" TFT FeatherWing V2
import os
import board
import displayio
import adafruit_ili9341
import adafruit tsc2007
# Release any resources currently in use for the displays
displayio.release displays()
# Use Hardware SPI
spi = board.SPI()
tft cs = board.D9
tft^-dc = board.D10
display width = 320
display height = 240
```

©Adafruit Industries Page 42 of 46

```
display bus = displayio.FourWire(spi, command=tft dc, chip select=tft cs)
display = adafruit ili9341.ILI9341(display bus, width=display width,
height=display height)
i2c = board.STEMMA I2C()
irq dio = None
tsc = adafruit tsc2007.TSC2007(i2c, irq=irq dio)
groups = []
images = []
for filename in os.listdir('/'):
    if filename.lower().endswith('.bmp') and not filename.startswith('.'):
        images.append("/"+filename)
print(images)
for i in range(len(images)):
    splash = displayio.Group()
    bitmap = displayio.OnDiskBitmap(images[i])
    tile grid = displayio.TileGrid(bitmap, pixel shader=bitmap.pixel shader)
    splash.append(tile grid)
    groups.append(splash)
index = 0
touch state = False
display.root_group = groups[index]
while True:
    if tsc.touched and not touch_state:
        point = tsc.touch
        print("Touchpoint: (%d, %d, %d)" % (point["x"], point["y"],
point["pressure"]))
        # left side of the screen
        if point["y"] < 2000:
            index = (index - 1) % len(images)
            display.root_group = groups[index]
        # right side of the screen
        else:
            index = (index + 1) % len(images)
            display.root_group = groups[index]
        touch state = True
    if not tsc.touched and touch state:
        touch state = False
```

Once everything is saved to the **CIRCUITPY** drive, connect to the serial console (https://adafru.it/Bec) to see the data printed out!

```
CircuitPython REPL

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable. code.py output:
['/cp_9.bmp', '/cp_5.bmp', '/cp_6.bmp', '/cp_7.bmp', '/cp_8.bmp']

Touchpoint: (1994, 1119, 427)

Touchpoint: (1284, 3229, 293)

Touchpoint: (1933, 1804, 622)

Touchpoint: (1827, 1425, 418)

Touchpoint: (1785, 1339, 361)

Touchpoint: (1790, 1624, 471)

Touchpoint: (1622, 1808, 399)

Touchpoint: (1677, 1856, 544)

Touchpoint: (2113, 1997, 590)
```

The code will open all of the bitmap files that are on the **CIRCUITPY** drive and add them to the **images** array. The first image will then be displayed on the TFT. In the

© Adafruit Industries Page 43 of 46

loop, if you touch the screen you'll see the coordinates and pressure print to the serial console.

If you press on the left side of the screen, the display will show the previous bitmap in the array. If you press on the right side of the screen, the display will show the next bitmap in the array.

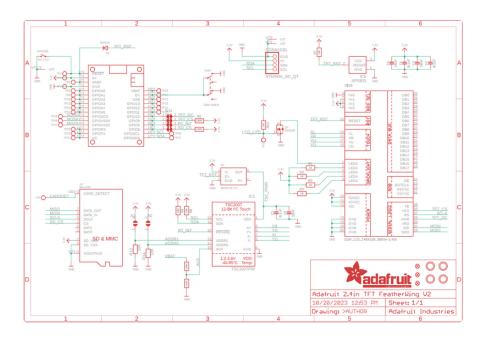
Troubleshooting

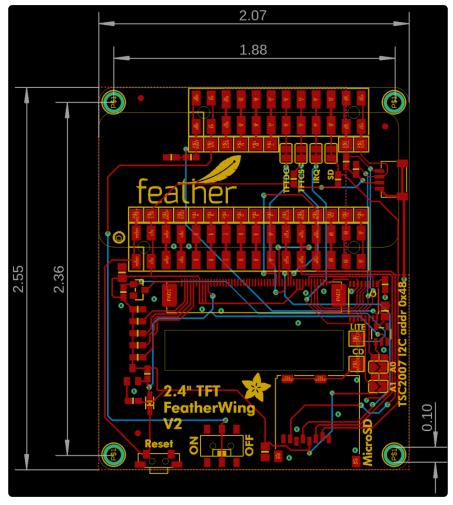
Display does not work on initial power but does work after a reset.

The display driver circuit needs a small amount of time to be ready after initial power. If your code tries to write to the display too soon, it may not be ready. It will work on reset since that typically does not cycle power. If you are having this issue, try adding a small amount of delay before trying to write to the display.

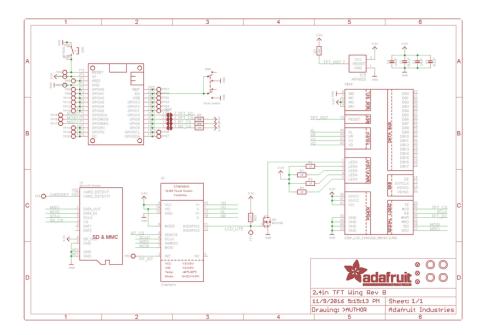
In Arduino, use **delay()** to add a few milliseconds before calling **tft.begin()**. Adjust the amount of delay as needed to see how little you can get away with for your specific setup.

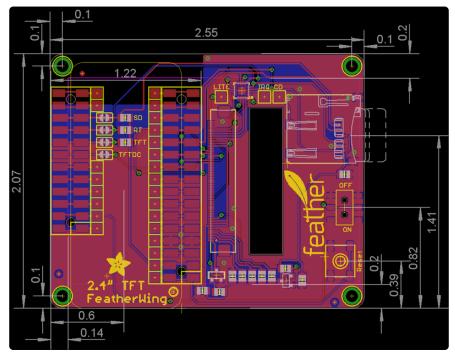
Downloads


Datasheets & More


- V1 Fritzing object in Adafruit Fritzing Library (https://adafru.it/19Di)
- V2 Fritzing object in Adafruit Fritzing Library (https://adafru.it/19Dk)
- STMPE610 Touch Controller Datasheet (https://adafru.it/d4k)
- TSC2007 Touch Controller Datasheet (https://adafru.it/Zic)
- ILI9341 (TFT controller) Datasheet (https://adafru.it/d4l)
- Datasheet for TFT module itself (https://adafru.it/zAj)
- EagleCAD PCB files on GitHub (https://adafru.it/ska)
- 3D Models on GitHub (https://adafru.it/Z1A)

© Adafruit Industries Page 44 of 46


Schematic and Fab Print


V2

© Adafruit Industries Page 45 of 46

© Adafruit Industries Page 46 of 46