
 

 

 

 
 

 
 

71M6531/71M6533/71M6534 
Energy Meter IC Family 

 

SOFTWARE USER’S GUIDE 
 

5/8/2008  
 

 

 

 

TERIDIAN Semiconductor Corporation 
6440 Oak Canyon Rd., Suite 100 

Irvine, CA 92618-5201 

Ph: (714) 508-8800 ▪ Fax: (714) 508-8878 

Meter.support@teridian.com 

http://www.teridian.com/ 

 

 

 

 

 

 

http://www.teridian.com/


  71M653X Software User’s Guide 

 

v1.1 TERIDIAN Proprietary 2 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

TERIDIAN Semiconductor Corporation makes no warranty for the use of its products, other than expressly contained in the 
Company’s warranty detailed in the TERIDIAN Semiconductor Corporation standard Terms and Conditions. The company assumes 
no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed 
herein at any time without notice and does not make any commitment to update the information contained herein. 



71M653X Software User’s Guide  

v1.1 TERIDIAN Proprietary 3 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

71M653X 
Energy Meter IC FAMILY 

 
 

SOFTWARE USER’S GUIDE 
 

 

 

 

 

 

 

 

 

 



 71M653X Software User’s Guide 

 
Table of Contents
1  INTRODUCTION............................................................................................................................ 11 

1.1  Using this Document .............................................................................................................. 11 
1.2  Related Documentation ......................................................................................................... 12 
1.3  Compatibility Statement ......................................................................................................... 12 

2  DESIGN GUIDE ............................................................................................................................. 13 
2.1  Hardware Requirements ........................................................................................................ 13 
2.2  Software Requirements ......................................................................................................... 13 
2.3  Software Architecture ............................................................................................................ 14 
2.4  Utilities ..................................................................................................................................... 15 
2.4.1  D_MERGE ............................................................................................................................. 15 
2.4.2  CE_MERGE ........................................................................................................................... 15 
2.4.3  BANK_MERGE ...................................................................................................................... 16 

3  DESIGN REFERENCE .................................................................................................................. 17 
3.1  Program Memory .................................................................................................................... 17 
3.2  Data Memory ........................................................................................................................... 17 
3.3  Programming the 71M653X Chips ........................................................................................ 18 
3.4  Debugging of the 71M653X Chips ......................................................................................... 18 
3.5  Test Tools ................................................................................................................................ 18 
3.5.1  Running the 653X_Demo.hex Program.................................................................................. 19 
3.5.2  CLI Commands ...................................................................................................................... 20 
3.5.3  Command (Macro) Files ......................................................................................................... 20 

4  TOOL INSTALLATION GUIDE ..................................................................................................... 21 
4.1  Installing the Programs for the ADM51 Emulator ............................................................... 21 
4.2  Installing the Wemu Program (Chameleon Debugger) ....................................................... 21 
4.3  Installing the ADM51 USB Driver .......................................................................................... 22 
4.4  Installing Updates to the Emulator Program and Hardware .............................................. 23 
4.5  Creating a Project ................................................................................................................... 24 
4.6  Installing the Keil Compiler ................................................................................................... 27 
4.7  Creating a Project for the Keil Compiler .............................................................................. 28 
4.7.1  Directory Structure ................................................................................................................. 28 
4.7.2  Adjusting the Keil Compiler Settings ...................................................................................... 29 
4.7.3  Manually Controlling the Keil Compiler Settings ..................................................................... 30 
4.8  Output File Format .................................................................................................................. 32 
4.8.1  Basic Intel Hex Format ........................................................................................................... 33 
4.8.2  Intel Hex386 File Format ........................................................................................................ 34 
4.9  Writing Bank-Switched Code ................................................................................................ 35 
4.9.1  Hardware Overview ................................................................................................................ 35 
4.9.2  Software Overview ................................................................................................................. 35 
4.9.3  Software Tool Versions .......................................................................................................... 36 

v1.1v1.1 TERIDIAN Proprietary 4 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

4.9.4  Setup of the Compiler Project ................................................................................................ 36 
4.9.5  Startup ................................................................................................................................... 37 
4.9.6  Bank-Switching Code ............................................................................................................. 37 
4.9.7  Page Table Setup and Debug ................................................................................................ 37 
4.9.8  Producing a Banked Hex File ................................................................................................. 39 
4.9.9  Placing Interrupts in Banked Code ......................................................................................... 39 
4.9.10  Calling Banked Functions via Function Pointers .................................................................... 39 
4.9.11  Putting Constants in Banks .................................................................................................... 40 
4.9.12  Write-Protecting Flash in the 653X ......................................................................................... 40 
4.10  Project Management Tools .................................................................................................... 41 
4.11  Alternative Compilers ............................................................................................................. 41 
4.12  Alternative Editors .................................................................................................................. 41 
4.13  Alternative Linkers ................................................................................................................. 42 

5  Demo Code Description .............................................................................................................. 43 
5.1  80515 Data Types and Compiler-Specific Information ....................................................... 43 
5.1.1  Data Types ............................................................................................................................. 43 
5.1.2  Compiler-Specific Information ................................................................................................ 46 
5.2  Demo Code Options and Program Size................................................................................ 47 
5.3  Program Flow .......................................................................................................................... 51 
5.3.1  Startup and Initialization ......................................................................................................... 52 
5.4  Basic Code Architecture ........................................................................................................ 52 
5.4.1  Initialization ............................................................................................................................ 53 
5.4.2  Interrupts ................................................................................................................................ 53 

5.4.2.1  Pulse Counting Interrupts ................................................................................................ 54 
5.4.2.2  FWCOL0 and FWCOL1 ................................................................................................... 55 
5.4.2.3  CE_BUSY Interrupt .......................................................................................................... 55 
5.4.2.4  PLL_ISR ........................................................................................................................... 55 
5.4.2.5  EEPROM Isr ..................................................................................................................... 56 
5.4.2.6  Timer Interrupt .................................................................................................................. 56 
5.4.2.7  The XFER_BUSY, RTC and NEAR_OVERFLOW Interrupt ............................................ 56 
5.4.2.8  SERIAL Interrupt .............................................................................................................. 57 

5.4.3  Background Tasks ................................................................................................................. 57 
5.4.3.1  meter_run() ...................................................................................................................... 57 
5.4.3.2  Command Line Interpreter (CLI) ...................................................................................... 58 
5.4.3.3  Auto-Calibration ............................................................................................................... 58 
5.4.3.4  EEPROM Read/Write ...................................................................................................... 61 
5.4.3.5  Battery Test ...................................................................................................................... 61 
5.4.3.6  Power Factor Measurement............................................................................................. 61 

5.4.4  Watchdog Timer ..................................................................................................................... 62 
5.4.5  Real-Time Clock (RTC) .......................................................................................................... 62 
5.5  Managing Mission and Battery Modes ................................................................................. 62 
5.6  Data Flow ................................................................................................................................. 63 
5.7  CE/MPU Interface .................................................................................................................... 64 

v1.1v1.1 TERIDIAN Proprietary 5 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

5.8  Boot Loader ............................................................................................................................. 64 
5.9  Source Files ............................................................................................................................ 64 
5.10  Auxiliary Files.......................................................................................................................... 66 
5.11  Include/Header Files ............................................................................................................... 66 
5.11.1  OPTIONS.H ........................................................................................................................... 66 
5.11.2  Register Definitions ................................................................................................................ 67 
5.11.3  Other Include/Header Files .................................................................................................... 67 
5.12  CE Image Files ........................................................................................................................ 68 
5.13  Common MPU Addresses ...................................................................................................... 69 
5.14  Firmware Application Information ........................................................................................ 77 
5.14.1  General Design Considerations ............................................................................................. 77 

5.14.1.1  Multitasking ................................................................................................................... 77 
5.14.1.2  Synchronization ............................................................................................................ 77 
5.14.1.3  Bank Switching ............................................................................................................. 77 
5.14.1.4  Economic Usage of RAM.............................................................................................. 78 
5.14.1.5  Trading Space for Speed .............................................................................................. 78 
5.14.1.6  Object-Oriented Design ................................................................................................ 78 
5.14.1.7  Reconfiguring “Glue Logic” ........................................................................................... 79 
5.14.1.8  DSP Operations ............................................................................................................ 79 
5.14.1.9  Coping with Various Current Sensors .......................................................................... 79 
5.14.1.10 User Interface ............................................................................................................... 79 
5.14.1.11 Operating without User Interface .................................................................................. 79 
5.14.1.12 Communication with a Computer ................................................................................. 79 
5.14.1.13 Support of Automatic Meter Reading ........................................................................... 79 
5.14.1.14 Communication between MPU and CE ........................................................................ 80 
5.14.1.15 Timing Control .............................................................................................................. 80 
5.14.1.16 6531: Calculation of max(VA*IA, VA*IB) Option, Equation 0 ....................................... 80 
5.14.1.17 6534: Calculation of VA*IA+VB*IB+VC*IC Option, Equation 5 .................................... 81 
5.14.1.18 How Register Data is Stored ........................................................................................ 82 
5.14.1.19 Managing Power Failures ............................................................................................. 83 
5.14.1.20 Pulse Counting ............................................................................................................. 83 
5.14.1.21 Battery Modes ............................................................................................................... 83 
5.14.1.22 Real-Time Performance................................................................................................ 83 

5.14.2  Firmware Application: Selected Tasks ................................................................................... 84 
5.14.2.1  Sag Detection ............................................................................................................... 84 
5.14.2.2  Temperature Measurement .......................................................................................... 84 
5.14.2.3  Temperature Compensation for Measurements ........................................................... 85 
5.14.2.4  Temperature Compensation for the RTC ..................................................................... 85 
5.14.2.5  Validating the Battery .................................................................................................... 86 

5.15  Alphabetical Function Reference .......................................................................................... 87 
5.16  Errata ........................................................................................................................................ 98 
5.17  Porting 71M6511/6513 Code to the 71M653x ....................................................................... 99 

v1.1v1.1 TERIDIAN Proprietary 6 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

v1.1v1.1 TERIDIAN Proprietary 7 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 

5.17.1  Flash Use ............................................................................................................................... 99 
5.17.2  Extra RAM .............................................................................................................................. 99 
5.17.3  CE Data Location is at XDATA 0x0000 .................................................................................. 99 
5.17.4  CE Data Access is Transparent to the MPU .......................................................................... 99 
5.17.5  Read-only areas in MPU RAM ............................................................................................... 99 
5.17.6  CE Code Location .................................................................................................................. 99 
5.17.7  CE Causes Flash Write-Protection ......................................................................................... 99 
5.17.8  Watchdog Location .............................................................................................................. 100 
5.17.9  Software Watchdog Now Deprecated .................................................................................. 100 
5.17.10  Real Time Clock Compensation ........................................................................................... 100 
5.17.11  Battery Modes ...................................................................................................................... 100 
5.18  Porting 71M6521 Code to the 71M653x .............................................................................. 101 
5.18.1  Flash Use ............................................................................................................................. 101 
5.18.2  Extra RAM ............................................................................................................................ 101 
5.18.3  CE Data Location is at XDATA 0x0000 ................................................................................ 102 
5.18.4  CE Data Access is Transparent to the MPU ........................................................................ 102 
5.18.5  Read-only areas in MPU RAM ............................................................................................. 102 
5.18.6  CE Code Location ................................................................................................................ 102 
5.18.7  CE Causes Flash Write-Protection ....................................................................................... 102 
5.18.8  Watchdog Location .............................................................................................................. 102 
5.18.9  Software Watchdog Now Deprecated .................................................................................. 102 
5.18.10  Real Time Clock Compensation ........................................................................................... 103 
5.18.11  Battery Modes ...................................................................................................................... 103 
5.18.12  Watchdog Reset .................................................................................................................. 103 
5.18.13  Temperature Compensation ................................................................................................ 103 

6  80515 MPU REFERENCE ........................................................................................................... 105 
6.1  The 80515 Instruction Set .................................................................................................... 105 
6.1.1  Instructions Ordered by Function ......................................................................................... 106 
6.1.2  Instructions Ordered by Opcode (Hexadecimal) .................................................................. 110 
6.1.3  Instructions that Affect Flags ................................................................................................ 113 

7  Appendix ..................................................................................................................................... 115 
7.1  Acronyms .............................................................................................................................. 115 
7.2  Revision History ................................................................................................................... 116 

 



 71M653X Software User’s Guide 

List of Figures
Figure 2-1: Software Structure ....................................................................................................................................... 14 
Figure 3-1: Port Speed and Handshake Setup ............................................................................................................... 19 
Figure 4-1, Setup of Keil Compiler for bank-switched code ............................................................................................ 36 
Figure 4-2, Selecting a Bank for a File Group in Keil C .................................................................................................. 37 
Figure 4-3, Setting Keil’s Linker for Bank-switched Code ............................................................................................... 38 
Figure 5-1: Sag and Dip Conditions ............................................................................................................................... 84 
Figure 5-2: Sag Event .................................................................................................................................................... 84 
Figure 5-3: Crystal Frequency over Temperature........................................................................................................... 85 
Figure 5-4: Crystal Compensation .................................................................................................................................. 86 
Figure 5-5, State Diagram of Operating Modes ............................................................................................................ 101 

List of Tables
Table 3-1: Memory Map ................................................................................................................................................. 17 
Table 4-1: Code Bank Memory Addresses and Availability ............................................................................................ 35 
Table 5-1: Internal Data Memory Map ............................................................................................................................ 43 
Table 5-2: Internal Data Types ....................................................................................................................................... 46 
Table 5-3: Demo Code Versions .................................................................................................................................... 47 
Table 5-4: Current Sensing Options ............................................................................................................................... 47 
Table 5-5: Compensation Features ................................................................................................................................ 48 
Table 5-6: Power Registers and Pulse Output Features ................................................................................................ 49 
Table 5-7: Creep Functions ............................................................................................................................................ 50 
Table 5-8: Operating Modes ........................................................................................................................................... 50 
Table 5-9: Calibration and Various Services .................................................................................................................. 51 
Table 5-10: Interrupt Service Routines ........................................................................................................................... 53 
Table 5-11: Interrupt Priority Assignment ....................................................................................................................... 54 
Table 5-12: MPU Memory Locations .............................................................................................................................. 74 
Table 5-13: MPU Status Bits .......................................................................................................................................... 76 
Table 5-14: Frequency over Temperature ...................................................................................................................... 85 
Table 6-7: Notes on Data Addressing Modes ............................................................................................................... 105 
Table 6-8: Notes on Program Addressing Modes ........................................................................................................ 105 
Table 6-9: Arithmetic Operations .................................................................................................................................. 106 
Table 6-10: Logic Operations ....................................................................................................................................... 107 
Table 6-11: Data Transfer Operations .......................................................................................................................... 108 
Table 6-12: Program Branches .................................................................................................................................... 109 
Table 6-13: Boolean Manipulations .............................................................................................................................. 109 
Table 6-14: Instruction Set in Hexadecimal Order ........................................................................................................ 110 
Table 6-15: Instruction Set in Hexadecimal Order ........................................................................................................ 111 
Table 6-16: Instruction Set in Hexadecimal Order ........................................................................................................ 112 
Table 6-17: Instructions Affecting Flags ....................................................................................................................... 113 

v1.1v1.1 TERIDIAN Proprietary 8 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

LIMITED USE LICENSE AGREEMENT 
 

Acceptance: By using the Application Programming Interface and / or other software described in this document 
(“Licensed Software”) and provided by TERIDIAN Semiconductor Corporation (“TSC”), the recipient of the software 
(“Licensee”) accepts, and agrees to be bound by the terms and conditions hereof. 

Acknowledgment: The Licensed Software has been developed for use specifically and exclusively in conjunction with 
TSC’s meter products: 71M6531, 71M6534, and 71M653xB. Licensee acknowledges that the Licensed Software was 
not designed for use with, nor has it been checked for performance with, any other devices. 

Title: Title to the Licensed Software and related documentation remains with TSC and its licensors. Nothing contained 
in this Agreement shall be construed as transferring any right, title, or interest in the Licensed Software to Licensee 
except as expressly set forth herein. TSC expressly disclaims liability for any patent infringement claims based upon 
use of the Licensed Software either solely or in conjunction with third party software or hardware. 

Licensee shall not make nor to permit the making of copies of the Licensed Software (including its documentation) 
except as authorized by this License Agreement or otherwise authorized in writing by TSC. Licensee further agrees not 
to engage in, nor to permit the recompilation, disassembly, or other reverse engineering of the Licensed Software. 

License Grant: TSC grants Licensee a limited, non-exclusive, non-sub licensable, non-assignable and non-trans-
ferable license to use the software solely in conjunction with the meter devices manufactured and sold by TSC. 

Non-disclosure and confidentiality: For the purpose of this Agreement, “Confidential Information” shall mean the 
Licensed Software and related documentation and information received by Licensee from TSC. All Confidential 
Information shall be maintained in confidence by Licensee and shall not be disclosed to any third party and shall be 
protected with the same degree of care as the Licensee normally uses in the protection of its own confidential 
information, but in no case with any less degree than reasonable care. Licensee further agrees not to use any 
Confidential Information received from TSC except as contemplated by the license granted herein. 

Disclaimer of Warranty: TSC makes no representations or warranties, express or implied, regarding the Licensed 
Software, including any implied warranty of title, no infringement, merchantability, or fitness for a particular purpose, 
regardless of whether TSC knows or has reason to know Licensee’s particular needs. TSC does not warrant that the 
functions of the Licensed Software will be free from error or will meet Licensee’s requirements. TSC shall have no 
responsibility or liability for errors or product malfunction resulting from Licensee’s use and/or modification of the 
Licensed Software.  

Limitation of Damages/Liability: IN NO EVENT WILL TSC NOR ITS VENDORS OR AGENTS BE LIABLE TO 
LICENSEE FOR INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH, 
OR ARISING OUT OF, THIS LICENSE AGREEMENT OR USE OF THE LICENSED SOFTWARE.  

Export: Licensee shall adhere to the U.S. Export Administration Laws and Regulations (“EAR”) and shall not export or 
re-export any technical data or products received from TSC or the direct product of such technical data to any 
proscribed country listed in the EAR unless properly authorized by the U.S. Government. 

Termination: TSC shall have the right to terminate the license granted herein in the event Licensee fails to cure any 
material breach within thirty (30) days from receipt of notice from TSC. Upon termination, Licensee shall return or, at 
TSC’s option certify destruction of, all copies of the Licensed Software in its possession. 

Law: This Agreement shall be construed in accordance with the laws of the State of California. The Courts located in 
Orange County, CA shall have exclusive jurisdiction over any legal action between TSC and Licensee arising out of this 
License Agreement. 

Integration: This License Agreement constitutes the entire agreement of the parties as to the subject matter hereof. 
No modification of the terms hereof shall be binding unless approved in writing by TSC. 

v1.1v1.1 TERIDIAN Proprietary 9 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

v1.1v1.1 TERIDIAN Proprietary 10 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

1
 

 

 

 1  INTRODUCTION 
TERIDIAN Semiconductor Corporation’s (TSC) 71M653X single chip Energy Meter Controllers are a family of Systems-
on-Chip that supports all the functionalities required to build energy meters. Demo Boards are available for each chip 
(71M6531, 71M6532, 71M6533, 71M6534) to allow development of embedded applications, in conjunction with an In-
Circuit Emulator.  

Development of a 71M653X application can be started in either 80515 assembly language, or preferably in C using the 
Demo Boards. TSC provides, along with the 71M653X Demo Boards, a development toolkit that includes a 
demonstration program (“Demo Code”) written in ANSI C that controls all features present on the Demo Boards. This 
Demo Code includes functions to manage the low level 80515 core such as memory, clock, power modes, interrupts; 
and high level functions such as the LCD, Real Time Clock, Serial interfaces and I/Os. The use of Demo Code portions 
will help reduce development time dramatically, since they allow the developer to focus on developing the application 
without dealing with the low-level layer such as hardware control, timing, etc. This document describes the different 
software layers and how to use them. 

The Demo Code should allow customers to evaluate various resources of the 653X ICs but should not be 
regarded as production code. The Demo Code and all its components, with the exception of the CE code, are 
only example code and the use of it is “as is” and without implied guarantees. Customers may use the Demo 
Code as a starting point at any given released revision level but should keep themselves informed about 
subsequent revisions of the Demo Code. Demo Code revisions may not be directly compatible with previously 
released revisions and/or embedded software used by customers. Customers need to adapt the Demo Code or 
other example code supplied by TERIDIAN Application Engineering to their own code base, and in this context 
TERIDIAN Semiconductor can only provide indirect assistance and support. 

This Software User’s Guide provides information on the following separate subjects: 

• General software architecture and minimum requirements (Design Guide) 

• Memory model, programming, test tools (Design Reference) 

• Demo code structure, data flow, functions (Demo Code Description) 

• Installing and using the EEP, compiler, ICE (Tool Installation Guide) 

• Understanding and using the 80515 micro controller (80515 Reference) 

 1.1  USING THIS DOCUMENT 
The reader should have a basic familiarity with microprocessors, particularly the 80515 architecture, firmware, software 
development and power meter applications. Prior experience with, or knowledge of, the applicable ANSI and/or IEC 
standards will also be helpful. 

This document presents the features included in the 71M653X Demo Boards in terms of software and some hardware. 
To get the most out of this document, the reader should also have available other 71M653X publications such as the 
71M653X Demo Board User’s Manual, respective data-sheets, errata list and application notes for additional details 
and recent developments. 

v1.1v1.1 TERIDIAN Proprietary 11 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 1.2  RELATED DOCUMENTATION 
Please refer to the following documents for further information: 

• 71M653X Demo Board User’s Manual for the IC of interest 

• 71M653X Data Sheet for the IC of interest. 

• Signum Systems ADM-51 In-Circuit Emulator Manual (Software Version 3.11.4 or later) 

• Keil Compiler Manual (Version 7.5 or later) 

• μVision2 (Version 2.20a or later) Manual 

TERIDIAN’s web site (http://www.teridian.com) should be frequently checked for updates, application notes and other 
helpful information. 

Questions to TERIDIAN Applications Engineering can be directed via e-mail to the address: 

• meter.support@teridian.com 

 

 1.3  COMPATIBILITY STATEMENT 
Information presented in this manual applies to the following hardware and software revisions: 

• 71M6531 and 71M6534 Demo Code Revision 4.4.15 

• 71M6531 and Demo Board D6531N12A1 (68-pin QFN) Revision 1.0 or later 

• 71M6534 Demo Board D6534T4A1 (120-pin LQFP) Revision 1.0 or later 

• Signum Systems Wemu51 Software 4.4.11 (8/15/2007) or later 

• Signum Systems ADM51 firmware version 4.4.11 (2007/07/15) or later 

 

The revision 4.15 of the Demo Board Code is the basis for all discussed sources, commands, register 
addresses and so forth. If applicable, known issues with revision 4.15 are disclosed within the code 
description, and workarounds or improvements are shown. 

v1.1v1.1 TERIDIAN Proprietary 12 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 

http://www.teridian.com/


71M653X Software User’s Guide    

2
 

 

 2  DESIGN GUIDE 
This section provides designers with some basic guidance in developing power meter applications utilizing the TSC 
71M653X devices. There are two types of applications that can be developed: 

• Embedded application using the sources provided by TERIDIAN, or 

• Embedded application using only customer generated functions. 

 2.1  HARDWARE REQUIREMENTS 
The following are the minimum hardware requirements for developing custom programs: 

• TERIDIAN 71M6531 Demo Board. This board interfaces with a PC via the RS232 serial interface (COM 
port). 

• AC Adaptor (AC/DC output) or variable power supply. 

• PC Pentium with 512MB RAM and 10GB hard drive, 1 COM port and 1 USB port, running either Windows 
2000, or Windows ME or Windows XP. 

• Signum Systems ADM-51 In-Circuit Emulator (for loading and debugging the embedded application) and 
its associated cables. Signum references this device as ADM-51.  

 2.2  SOFTWARE REQUIREMENTS 
The following are the minimum software requirements for embedded application programming: 

• Keil Compiler version 8.03a or later. 

• μVision2 version 3.33 (Note: this version comes with Keil Compiler version 8.03a). 

• Signum Systems software Wemu51 (comes with Signum Systems ADM-51 ICE hardware). 

The following software tools/programs are included in the 71M653X development kit and should be present on the 
development PC: 

• Demo Code with Command Line Interface (CLI) - Used to interface directly to metering functions and to 
the chip hardware. 

• Source files 

• Demo Code object file (hex file).

v1.1v1.1 TERIDIAN Proprietary 13 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

In order to generate and test software, the Keil compiler and the Signum in-circuit emulator (ICE) must be installed per 
the instructions in section 4. The include files and header files must also be present on the development PC. Typically, 
a design session consists of the following steps: 

• Editing C source code using µVision2 

• Compiling the source code using the Keil compiler 

• Modifying the source code and recompiling until all compiler error messages are resolved 

• Using the assembler and linker to generate executable code 

• Downloading the executable code to the ICE 

• Executing the code and watching its effects on the target 

 2.3  SOFTWARE ARCHITECTURE 
The 71M653X software architecture is partitioned into three separate layers: 

1. The lowest level is the device or hardware layer, i.e. the layer that directly communicates with the discrete 
functional blocks of the chip and the peripheral components (“hardware”), such as serial interfaces, AFE, LCD 
etc. 

2. The second layer consists of buffers needed for some functions. 

3. The third layer is the application layer. This layer is partially implemented by the Demo Code for evaluation 
purposes, but extensions and enhancements can be added by the application software developer to design 
suitable electronic power meter applications. 

Figure 2-1: shows the partitions of each software component. As illustrated, there are many different designs an 
application can develop depending on its usage. Section 5 describes in more detail the functions within each 
component. 

Application
Layer

Hardware

Hardware
Layer

Buffer
Layer

Meter

Totals (Meter Data)

CLI

SerCLI FLAG

Ser0 Ser1LCD

LCD

AFE

CE RAM

UART0 UART1

CE

Display Sensors Terminal/
PC

AMR

 
Figure 2-1: Software Structure 

 

v1.1v1.1 TERIDIAN Proprietary 14 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

The Demo Code is modular. Each device in the chip and on the Demo Board has a corresponding set of driver 
software in the Hardware Layer. These driver software modules are very basic, enabling customers to easily locate and 
reuse the logic. For the serial devices and for the CE, the buffer handling has been separated from the driver modules. 

Where there are several similar devices (e.g. ser0, ser1, or tmr0, tmr1), the Demo Code simulates a virtual object base 
class using C preprocessor macros. For example, to initialize the first serial interface, ser0, the source file can include 
ser0.h, and then call ser_initialize(). To transmit a byte on ser0, the file can include ser0.h, and then call 
ser_xmit().  The convenience is that high-level code can be ported to another device by just (for example) including 
ser1.h, rather than ser0.h. Just by making variables static, entire high-level protocols can be written and maintained by 
copying the code debugged on one device, and having it include the other device’s .h file.  

The demo firmware uses this technique for the command line interface (ser0cli.c, ser1cli.c), the FLAG AMR interface 
(flag0.c, flag1.c) and for the software timer module (stm.c). The base-class emulation uses macros because on the 
80515 MPU macros execute faster and are also more compact than the standard C++ (object-oriented) design with an 
implicit structure containing function pointers. 

The Demo Code is also designed with an “options.h” file, which enables and disables entire features in the firmware. 

The macro approach combined with the “options.h” file permitted the firmware team to adapt the same Demo Code to 
both the 6531 and 6534 versions. 

 2.4  UTILITIES 
Three utilities are offered that make it possible to perform certain operations on the object (HEX) files without having to 
use a compiler: 

• D_MERGE.EXE allows combining the object file with a text script in order to change certain default settings of 
the program. For example, modified calibration coefficients resulting from an actual calibration can be inserted 
into the object file.  

• CE_MERGE.EXE allows combining the object file with an updated image of the CE code. 

• BANK_MERGE.EXE combines the hex files the Keil tools provide for each code bank. 

All utilities are executed from a DOS window (DOS command prompt). To invoke the DOS window, the “command 
prompt” option is selected after selecting Start – All Programs – Accessories. 

The GUI subdirectory contains an unsupported MS Windows .NET implementation of a FLAG hand-held unit. 

 2.4.1  D_MERGE 

Many changes to the firmware’s defaults can be made permanent by merging them into the object file. The first step for 
this is to create a macro file (macro.txt) containing the commands adjusting the I/O RAM or other defaults, such as the 
following commands affecting calibration: 

]8=+16381 

]9=+16397 

]E=+237 

The d_merge program updates the 653x_demo.hex file with the values contained in the macro file.  The d_merge 
program must be in the same directory as the source files, or a path to the executable must be declared. Executing the 
d_merge program with no arguments will display the syntax description. To merge the file macro.txt and the object file 
old_653x_demo.hex into the new object file new_653x_demo.hex, use the command: 

d_merge old_653x_demo.hex macro.txt new_653x_demo.hex 

 2.4.2  CE_MERGE 
The ce_merge program updates the 653x_demo.hex file with the CE program image contained in the CE.CE file 
and the data image CE.DAT. Both CE.CE and CE.DAT must be in Intel HEX format, i.e. both files are not in the 
source format but in the compiled format (intel hex). These files will be made available from Teridian in the 
cases when updates to the CE images are necessary. 
To merge the object file old_653x_demo.hex with CE.CE and CE.DAT into the new object file new_653x_demo.hex, 
use the command: 
 

v1.1v1.1 TERIDIAN Proprietary 15 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

ce_merge old_653x_demo.hex ce.ce ce.dat 653x_demo.hex 

 2.4.3  BANK_MERGE 

If using Keil’s professional package, bank_merge.exe is not needed to produce Intel-386 files from banked code.  
Simply go to the pull-down hex file selection in the output section of the project configuration of uVision, and select 
“i386”.  Keil’s premium OHX51 hex file converter will automatically produce a single intel-386 file containing all the code 
banks. 

If producing banked code with Keil’s standard package, the BL51 linker is tightly coupled to the OC51 and OH51 code 
converters.  These produce one 64K Intel hex file for each code bank. The Signum emulator and TSC’s TFP (in-circuit 
programmer) require that banked code be in a different format, a single Intel-386 hex file. 

Bank_merge.exe is a program that converts Keils’ multiple hex files into a single Intel-386 hex file.  

Usage: bank_merge <Number of Banks> <ROM Size> <Input Name> <Output>\n"); 

<Number of Bank>  - 3 for 6531, and 7 for 6534"); 

<ROM Size>        - The memory size of ROM in kbyte (128,256,...)" 

<Input>           - Compiled files' name without extension" 

<Output>          - Output file name. Must have '.hex' extension\n"); 

For example: 

bank_merge 3 128 banktest31 new_code.hex 

This merges the three compiled hex files, banktest31.H01, banktest31.H02, banktest31.H03 and produces 
new_code.hex in a 128kbyte intel-386 hex file. 

 
 

v1.1v1.1 TERIDIAN Proprietary 16 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

3
 

 

 

 3  DESIGN REFERENCE 
As depicted in Figure 1 of section 2, the 71M653X provides a great deal of design flexibility for the application de-
veloper. Programming details are described below. 

 3.1  PROGRAM MEMORY 
The embedded 80515 MPU within the 71M653X has separate program (128K or 256K bytes) and data memory (4K 
bytes). The code for the Compute Engine program resides in the MPU program memory (flash). 

The Flash program memory is addressed as a 64KB block.  The upper 32K is a window on a code banked.  It can be 
switched to other code banks by writing a banke numbe rto the banked register FL_BANK. The flash memory is further 
segmented in 512-byte pages which can be individually erased. Selection of these individual blocks is accomplished 
using the function calls related to flash memory, which are described in more detail below. 

 3.2  DATA MEMORY 
The 71M653X has 4K bytes of Data Memory used by the embedded 80C515 MPU, and shared with the proprietary 
computer-engine (CE).  In most configurations, the CE uses 1K of this RAM, leaving 3K for use by the MPU. See Table 
3-1:  for a summary. 

 
Address 

(hex) 
Memory 

Technology Memory Type Typical Usage 
Wait States 
(at 5MHz) 

Memory Size 
(bytes) 

0000-7FFF Flash Memory Non-volatile 
Common code area for the 
program and non-volatile 
data. 

0 32K 

8000-FFFF Flash Memory Non-volatile 

Bank window code area for 
the program and non-
volatile data.  The 6531, 32, 
and 33 have 3 banks 
yielding 128K total.  The 
6534 has 7 banks, yielding 
256K total 

0 32K 

0000-03FF Static RAM Volatile 

CE data, actual last byte 
may be somewhat less than 
1K, depending on the CE 
code. 

0 1KB 

0400-1000 Static RAM Volatile MPU data 0 3KB 

2000-20FF Static RAM Miscellaneous I/O RAM 
(configuration RAM) Volatile 0 256 

Table 3-1: Memory Map 

v1.1v1.1 TERIDIAN Proprietary 17 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 3.3  PROGRAMMING THE 71M653X CHIPS 
There are two ways to download a hex file to the 71M653X Flash Memory: 

• Using a Signum Systems ADM-51 ICE. 

• Using the TERIDIAN Semiconductor Flash Download FDBM-TFP-2 Stand-Alone Module 

Note: For both programming and debugging code it is important that the hardware watchdog timer is 
disabled. See the Demo Board User’s Manual for details. 

Before downloading code to a 71M653x: 

• Stop the MPU 

• Disable the CE by writing a 0 to XDATA at address 0x2000. 

• Erase the flash memory. 

 3.4  DEBUGGING OF THE 71M653X CHIPS 
When debugging with the ADM51 in-circuit emulator, the CE continues to run, and this disables flash memory access 
because the code of the CE is located in flash memory. 

When setting breakpoints, only two breakpoints can be used, because the first two breakpoints are 
“hardware” breakpoints, while the rest attempt to write to flash memory. 

 3.5  TEST TOOLS 
A command line interface operated via the serial interface of the 71M653X MPU provides a test tool that can be used 
to exercise the functions provided by the low-level libraries. The command-line interface requires the following 
environment: 

1) Demo Code (653X_demo.hex) must be resident in flash memory 

2) The Demo Board is connected via a Debug Board to a PC running Hyperterminal or another type of terminal 
program. 

3) The communication parameters are set at 300 bps, 7N2, XON/XOFF flow control, as described in section  
3.5.1 .

v1.1v1.1 TERIDIAN Proprietary 18 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 3.5.1  Running the 653X_Demo.hex Program 

This object file is the 71M653X embedded application developed by TERIDIAN to exercise all low-level function calls 
using a serial interface. Demo Boards ship pre-installed with this program. To run this program: 

• Connect a serial cable between the serial port of the Debug Board RS232 and a COM port of a Windows 
PC.  

• Open a Windows’ Hyperterminal session at 2400 or 300 bps (depending on jumper settings – see the 
DBUM), 8N1, one stop bit with XON/XOFF flow control enabled. The setup dialog box is shown in Figure 
3-1: Port Speed and Handshake Setup.  

• Power on the Demo Board and hit <CR> a few times on the PC keyboard until ‘>’ is displayed on the 
Hyperterminal screen. 

• Type a command from the CLI Reference ( 3.5.2 ) 

• All references to ‘c’ (lower case c) indicate any ASCII character, all other lowercase letters are one-byte 
numbers 

• Numbers can be entered in decimal by preceding them with a plus-sign (e.g. hex 20 = +32) 

The 71M653x Demo Board User’s Manual contains instructions on how to connect the serial cable. 

 

Figure 3-1: Port Speed and Handshake Setup 

Note: HyperTerminal can be found by selecting Programs Accessories  Communications from the Windows© start 
menu. The connection parameters are configured by selecting File  Properties and then by pressing the 
Configure button. Port speed and flow control are configured under the General tab, bit settings are configured 
by pressing the Configure button (Figure 3-1: Port Speed and Handshake Setup) as shown below. 

 

v1.1v1.1 TERIDIAN Proprietary 19 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 3.5.2  CLI Commands 

The Demo Board User’s Manual (DBUM) for the 71M653x contains a complete list of the available commands.  

 3.5.3  Command (Macro) Files 

Commands or series of commands may be stored in text (ASCII) files and sent to the 71M653X using the “Transfer – 
Send Text File” command of Hyperterminal or any other terminal program. 

 

 

v1.1v1.1 TERIDIAN Proprietary 20 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

4
 

 4  TOOL INSTALLATION GUIDE 
This section provides detailed installation instructions for the Signum ADM-51 in-circuit emulator and for the Keil 
compiler. 

 4.1  INSTALLING THE PROGRAMS FOR THE ADM51 EMULATOR 
The AMD51 ICE interfaces with the PC is via the USB serial interface. 

The installation process consists of the following steps: 

1. Installing the Chameleon Debugger used with the Signum ICE 
2. Installing the ADM51 USB driver 
3. Installing updates 
4. Creating a project 

 4.2  INSTALLING THE WEMU PROGRAM (CHAMELEON DEBUGGER) 
Insert the CD from Signum Systems and connect the ICE ADM51 to the PC with the provided USB cable. 

The following dialog box will appear (this dialog box also shows the release date of the program): 

 

 
 Click on “Chameleon Debugger” and then select “ADM51 Emulator”. 

 

Follow the instructions given by the installation program. 

 

v1.1v1.1 TERIDIAN Proprietary 21 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 4.3  INSTALLING THE ADM51 USB DRIVER 
The Wemu51 program communicates with the emulator ADM51 via the USB interface of the PC. The USB driver for 
the ADM51 has to be installed prior to using the emulator. After plugging in the USB cable into the PC and the ADM51 
ICE the status light of the ADM51 emulator should come on.  

A dialog box will appear, asking you to install the ADM51 driver. 

 
 

 Click Next. Another dialog box will appear, asking how to search for the driver. Use the recommended method. 

 
 

 Click Next. 

 

Another screen (not shown) will appear asking to locate the driver. Select Specific Path and browse to: 

C:\Program Files\Signum Systems\Wemu51\Drivers\USB. Click Next. 

 

 

v1.1v1.1 TERIDIAN Proprietary 22 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 
 

Click Finish. 

 

 
 

Click Finish again. 

Note: USB 1.1 is sufficient for operation of the ADM51. If higher performance is desired and no USB 2.0 port is 
available on the host PC, a USB 2.0 card can be installed as an option.   

 4.4  INSTALLING UPDATES TO THE EMULATOR PROGRAM AND HARDWARE 
If the Wemu51 program is revision 3.11.4 or later, no special precautions have to be taken. Otherwise, the program 
should be updated using the Signum Systems web site (www.signum.com).  

When running the Wemu51 program revision 3.11.4 or later, the firmware in the ADM51 will be checked automatically. 
ADM51 emulators with outdated firmware will not function properly. The Wemu51 will offer an automatic update for the 
ADM51, if necessary. For a successful upgrade it is vital to follow the instructions on screen precisely. 

v1.1v1.1 TERIDIAN Proprietary 23 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 

http://www.signum.com/


 71M653X Software User’s Guide 

 4.5  CREATING A PROJECT 
Double click on the WEMU51 icon to start the Chameleon debugger.  

 

 
 

Click Project/Create New Project. The following screen will appear: 

 
Follow the instructions of the Create Project Wizard by selecting Next. 

 

 

 

 

 

v1.1v1.1 TERIDIAN Proprietary 24 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

When prompted for the project name to be used, type a convenient project name. Click Next. 

 
 

When prompted for the project directory to be used, select an existing folder on the PC. Do NOT select any folder in 
the Wemu51 installation directory! Click Next. 

 
 

When prompted for the emulator to be used, select ADM51 Emulator. Click Next. 

 

v1.1v1.1 TERIDIAN Proprietary 25 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 

When prompted for the communication device to be used, select USB ADM51. Click Next. 

 
 

When prompted for the processor to be used, select the correct IC. Click Next. 

 
Click Finish.

v1.1v1.1 TERIDIAN Proprietary 26 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 4.6  INSTALLING THE KEIL COMPILER 
After inserting the Keil CD-ROM into the CD drive of the PC, the on-screen instructions should be followed to install the 
Keil compiler. 

The installer will display the following screen: 

 
Select Install Products & Updates 

 

 
Select C51 Compiler and Tools 

 

Follow the on-screen instructions of the installation program. When prompted for the add-on disk, insert the disk in the 
floppy drive and click Next or browse to the location of the files (if they were previously copied to the hard drive of the 
PC) by clicking Browse.

v1.1v1.1 TERIDIAN Proprietary 27 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 

 4.7  CREATING A PROJECT FOR THE KEIL COMPILER 

 4.7.1  Directory Structure 

The following directory structure is established when the files from the archive 653X_Demo.zip are unpacked while 
maintaining the structure of subdirectories: 

<drive letter>:\…\meter project\ 

<drive letter>:\…\meter project\CE 

<drive letter>:\…\meter project\CLI 

<drive letter>:\…\meter project\docs 

<drive letter>:\…\meter project\flag 

<drive letter>:\…\meter project\IO 

<drive letter>:\…\meter project\Main 

<drive letter>:\…\meter project\Main_653x_CLI 

<drive letter>:\…\meter project\Meter 

<drive letter>:\…\meter project\Util 

The project control file 653X_demo.uv2 will be in the directory <drive letter>:\…\meter project. The Keil compiler can be 
configured easily by loading the file 653X_demo.uv2, using the Project Menu and selecting the Open Project 
command. 

The window shown below should appear when the project control file is opened. 

 
The Project Workspace screen on the left side of the window shows the main components of the source (CE, CLI, IO, 
Main, Meter, Utils) in folders. Folders can be opened by clicking on the plus sign next to them. Opening the folders will 
display the source files associated with them. 

v1.1v1.1 TERIDIAN Proprietary 28 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

It should be noted that not all header files are physically present in the project directory. The files absacc.h, string.h, 
ctype.h, and setjmp.h are provided by the compiler manufacturer, and they are located in the Keil\C51\INC directory. 

 4.7.2  Adjusting the Keil Compiler Settings 

Once, the Keil compiler is installed, the most convenient method to start the project is to double-click on the file 
653x.UV2 (or 653x.UV3). This will start the Keil compiler with the proper settings stored in the 653x.UV2 file. 

Directory structures and drive names vary from PC to PC. The settings for the compiler can be adjusted using the 
following method: 

1. Select “target1” in the leftmost window. 

2. Select “project” from the top menu and then select “options for target 1”. 

3. Select the “C51” tab. 

4. Click the button right next to the “Include Paths” window. Three paths will be listed, pointing to meter 
projects, meter projects\demo, and meter projects\demo\header files. 

5. If necessary, delete these path entries (X button) and replace them with the corresponding path 
entries for your PC (� button). 

The dialog box should look like shown below. After making the necessary changes, the project file (653X_demo.UV2) 
should be stored. 

v1.1v1.1 TERIDIAN Proprietary 29 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 4.7.3  Manually Controlling the Keil Compiler Settings 

If the method described in section “Adjusting the Keil Compiler Settings” is not used, the Keil compiler settings can also 
be controlled manually. 

The target options should be selected in order to adapt the compiler controls properly to the target. The uVision 
compiler environment is started by selecting Programs  Keil  uVision2. uVision should start up and present the 
following window: 

 
 

Under Project  Options for Target1, select the Device tab and check the selected device. Newer versions of the Keil 
Compiler offer selection of TERIDIAN (labeled “TDK”) 71M653x devices: 

 
 

v1.1v1.1 TERIDIAN Proprietary 30 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

For older versions of the Keil compiler, select the TERIDIAN folder (labeled “TDK”), open it by clicking on the + sign 
and select 73M2910L as the target device. Confirm by clicking OK. 

 
 

Under Project  Options for Target1, select the Target tab and enter the values in the fields as shown above. Confirm 
by clicking OK. 

 
 

v1.1v1.1 TERIDIAN Proprietary 31 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Under the Output tab, select a name for the executable (object) file with .abs extension’ in the field labeled “Name of 
the executable” and check the fields by “Debug Information”, “Browse Information” and “Create HEX File”. This will 
guarantee that high-level source information will be embedded in the output file. Select HEX-80 as the output format, 
as shown below: 

 
 

Under the C51 tab, provide path names for the source files to be included, as shown below. 

 
 

Click OK to set all the options selected for project and return to the main menu. 

With the source and header files now existing in the newly created project, the files can be compiled using the Build 
Target option under the Project menu. 

 4.8  OUTPUT FILE FORMAT 
Both the Keil compiler and the Signum WEMU51 emulator program accept executable programs for download to the 
653X ICs in Intel Hex format. 

v1.1v1.1 TERIDIAN Proprietary 32 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 4.8.1  Basic Intel Hex Format 

The Intel HEX file is an ASCII text file with lines of text that follow the Intel HEX file format. Each line in an Intel HEX file 
contains one HEX record. These records are made up of hexadecimal numbers that represent machine language code 
and/or constant data. Intel HEX files are often used to transfer the program and data that would be stored in a ROM or 
EPROM. Most EPROM programmers or emulators can use Intel HEX files. 

Record Format 

An Intel HEX file is composed of any number of HEX records. Each record is made up of five fields that are arranged in 
the following format: 

 
:llaaaatt[dd...]cc 

Each group of letters corresponds to a different field, and each letter represents a single hexadecimal digit. Each field 
is composed of at least two hexadecimal digits-which make up a byte-as described below: 

 
 : is the colon that starts every Intel HEX record.  
 ll is the record-length field that represents the number of data bytes (dd) in the record.  
 aaaa is the address field that represents the starting address for subsequent data in the record.  
 tt is the field that represents the HEX record type, which may be one of the following: 

00 - data record 
01 - end-of-file record 
02 - extended segment address record 
04 - extended linear address record  

 dd is a data field that represents one byte of data. A record may have multiple data bytes. The number of data 
bytes in the record must match the number specified by the ll field.  

 cc is the checksum field that represents the checksum of the record. The checksum is calculated by summing 
the values of all hexadecimal digit pairs in the record modulo 256 and taking the two's complement. 

Data Records 

The Intel HEX file is made up of any number of data records that are terminated with a carriage return and 
a linefeed. Data records appear as follows: 
:10246200464C5549442050524F46494C4500464C33 

This record is decoded as follows: 

 
:10246200464C5549442050524F46494C4500464C33 
|||||||||||                              CC->Checksum 
|||||||||DD->Data 
|||||||TT->Record Type 
|||AAAA->Address 
|LL->Record Length 
:->Colon 

where: 

 10 is the number of data bytes in the record.  
 2462 is the address where the data are to be located in memory.  
 00 is the record type 00 (a data record).  
 464C...464C is the data.  
 33 is the checksum of the record. 

 

v1.1v1.1 TERIDIAN Proprietary 33 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 4.8.2  Intel Hex386 File Format 

For banked code, the Intel Hex386 file format (Extended Linear Address Records) is used: 

Extended linear address records are also known as 32-bit address records and HEX386 records. These records 
contain the upper 16 bits (bits 16-31) of the data address. The extended linear address record always has two data 
bytes and appears as follows: 

 
:02000004FFFFFC 

where: 

 
 02 is the number of data bytes in the record.  
 0000 is the address field. For the extended linear address record, this field is always 0000.  
 04 is the record type 04 (an extended linear address record).  
 FFFF is the upper 16 bits of the address.  
 FC is the checksum of the record and is calculated as 

01h + NOT(02h + 00h + 00h + 04h + FFh + FFh). 

When an extended linear address record is read, the extended linear address stored in the data field is saved and is 
applied to subsequent records read from the Intel HEX file. The linear address remains effective until changed by 
another extended address record. 

The absolute-memory address of a data record is obtained by adding the address field in the record to the shifted 
address data from the extended linear address record. The following example illustrates this process: 

 
Address from the data record's address field      2462 
Extended linear address record data field     FFFF 
                                              -------- 
Absolute-memory address                       FFFF2462 

v1.1v1.1 TERIDIAN Proprietary 34 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 4.9  WRITING BANK-SWITCHED CODE 
The 80515 microcontroller contained in the 71M653X Energy Meter chips can only address 64Kbytes of code. This 
section explains how to design firmware with more than 64K of code for the 71M653X Energy Meter chips.  

 4.9.1  Hardware Overview 

In the 71M6531 there is a 32K area from code address 0x0000 to 0x7FFF.  The code in this area is always available to 
the 8051.  This area is “common” and is the same memory area as “bank 0”.  Since it is always present, it never needs 
to be switched into the bank area. 

A 32K bank is selected by writing the bank’s number in the register FL_BANK, an SFR at 0xB6.  After this, the bank’s 
code is visible to the MPU in addresses 0x8000 to 0xFFFF. 

The 71M6531 has four 32K banks (128K bytes total).  Bank 0 is the common area.  Banks 1, 2, and 3 are the banked 
code areas selected by FL_BANK. 

The 71M6534 has eight 32K banks (256K total).  Bank 0 is the common area.  Banks 1 through 7 are the banked code 
areas selected by FL_BANK. 

A reset sets FL_BANK to 1, so any 71M653x IC can run 64K of non-bank-switching code. 

The 71M653x ICs have two write protect registers to protect ranges at the beginning and end of flash. 

The beginning is protected by BOOT_SIZE, XDATA 0x20A7 when WRPROT_BT is set in FLSHCTL, SFR 0xB2. 

The end can be protected by placing the CE program at the start of the area to protect, and setting WRPROT_CE in 
FLSHCTL, SFR 0xB2. 

 

FL_BANK 
[2:0] 

Address Range for 
Lower Bank 
(Common) 

(0x000-0x7FFF) 

Address Range for 
Upper Bank 

(0x8000-0xFFFF) 

6531 
128KB 

6533 
128KB 

6534 
256KB 

000 0x0000-0x7FFF 0x0000-0x7FFF X X X 
001 0x0000-0x7FFF 0x8000-0xFFFF X X X 
010 0x0000-0x7FFF 0x10000-0x17FFF X X X 
011 0x0000-0x7FFF 0x18000-0x1FFFF X X X 
100 0x0000-0x7FFF 0x20000-0x27000   X 
101 0x0000-0x7FFF 0x28000-0x2FFFF   X 
110 0x0000-0x7FFF 0x30000-0x37FFF   X 
111 0x0000-0x7FFF 0x38000-0x3FFFF   X 

Table 4-1: Code Bank Memory Addresses and Availability 

The 71M653x ICs’ flash memory are very similar to the ROM arrangement in Keil’s example “Banking With Common 
Area” of chapter 9 (linker) of Keil’s “Macro assembler and Utilities” manual. 

 4.9.2  Software Overview 

Teridian’s demonstration code uses the Keil compiler’s standard bank switching system (www.Keil.com).   

This is completely supported by Keil, a major compiler vendor for 8051s, and Signum, the emulator vendor.  Code can 
be ported from non-banked projects, and full symbolic banked debugging is available.  

Keil’s scheme puts a “page table” in common memory.  Code calls an entry in the page table.  Each entry is a bit of 
code that switches to the subroutine’s bank, and jumps to the subroutine in the bank. 

Keil’s linker automatically produces the page table.  In Teridian’s demo code, the size of this table is less than 1K. 

Code using the page table is slower than native 16-bit code, because it has to set the page register. 

v1.1v1.1 TERIDIAN Proprietary 35 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Interrupts must start in the common (non-banked) area, because the bank register could have any value. 

Calls via function pointers (e.g. “callback routines”) are supported, but need to be made global, and mapped to their 
caller with the linker’s overlay functions.  Keil’s linker often omits callback routines from the page table when it 
optimizes the page table, and this causes incorrect operation. 

Constant values have to be accessed from the same bank, or common code.  When accessed from common code the 
bank has to be switched manually with switchbank(), a subroutine in the bank logic. 

 4.9.3  Software Tool Versions 

The development software used with these examples was Keil C version 8.03, with the BL51 linker (the Lx51 linker is 
actually easier to use, but not shown).  The Signum emulator software used was version 3.11.04. 

 4.9.4  Setup of the Compiler Project 

This dialogue is for the project options of a 71M6531, which has 4 banks (see Figure 4-1). 

 
Figure 4-1, Setup of Keil Compiler for bank-switched code 

When opening individual files by right-clicking on the file names (after opening the group folders listed under “Target”) , 
file options can be edited.  These options can be set to assign code to pages (as shown in Figure 4-2, ). 

v1.1v1.1 TERIDIAN Proprietary 36 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 
Figure 4-2, Selecting a Bank for a File Group in Keil C 

 4.9.5  Startup 

TSC provides special start-up code on the CD-ROMs shipped with the 71M653X Demo Kits. The code can be found at 
Util\startup_30_banked.a51.  This file sets up the bank-switching logic. It must be included in the build. Any other 
startup.a51 file must be removed. 

 4.9.6  Bank-Switching Code 

TSC has already ported Keil’s bank-switching code, Util\L51_bank.a51.  TSC’s version of this file should be included in 
the build.  TSC has already selected the fastest standard bank-switching method as the default.   

During performance testing, TSC made a good-faith attempt to port the other bank-switching methods in this code, 
including features needed by Keil’s advanced Lx51 linker.  However these versions are not extensively tested. 

 4.9.7  Page Table Setup and Debug 

Keil’s linkers produce the page table automatically, once paging is selected in the Microvision options->target dialogue.  
Keil usually places the page table at an address of 0x100 in the common bank. It is visible in the linker .m51 file.  To 
see how it works, one can use the emulator to single-step through at a banked function call at the assembly language 
level. 

To call a paged subroutine, Keil’s linker arranges to call one of the entries of the page table.  The page table consists 
of one entry per subroutine.  Each entry is a small piece of code that loads the address of the banked subroutine into 
the 8051 register DPTR, and then jumps to paging code.  The paging code sets the bank register FL_BANK, and then 
jumps to the banked code’s address contained in the DPTR. 

v1.1v1.1 TERIDIAN Proprietary 37 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Keil’s linkers minimize the size of the page table.  A subroutine has an entry in the page table only if: 

1. The subroutine is in a bank, and 

2. The subroutine is called from outside its bank. 

Most problems with banking code occur because the linker omits a function from the page table. The result is that the 
call to a function in a different bank goes to code in the current bank, causing unexpected code in the current bank to 
be executed. 

One major cause of this is a callback subroutine called via a function pointer.  Another is an interrupt defined in banked 
assembly language file (fortunately, Keil detects and flags banked interrupts in C code). 

To solve problems stemming from callback routines, all subroutines called from other banks should be made global, so 
that the linker can use their data. 

Next, overlay commands should be used to inform the Keil linker that a banked function is called from a caller in a 
different bank.  This forces the linker to put the callee function into the page table.  To use the overlay command in the 
linker, see the discussion of “overlay” in the Keil linker’s documentation.  Here’s an example of the overlay commands 
from the demo code.  They map the callback routines that are called from the software timer, and hardware timer 
interrupt 0. 

 

Figure 4-3, Setting Keil’s Linker for Bank-switched Code 

However, if there should be other problems, there is a way to isolate them: 

1. Remove code from the project until all code fits in common and bank 1.   

2. Move modules individually each to a bank until the problem occurs. 

3. At some point, the problem is likely to show up as an unexpected reset.  What  is happening is that the call to 
code in bank 1 is probably going to uninitialized code memory in another bank.  It will execute until the 
program counter wraps around to zero and begins executing the reset vector. 

4. Place a break point near the end of the other bank, to catch the erroneous execution. 

5. After trapping the error, set the program counter to the address of a RET instruction, and single-step.  The 
code will return to the code that called the wrong bank. 

6. Fix the calling routine, and all similar problems! 

v1.1v1.1 TERIDIAN Proprietary 38 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 4.9.8  Producing a Banked Hex File 

The BL51 linker and its associated hex converter produce a separate Intel hex file for each bank.  These files end with 
names such as .H01 for bank 1, .H02 for bank 2, etc.  The emulator and the production programmer expect a single 
Intel 386 hex file with a .HEX ending. 

TSC’s demo CD ROM has a utility called bank_merge.exe.  It runs in a DOS command window and merges the bank 
files from Keil’s hex converter into one Intel-386 hex file.  This can be placed in the build automatically. (how?)  

Another manual solution is to erase the flash, load the .abs file to an emulator, and then use the file->save range: All 
menu selection to save a copy of flash as an Intel hex file.   

When using Keil’s Lx51 advanced linker, the output dialog contains a pull-down list of hex formats.  Select the “i386” 
hex file option. 

The emulator’s verification option is a convenient way to verify that the .abs and .hex file have the same content. To 
use it, invoke the menu File->Load, then check the verify box, but not the load box. 

 4.9.9  Placing Interrupts in Banked Code 

The interrupts must start in the common code.  TSC starts most interrupts from a “trampoline” routine that saves and 
restores the bank register.  The demo code’s trampoline routines are in Meter\io653x.c, with the stub interrupts and 
decoded interrupts.  An example of a trampoline is this serial interrupt from Meter\io653x.c, used to service UART0: 

#pragma save 

#pragma REGISTERBANK (ES0_BANK) 

void es0_trampoline (void) small reentrant interrupt ES0_IV using ES0_BANK 

{ 

    uint8_t my_fl_bank = FL_BANK; // save the bank register 

    FL_BANK = BANK_DEFAULT; // BANK_DEFAULT is 1 

    es0_isr(); 

    FL_BANK = my_fl_bank;   // restore the bank register 

} 

#pragma restore 

This is clumsy and slow.  Why do this? 

A trampoline lets most interrupt code be in bank-switched code space with other code from the same file.  This may 
make the code easier to read.  It also leaves more space in common memory, and permits a larger system to exist.  
The penalty is a few tens of microseconds per interrupt. 

Very frequent interrupts should not use trampoline routines.  In TSC’s demo code, the CE code, Meter\ce.c has an 
interrupt that runs every 396 microseconds (ce_busy_isr()).  ce.c is placed in the common area, and ce_busy’s 
trampoline is disabled (in Meter\io653x.c). 

If an interrupt calls code in a bank, as above, it must save and restore the bank-switching register, FL_BANK. 

Keil’s Lx51 advanced linker has an option to automatically save and restore the bank register in an interrupt. TSC’s 
L51_bank.a51 code provides the necessary symbols. 

 4.9.10  Calling Banked Functions via Function Pointers 

In a banking system, functions placed in function pointers cannot have the word “static” in front of their definition.  They 
must be global. 

Also, the linker must be informed of the actual caller of the function in the function pointers.  For example, in the 
TERIDIAN Demo Code, the software timer module (Util\stm.c) calls many routines.  There is also an interrupt for 
hardware timer 1 that calls the software timer’s interrupt code. This linker dialogue tells the linker the true relationship.  
The command to the linker is “caller ! callee” or “caller ! (callee_1, callee_2, …)”  (See the linker command figure, 0-3). 

Why do this?  If a function pointer points at a function’s entry in the page table, the function pointer can be executed 
from any bank, at any time.   So, in theory, function pointers are supported via the page table. 

v1.1v1.1 TERIDIAN Proprietary 39 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

In practice, the Keil linker tries to save space in the page table.  So, it only puts global functions into the page table if 
they are in a bank area and are called from outside the bank.  Often, function pointers are used for callback routines.  
In these cases, the linker often does not detect the true caller and so cannot detect the cross-bank function call.  Then, 
it places a banked address into the code that sets the function pointer.  If this is executed from another bank, the code 
jumps to code in the current, wrong bank! 

Using overlay commands informs the linker of the actual caller, so it can detect cross-bank calls. 

To increase reliability, the demo code that sets a function pointer also checks to make sure that the pointer is in 
common memory rather than a bank.  The code looks like this: 

    if (((uint16_t)fn_ptr) > 0x7FFF) // only accept functions in common 

    { 

        main_software_error (); // report a software error at a central breakpoint. 

        return NULL;  // indicate a failure to the caller 

    } 

 

 4.9.11  Putting Constants in Banks 

Space in the common code area can be precious.  It often helps to put large tables in a different code bank.  The 
TERIDIAN Demo Code, places the help text, CE code and the CE’s data initialization table into banked flash. 

In order for this to work, every reference to the data must be from the same bank or from common. 

In the demo code, the largest set of constant tables is the help text.  The help text (CLI\Help.c) is in the same bank as 
the printing routines, which copy the text into RAM for use by the serial interrupts (see CLI\io.c).  Since the help text is 
in the same bank as the accessing routines, no other special coding is needed. 

In the demo code, the CE code is referenced from the Meter\ce.c.  ce.c could not be placed in the last bank with the 
tables because it also has a very fast interrupt, ce_busy_isr(), so ce.c was placed in common.  Also, the CE code is in 
the last bank, so the code in ce.c had to explicitly switch it in to read it. 

Designers must be careful that any code in common is smaller than the data table!  Some systems may need a library 
routine in common to copy part of the banked data to RAM for use by banked code. 

Next, the data should be located in the desired bank, using compiler and linker’s BANK commands.  (See the compiler 
and linker command figures, 0-2, 0-3) 

The code using the banked data should include Util\bank.h, which defines switchbank() to access banked data.In 
the code that accesses the data, the bank must be switched in.  For example, when the demo code copies the starting 
data for the CE (ce_init() in Meter\ce.c), it executes the following code: 

        switchbank (BANK_CE); 

        memcpy_cer ( 

           (int32x_t *)CE_DATA_BASE, 

           (int32r_t *)&CeData[0], 

           (uint8_t)(0xff & NumCeData) 

           ); 

switchbank () sets the bank register without side effects for other bank switching.  It is defined in Util\bank.h.  
BANK_CE is the bank number containing the CE initialization table (in Main_6531\options.h or Main_6534\Options.h). 
memcpy_cer () copies 32-bit words from code to CE memory.  CE_DATA_BASE is the start of CE memory, 0x0000 
in XDATA in 71M653x ICs.  CeData[] is the array of 32-bit integers containing the CE’s default data.  NumCeData is 
the count of data words in the table, a constant value that precedes the CE default data table. 

 4.9.12  Write-Protecting Flash in the 653X 

Besides safety interlocks in software that prevent accidental write operations to flash, the 71M653x ICs also have a 
write-protection mechanism implemented in hardware.  Some systems might permit code or customization tables to be 
downloaded to flash, and designers might wish to assure that this process cannot corrupt other code or data. 

v1.1v1.1 TERIDIAN Proprietary 40 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

To protect flash starting at address 0x00000, write the number of 1,024-byte blocks into BOOT_SIZE (at XDATA 
0x20A7), and set WRPROT_BT (bit 5 of SFR 0xB2).  Since this range covers the code’s interrupt vectors, it is perfect for 
protecting a boot loader (i.e. code that can load other code into the system).  It is also the logical choice for general-
purpose write-protection. 

To protect flash near the end of memory, place the CE’s data area at that point (and set CE_LCTN, XDATA 0x20A8), 
and set the WRPROT_CE (bit 4 of SFR 0xB2).  This protects not only the CE code, but also all flash memory after it.  
This is excellent for protecting the CE code and calibration tables stored in flash.  The demo code uses this method to 
protect the CE code and its default initialization table. 

 4.10  PROJECT MANAGEMENT TOOLS 
With large software projects involving a multitude of source, object, list and other files in various revisions, it is very 
helpful to use a version control tool.  

To manage file versions under Windows, Tortoise CVS, a free version control utility, might be useful. This utility can be 
found at http://www.tortoisecvs.org/ .  

 4.11  ALTERNATIVE COMPILERS 
The Demo Code was written for the Keil compiler. However, alternative compilers may be used if the code is modified 
to ensure compatibility with the alternative compiler. One example of an alternative compiler is SDCC, a free compiler 
available from www. Sourceforge.net. 

Note: The Keil extensions for the 8051 are not compatible with the 8051 extensions used by the SDCC. 

The batch file BUILD653X.BAT is provided with the Demo Kit to support building object files using alternative 
compilers. This batch file uses the Keil compiler calls with the applicable compiler options and can therefore serve as 
examples on how to invoke alternative compilers. The linker control file LINK653x.TXT called by the batch files can 
show how to properly invoke linkers. 

To compile with DOS-style tools, arrange for a DOS batch file to invoke the tools and set the properties of the batch file 
to leave the window open, so that errors can be seen. Then, to compile, double click on this batch file in Windows 
explorer.  

 4.12  ALTERNATIVE EDITORS 
Many modern text editors have a feature called “tag jumping” that helps a programmer to read and understand unfa-
miliar code. TERIDIAN Semiconductor recommends using such an editor to read, understand and modify 
demonstration code. Tag jumping is a feature that is not supported by the Keil uVision editor.  

This is how tag jumping works: 

1. A “tag file generator” program is run on some directories full of .c or .h files.  TERIDIAN Semiconductor 
recommends placing the tag file generator in a DOS batch file in the same directory as the project’s make file.  
Wattmeter demonstration code includes such a batch file: “T.BAT”.  To run a batch file, double-click it in 
windows explorer.  A DOS batch file is just an ASCII file (like a .C file) containing DOS commands.   DOS 
commands are described at http://www.computerhope.com/msdos.htm .  

2. The tag file should then be copied to convenient places for a text editor.  TERIDIAN Semiconductor 
recommends copying the tag file into each source code directory.  In that way, the default tag file location for 
most editors becomes just “.\tags” for all projects, and multiple projects do not conflict.  Copying the tag file 
can be an automatic part of the DOS batch file that generates the tag file.  

3. It is easiest if Windows explorer opens .C files automatically with the editor when they are clicked. To do this, 
change file associations.  (See Windows help.)  

4. Inside the editor, select a subroutine name or variable, then use the editor’s “tag jump” feature.  The editor 
immediately opens the file at the line where the subroutine or variable is defined.  Or, if the same symbol is in 
several places, it offers a choice of files.  

TERIDIAN Semiconductor recommends the “exuberant CTAGs utility” for generating tag files. The code can be found 
for free at: http://ctags.sourceforge.net/. The choice of a text editor is very personal.  Many editors support Exuberant 
CTAGS.  See the list of supporting tools at http://ctags.sourceforge.net/tools.html. 

v1.1v1.1 TERIDIAN Proprietary 41 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 

http://www.tortoisecvs.org/
http://www.computerhope.com/msdos.htm
http://ctags.sourceforge.net/
http://ctags.sourceforge.net/tools.html


 71M653X Software User’s Guide 

Some editors to be considered are: 

• VIM, see http://www.vim.org/ a free VI editor.  VIM is available in full-featured versions for Windows. VI is part 
of the POSIX standard, so using it is a portable skill. VIM wins awards for usability. 

• UltraEdit http://www.ultraedit.com/ , an inexpensive (not free), professional Windows programming editor.  
This editor works like all other Windows applications, with extra features to support programming languages.  
NEDIT (The Nirvana Editor) is very similar, at http://www.nedit.org/. NEDIT runs on Unix with Motif, and also 
supports exuberant CTAGs. 

• GNU Emacs, a free editor, also supports exuberant CTAGs.  See: 
http://www.gnu.org/software/emacs/emacs.html  

 4.13  ALTERNATIVE LINKERS 
Compiled and linked code can be significantly compacted by using the linker available with the Professional Compiler 
Kit PK51 from Keil (www.keil.com). 

The LX51 Enhanced Linker supplied with the PK51 kit (http://www.keil.com/c51/lx51.asp) is capable of code 
compression by up to 8% by rearranging code segments for AJMP and ACALL usage. 

  

All executables supplied with the Demo Boards were generated using the conventional compilers and linkers from Keil. 
That way, the supplied sources compile and link to the same code size as the pre-compiled object files. 

If it is desired to add more options to the source code than the BL51 linker can pack into a given code space, 
the LX51 Enhanced Linker should be considered. 

 

v1.1v1.1 TERIDIAN Proprietary 42 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 

http://www.vim.org/
http://www.ultraedit.com/
http://www.nedit.org/
http://www.gnu.org/software/emacs/emacs.html
http://www.keil.com/
http://www.keil.com/c51/lx51.asp


71M653X Software User’s Guide    

 

 

5
 5  DEMO CODE DESCRIPTION 

 5.1  80515 DATA TYPES AND COMPILER-SPECIFIC INFORMATION 

 5.1.1  Data Types 

The 80515 MPU core is an 8-bit micro controller (MPU); thus operations that use 8-bit data types such as “char” or 
“unsigned char” work more efficiently than operations that use multi-byte types, such as “int” or “long”. The Keil C51 
compiler supports ANSI C data types as well as data types that are unique to the generic 8051 controller family. Table 
5-2 lists available data types. Please refer to the Keil Cx51 Compiler User’s Guide for more details. 

Various types of address spaces are available for the 80515 MPU core of the 71M653X, and in order to utilize the 
various memory space types efficiently, the Demo Code uses variable type definitions (typedefs.) presented in this 
chapter. 

To understand the data types, it helps to examine the internal data memory map of the 80515 MPU core, as shown in 
Table 5-1: . 

 

Address Direct addressing Indirect addressing 
0xFF Special Function Registers 

(SFRs) RAM 
0x80 
0x7F 

Byte-addressable area 
0x30 
0x2F 

Bit-addressable area 
0x20 
0x1F 

Register banks R0…R7 
0x00 

Table 5-1: Internal Data Memory Map 

 

 

v1.1v1.1 TERIDIAN Proprietary 43 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

The demo software defines standard integers in util\stdint.h following the industry-standard notation. 

General data type definitions: 

typedef unsigned char uint8_t;  // an 8-bit byte, unsigned 

typedef unsigned short    uint16_t; // a 16-bit unsigned integer 

typedef unsigned long  uint32_t; // a 32-bit unsigned integer 

typedef signed char     int8_t; // a signed 8-bit integer 

typedef signed short     int16_t; // a signed 16-bit integer 

typedef signed long    int32_t; // a signed 32-bit integer 

 

Type definitions for internal data, lower 128 bytes, addressed directly: 

typedef unsigned char data uint8d_t; 

typedef unsigned short data uint16d_t; 

typedef unsigned long data uint32d_t; 

typedef signed char data int8d_t; 

typedef signed short data int16d_t; 

typedef signed long data int32d_t; 

Internal data is the fastest available memory (except registers), not battery-backed-up, but competes with stack, 
registers, booleans, and idata for space. 

Note: For portability, see uint_fast8_t and its sisters, which are POSIX standard. 

 

Type definitions for internal data, 16 bytes (0x20 to0x2F), addressed directly, and bit addressable: 

typedef unsigned char bdata  uint8b_t; 

typedef unsigned short bdata  uint16b_t; 

typedef unsigned long bdata  uint32b_t; 

typedef signed char bdata  int8b_t; 

typedef signed short bdata  int16b_t; 

typedef signed long bdata  int32b_t; 

Bit addressable memory is the fastest available memory, but it is not battery-backed-up. It competes with stack, 
registers, bools, data, and idata for space. The space is valuable for boolean globals and should not be wasted. 

Booleans are not a normal part of stdint.h, but they are fairly portable. When using the Keil compiler, the Booleans are 
stored in the address range 0x20 to 0x2F. Keil functions return bools in the carry bit, which makes code that's fast and 
small. 

typedef bit bool; 

#define TRUE 1 

#define FALSE 0 

#define ON 1 

#define OFF 0 

 

v1.1v1.1 TERIDIAN Proprietary 44 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

Type definitions for internal data, 256 bytes, in the upper 128 bytes addressed indirectly: 

typedef unsigned char idata  uint8i_t; 

typedef unsigned short idata  uint16i_t; 

typedef unsigned long idata  uint32i_t; 

typedef signed char idata int8i_t; 

typedef signed short idata  int16i_t; 

typedef signed long idata  int32i_t; 

Indirectly addressed internal memory is fairly fast, not battery-backed-up, slower than the data in the lower 128 bytes of 
internal memory. Competes with data for space. 

 

Type definitions for external data, 256 bytes of 2K of CMOS RAM: 

typedef unsigned char pdata  uint8p_t; 

typedef unsigned short pdata  uint16p_t; 

typedef unsigned long pdata  uint32p_t; 

typedef signed char pdata  int8p_t; 

typedef signed short pdata  int16p_t; 

typedef signed long pdata  int32p_t;  

The upper byte of the XDATA address is supplied by the SFR 0xBF (ADRMSB or USERP) on the 71M653x meter ICs. 
On other 8051 processors, P2 is used for this purpose. This memory range is accessed indirectly, still fairly fast, not 
battery backed-up. This is a logical place for nonvolatile globals like power registers and configuration data. 

 

Type definitions for external data, 2Kbytes of CMOS RAM, accessed indirectly via a 16-bit register: 

This is the slowest but largest memory area, not battery backed-up. It can be used for everything possible. On Keil's 
large memory model, this is the default. 

typedef unsigned char xdata  uint8x_t; 

typedef unsigned short xdata uint16x_t; 

typedef unsigned long xdata uint32x_t; 

typedef signed char xdata  int8x_t; 

typedef signed short xdata int16x_t; 

typedef signed long xdata int32x_t; 

 

Type definitions for external read-only data, located in code space:  

typedef unsigned char code uint8r_t; 

typedef unsigned short code uint16r_t; 

typedef unsigned long code uint32r_t; 

typedef signed char code int8r_t; 

typedef signed short code int16r_t; 

typedef signed long code  int32r_t; 

Access is indirect via a 16-bit register. This is the slowest but largest space, nonvolatile programmable flash memory. It 
should be used for constants and tables.  If the table is in banked space, the banking function switchbank() (defined 
in utils\bank.h and L51_BANK.A51) may be needed to bring the code bank into the address space. 

v1.1v1.1 TERIDIAN Proprietary 45 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 

Note: Throughout the Demo Code, an attempt has been made to put the most frequently used variables in the 
fastest memory space.  

 
Data Type Notation Bits Bytes Comments 
bit bool 1  Unique to 8051 
sbit  1  Unique to 8051 
SFR  8 1 Unique to 8051 
SFR16  16 2 Unique to 8051 
signed/unsigned char uint8_t 8 1 ANSI C 
enum enum 8 or 16 1 or 2 ANSI C 
unsigned short uint16_t 16 2 ANSI C 
signed short int16_t 16 2 ANSI C 
unsigned int uint16_t 16 2 ANSI C 
signed int int16_t 16 2 ANSI C 
unsigned long uint32_t 32 4 ANSI C 

float float 32 4 ANSI C 

Table 5-2: Internal Data Types 

 5.1.2  Compiler-Specific Information 

The 8051 has 128 bytes of stack, and this motivates Keil C's unusual compiler design. By default, the Keil C compiler 
does not generate reentrant code. The linker manages local variables of each type of memory as a series of overlays, 
and uses a call-tree of the subroutines to arrange that the local variables of active subroutines do not overlap.  

The overlay scheme can use memory very efficiently. This is useful because the 71M653X chips only have 2k of RAM, 
and 256 bytes of internal memory. 

The compiler treats uncalled subroutines as possible interrupt routines, and starts new hierarchies, which can rapidly 
fragment each type of memory and interfere with its reuse. 

To combat this, the following measures were taken when generating the Demo Code: 

• The code is organized as a control loop, keeping most code in a single hierarchy of subroutines,  

• The programmers eliminated unused subroutines by commenting them out when the linker complained 
about them. Also, the Demo Code explicitly defines interrupt code and routines called from interrupt code 
as "reentrant" so that the compiler keeps their variables on a stack. 

• When data has a stable existence, the Demo Code keeps a single copy in a shared static structure. 

With these measures applied, the Demo Code uses memory efficiently, and normally no memory issues are en-
countered. The Demo Code does not have deep call trees from the interrupts, so "small reentrant" definitions can be 
used, which keep the stack of reentrant variables in the fast (small) internal RAM. 

The register sets are also in internal memory. The C compiler has special interrupt declaration syntax to use them. The 
"noaregs" pragma around reentrant routines stops the compiler from accessing registers via the shorter absolute 
memory references. This is because the Demo Code uses all four sets of registers for different high-speed interrupts. 

Using "noaregs" lets any interrupt routine call any reentrant routine without overwriting a different interrupt's registers. 

 

v1.1v1.1 TERIDIAN Proprietary 46 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

There is a known defect in version 7.50a of the Keil compiler: 

Memory types must be explicitly defined in local variables. Using a predefined type is not explicit 
enough, i.e. "char xdata c;" is ok. "typedef char int8_t; ... int8_t data c;" is OK,  

but "typedef char data int8d_t; ... int8d_t c;" is not OK. 

 

 5.2  DEMO CODE OPTIONS AND PROGRAM SIZE 
Since the 71M6531 is single phase, and the 71M6534 is tree-phase, different versions of the Demo Code are provided 
that take into account the different features (see Table 5-3). An attempt has been made to provide the most common 
features in each version of the Demo Code. Flexibility is provided by the source code for users when recompiling the 
source code: If a certain feature is not required, it can be left out and replaced with a different feature.  

The object files contained in the Demo Kits have been generated with the following Keil compiler versions: 
• C compiler: C51.exe, V8.05a 
• Assembler: A51.exe, V8.00b 
• Linker/Locator: BL51.exe, V6.05 
• Librarian: LIB51.exe, V4.24 
• Hex-converter: OH51.exe, V2.6 

 

Version Flash 
Code Size Description 

Single Phase ~45KB Demonstrates a single phase meter. The software offers calibration and nonvolatile 
energy registers. It utilizes one set of CE code for 1 element two wire meters, and 
another set for 1 element three wire, and 2 element three wire delta. 

Three Phase ~49KB Demonstrates a three-phase meter. The software is easy to reconfigure by recompiling. 
It has calibration and nonvolatile energy registers. The software demonstrates a full 
feature set.  

Table 5-3: Demo Code Versions 

In addition to providing flexibility, an attempt has been made to leave a certain amount of unoccupied memory space 
when generating the Demo Code. This should provide some room for users who want to modify the Demo Code and 
experiment with small changes. 

The tables presented below show the features available for the three versions of the Demo Code plus the code size 
required for each feature. Entries for code size are approximated and depend on code module combination. 

Y means that the feature is implemented, N means that it is not. N/opt means that the feature may be implemented if 
enough memory space is available.  

 
Feature Code 

Size 
1φ 3φ Description 

CT and shunt 
resistors 

1KB to 
2.5KB 

Y Y Configurations include all 2 element 3 wire delta, and 
3 element 4 wire wye with neutral current.  These 
were selected for demonstration because they permit 
easy measurements of individual elements. 

Rogowski coils 2.5KB N N Needs special CE code; contact factory 

Table 5-4: Current Sensing Options 

v1.1v1.1 TERIDIAN Proprietary 47 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 
Feature Code 

Size 
1φ 3φ Description 

Chopping of 
VREF 

0.06KB Y Y Control of the chopping bit 

Temperature 
compensation of 
VREF 

0.1KB Y Y Digital compensation using the GAIN_ADJ input of 
the CE, based on linear and quadratic temperature 
coefficients 

RTC compensa-
tion using mains 
frequency 

0.2KB N/opt N/opt Optional compensation of RTC by counting cycles on 
mains. 
Correction does not occur when frequency 
measurement is inhibited by low voltages. 

Full RTC  
compensation 

0.2KB Y Y 2nd-order compensation of RTC to 4ppm, using 
temperature. Temperature based correction does not 
occur when the ADC mux is off-line.  

Temperature 
measurement 

0.0K Y Y Provides difference from calibration temperature to 
precision of 0.1 C when calibrated  

Table 5-5: Compensation Features 

 
Code 
Size 

1φ 3φ Description Feature 

Wh imports  Y Y Standard option of milliwatt hours, “999.999”   

Pulse output for 
Wh imports 

0.23KB Y Y Standard option of 1 kh/pulse on both DIO 6 and DIO 
2.  

VAn pulse output 0.25KB Y Y Volt-amperes, 1 kh/pulse  

Wh equation 0 0.2KB N/opt N 1 element 2 wire 

Wh equation 1 0.2KB N/opt N 1 element 3 wire 

Wh equation 2 0.2KB Y N 2 element 3 wire delta 

Wh equation 3 0.2KB N N/opt 2 element 4 wire delta 

Wh equation 4 0.2KB N N/opt 2 element 4 wire wye 

Wh equation 5 0.2KB N Y 3 element 4 wire wye 

Frequency 
register 

0.1KB Y Y Inhibited if freq > 70Hz or voltage is below the  
threshold  

Wh export register 0.25KB Y Y Wh exported, display reads “999.999”  

Wh export pulse 
output 

0.25KB Y Y Wh exported, display reads “999.999”  

VARh signed 
register 

0.1KB Y Y Used for autocalibration, and power factor 
calculations. 

VARh import 
register 

0.4KB Y Y  

VARh import 
pulse output 

0.25KB Y Y  

v1.1v1.1 TERIDIAN Proprietary 48 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

Code 
Size 

1φ 3φ Description Feature 

VARh export 
register 

0.4KB Y Y  

VARh export 
pulse output 

0.25KB Y Y  

Operating hours 
register 

0.36KB Y Y “99999.9”  Nonvolatile count of hundredths of hours 
of powered operation since first cold start.  

RTC time register 0.18KB Y Y  

RTC date register 0.21KB Y Y  

Pulse source 
selection 

0.4KB Y Y This is the ability to route most calculated energy 
values to a pulse output. 

Dual IMAX 
registers 

0.2KB Y N IMAX2 adjusts current, Wh and VARh from channel B 
to same units as A. Creep thresholds are required, 
but need not be adjusted when IMAX2 changes.  

Neutral Current 0.3KB N Y This includes not just a measurement, but also a limit, 
and a count of overcurrent events. 

RMS current 
register 

0.2KB Y Y Implemented for all phases “000.000”   Includes 
element currents, arithmetic sum of currents and (if 
supported) neutral current. 

RMS voltage 
register 

0.2KB Y Y Implemented for all elements “000.000”  

Power factor 
register 

0.3KB Y Y All phases are displayed with sign. Volatile.  

Pulse count 1.2KB Y Y Both the Wh and VARh pulses are counted. 

Mains edge count 0.3KB Y Y Counts total zero crossings, and zero crossings in the 
last accumulation interval, of element A. 

Table 5-6: Power Registers and Pulse Output Features 

 

 

v1.1v1.1 TERIDIAN Proprietary 49 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Feature 

Feature Code 
Size 

1φ 3φ Description 

Creep mode 0.37KB Y Y Adjustable at calibration. 
If V < Vthreshold and I < Ithreshold for all elements, 
then creep. 

Zero accumulator 
of CE 

N/A Y Y The pulse accumulation register in the CE is cleared 
to prevent spurious pulses from low current noise.  

Current threshold N/A Y Y Adjustable at calibration. 

Set If max(abs(IA2), abs(IB2)) < Current threshold 
then creep mode. 
Current is calculated from RMS if possible, or, if 
below 0.1A, from VA / V, where VA is calculated as 
sqrt(Wh^2 + VARh^2) 
For all elements.  

Voltage threshold 0.12KB Y Y Adjustable at calibration. 

If max(abs(VA2), abs(VB2)) < Volt threshold 
inhibit frequency measurement, (frequency of zero) 
Inhibit use of zero crossing counts, (main edge count 
is zero), iInhibit voltage phase measurement (if any) 
This feature is needed only if frequency or mains 
edge count is present.  

Table 5-7: Creep Functions 

 
Feature Code 

Size 
1φ 3φ Description 

Brownout mode 0.1KB Y Y Used to enter sleep and LCD modes. Command line 
interface is available (32KB) when resetting into this 
mode. Command prompt in this mode to be “B>”.  

LCD mode 0.5KB Y Y Is entered automatically when power fails. Displays 
the Wh register, waits 7 sec using wakeup timer, then 
initiates sleep mode.  

Wake button 0.5KB Y Y When in sleep mode, enters LCD mode.  

Wake timer 0.5KB Y Y Used to exit the LCD mode, and enter sleep mode.  

Table 5-8: Operating Modes 

Note: The sleep mode does not require any support by MPU code. The mission mode performs the other code 
features. 

v1.1v1.1 TERIDIAN Proprietary 50 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

Feature 

Feature Code 
Size 

1φ 3φ Description 

Reception of 
calibration 
parameters via 
the serial interface 

2.0KB Y Y Simple serial calibration system to read and set data 
and calibration values, including CE data, MPU 
calibration and RTC settings. Meter operation is not 
required when this feature is in use. Intel hex records 
are used. 

Count of 
calibrations since 
first cold reset.  

01.KB Y Y Counts calibrations. 0..254, 255 = “many”. The count 
is protected by a checksum. The first cold reset is 
detected by an invalid EEPROM. This is a tamper-
detection feature.  

Auto-calibration 3.5KB Y Y Internal automatic calibration, from command line 
interface. Calibration adjusts phase, as in the “fast 
calibration” described in the DBUM. 

Command Line 
Interface (CLI)  

23KB Y Y Text-based commands give access to CE data, RAM, 
IO registers. Includes on-line help. No profile or load 
features..  

Save registers 
when sag occurs 

0.75KB Y Y Saves power and error registers on sag detection.  

Save to flash 
memory 

0.9KB N/opt N/opt Compilation option to save calibration, error and 
power register data to internal flash. 
When a flash area is used-up, it is marked, and the  
next one is used. When all areas are used up, an 
error is recorded and write operations are inhibited.  

Save to and 
restore from 
EEPROM  

0.7KB Y Y Saves and restores calibration, error and power 
register data to and from EEPROM.   
When an EEPROM area is used-up, it is marked, and 
the  next one is used. When all areas are used up, an 
error is recorded and write operations are inhibited.  

Checksum 0.2KB Y Y Each revenue-affecting data area is protected by a 
simple checksum  

0.4KB Y Y Errors are recorded. Error data is protected by a 
checksum. The time stamp (minute, hour, day and 
month of assertion) and the bit number of the five 
most recent errors are saved. 

Error recording 
and saving 
 

Microwire 
EEPROM  

0.2KB N/opt N/opt Compilation option 

I2C EEPROM  0.2KB Y Y For an Atmel AT24C256. 

Table 5-9: Calibration and Various Services 

 

 5.3  PROGRAM FLOW 
This section should be read with a PC that has demo code’s source code installed. This section is supposed to help 
you learn to find and change things in the demo code, not just learn theory. 

So please, put the demo code sources on a PC now, and sit next to it! 

v1.1v1.1 TERIDIAN Proprietary 51 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 5.3.1  Startup and Initialization 

The top-level functionality of the Demo Board is controlled by the high-level functions. The start-up code and main loop 
is in the main() program (in main\main.c). It performs the following steps: 

1. Reset watchdog timer 

2. Process the pushbutton (PB) when in BROWNOUT mode. 

3. Initialize hardware, pointers, metering variables, UART buffers and pointers, CE, restoration of calibration co-
efficients, initialization of LCD w/ “HELLO” message), enabling CE and pulse generators. 

4. Execute the main_run() routine in an endless loop. In this loop, the background tasks, such as metering, 
processing of  timers, etc. are performed. In this loop, if a command is waiting, the command line interface 
(CLI) reads it and does it. 

Before the MPU gets to execute the main() program, it will execute the startup code contained in the STARTUP.A51 
assembly program.  This code jumps form the reset vector, at address 0x0000, to C_START, the startof the 
initialization code. 

After disabligninterrupts, setting the security bit (if needed) and clearing memory, STARTUP.A51 jumps to C_START, 
in Keil’s assembly program init.A51 (in Keil/C51/LIB). Init.A51 sets up the 8051 for Keil C and jumps to main(). The 
startup files are described in section  5.10 . 

The stack is located at 0x80, growing to higher values, while the reentrant stack is located at 0xFF, growing down-
wards. 

Once operating, the main() program expects regular interrupts from the CE. 

The main() program calls the main_init()and the main_run() routines. main_init() initializes the meter’s 
hardware and software.  main_run() is the main loop.   

 5.4  BASIC CODE ARCHITECTURE 
The TERIDIAN 71M653X firmware can be divided into two code parts, the main loop (or “background”), and the 
interrupts (or “foreground”). 

The initialization and main loop takes care of the non time-critical functions.  After the meter is initialized, the main loop 
runs all the time.  The main loop is a small loop near the end of main() in main\main.c.   

The main loop performs multitasking by calling a different subroutine for each major system task.  The subroutines 
called in the main loop are usually either waiting for data, or the data is available and they can process it.   

If they are waiting, they test a flag or counter and then return to the main loop, freeing the MPU to call other 
subroutines. The meter doesn’t have many tasks, so checking flags is much faster than putting event records in a 
queue and then interpreting them. (Queuing is the other common scheme.) It’s also easier to read the code. 

These task routines will be discussed more below. 

As much code as possible is called from the main loop.  This helps the Keil linker to use less RAM when it organizes 
the overlays for the temporary variables.  Also, code for the main loop is easier to write than interrupt code.  For 
example, the software timers’ update routine, stm_run() (Util\stm.c) is called from the main loop (see 
main_background() in main\main.c) instead of a timer interrupt, because it reduces the chances that a timer routine 
will be called in an unexpected way at an unexpected time. 

The meter has to keep running while waiting for serial input or output from the user. So, the main loop has two parts 
(see main_run()and main_background() in main\main.c).  The serial input and output routines call 
main_background() to keep the meter running while waiting for serial input from or output.  For example, see 
Serial0_CTx() in cli\ser0cli.c.  main_background() calls the task subroutines needed to keep the meter running.  
main_run() calls the serial input and output code (e.g. the command line interface or an AMR system) in addition to 
calling main_background() to run the meter.  Thus, no routine called from main_background() should perform 
serial I/O, because the serial I/O might try to call main_background() and this could cause an infinite recursion that 
would overflow the stack.  The Keil linker automatically generates a “recursion error” if such code is written. 

The second part is the interrupt-driven code (Foreground), such as the CE_BUSY Interrupt, Timer Interrupt, and other 
Interrupt service routines.  The interrupt service routines (ISRs) get the data, and set a flag or counter to tell the 
background routine to stop waiting.  These will be discussed more below. 

v1.1v1.1 TERIDIAN Proprietary 52 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 5.4.1  Initialization 

When the power applied for the first time or RESETZ is asserted, the 71M653X device executes the code pointed to by 
the reset vector.  

 5.4.2  Interrupts 

There are 13 interrupts available for the 80515, and the revision 4.4 Demo Code uses 11 interrupts. Table 5-10 shows 
the interrupt service routines (ISRs), the corresponding vectors (Table 6-58 in section 6.3.5.4) and their priority, as 
assigned by the MPU using the IP0 and IP1 registers (see section 6.3.5.2).  In general, stubbed interrupts or shared 
interrupt code is defined in meter\io653x.c. 

 
Interrupt Source Interrupt Service 

Routine 
External or 

Internal  
Interrupt 

In source file Vector Priority 
(3 = 

highest) 
Pulse count pcnt_w_isr() EXT0 Meter\pcnt.c 0x03 0 
Pulse count pcnt_v_isr() EXT1 Meter\pcnt.c 0x13 3 
Flash-Write collision 
fwcol0 

fwcol_isr() EXT2 Meter\io653x.c 0x4B 0 

Flash-Write collision 
fwcol1 

fwcol_isr() EXT2 Meter\io653x.c 0x4B 0 

CE Busy ce_busyz_int() EXT3 Meter\ce.c 0x53 3 
Power fail/power return pll_isr() EXT4 Main\batmodes

.c 
0x5B 3 

EEPROM eeprom_isr() EXT5 IO\eeprom.c 0x63 0 
XFER busy ce_xfer_busyz_isr () EXT6 (shared 

w/ RTC) 
Meter\ce.c 0x6B 2 

RTC rtc_isr() EXT6 (shared 
w/ XFER) 

IO\rtc_30.c 0x6B 2 

NEAR_OVERFLOW xfer_rtc_isr () EXT6 (shared 
w/ XFER) 

Meter\io653x.c 0x6B 2 

Timer0 tmr0_isr()  IO\tmr0.c 0x0B 0 
Timer1 tmr1_isr()  IO\tmr1.c 0x1B 3 
UART 0 es0_isr     IO\serial.c 0x23 0 
UART 1 es1_isr     IO\serial.c 0x83 0 

Table 5-10: Interrupt Service Routines 

In general, a higher priority interrupt can preempt lower-priority interrupt code. The interrupt priority hardware is 
controlled by two registers, IP and IP1 (named IPL and IPH in the demo code). The MPU supports four priorities, and a 
fifth is possible with a small amount of software support. 

The best practice is to set priorities once, near the start of initialization. Setting priorities dynamically while interrupts 
occur can have undefined results. Since some of the interrupts detect power failures that can occur at any time, 
changing interrupt priorities in the middle of the code is not recommended. 

In the 653x demo code, interrupt priorities are set higher for urgent tasks. Among equally-urgent tasks, priorities are set 
higher for faster interrupts. The following describes interrupt priorities for the version 4.3.3 of the Demo Code: 

The priority is set once, in main_init() of main\Main.c. It is also cleared to 0s in the soft reset routine, but this is 
followed by logic that calls four RTIs to reset the interrupt acknowledge logic for all four hardware interrupt levels.  The 
system priority value is assembled from constants in Main\options_gbl.h. The constants are defined in Util\priority2x.h. 

The highest priority interrupt group is the PLL_OK interrupt (external interrupt 4, see Main\batmodes.c), and timer 1.   
PLL_OK is urgent because it indicates power supply failure, and the software must start battery modes. Timer 1 shares 
the same priority bits, and is currently unused (sample code is in Io\tmr1.c, &.h), though earlier versions used it to set 
the real-time-clock. 

v1.1v1.1 TERIDIAN Proprietary 53 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

The high-priority interrupt group is used for CE_BUSY (external interrupt 3, see Meter\ce.c), pulse counting (external 
interrupts 0 and 1, Meter\pcnt.c) and  Serial 1 (Io\ser1.c&.h). External interrupt 3 and 1 share priority bits, as does 
external interrupt 0 and serial 1. CE_BUSY is urgent because it occasionally reads the CE's status to detect sag. The 
pulse counting interrupts are less urgent, but they are small and run very quickly. Serial 1 is intended for AMR, so 
making its interrupts high priority should help its data transfer timing to be more reliable. 

The low priority group contains Serial 0 and Timer 0. These can generally wait a millisecond, and if necessary, can 
afford to miss fast interrupts. Serial 0 is the command line interface (See the directory Cli), and Timer 0 is run at a 10 
millisecond interval as the timebase for the software timers (Util\tmr.c, Io\tmr0.c&.h). Serial 0 shares its priority bits with 
the interrupt of the EEPROM (external interrupt 5), currently unused (code is available in Io\eeprom.c). Timer 0 shares 
its interrupt priority bits with FWCOL, the flash write timing interrupt, also unused (flash code is in Util\flash.c). 

The lowest priority is xfer_busy_isr() (Meter\ce.c) and the rtc_isr() interrupts (Io\rtc_30.c; both share external interrupt 
6, Meter\io653X.c). These can usually wait up to half a second. The XFER_BUSY interrupt, in particular, takes up to 4 
milliseconds to copy data from the CE, so though it is very important, it needs to be low priority in order to let other 
interrupts run. 

The RTC can be calibrated by using the 1 seconds and 4 second outputs of TMUX, and measuring the external square 
wave against a traceable time standard.   

All unused interrupts have stub routines that record and count a spurious interrupt, and then disable the interrupt.  
These are in meter\io653x.c. 

Although the demo code does not do this, it is possible to run preemptive code at the same interrupt priority as the 
main loop. This creates a fifth priority below the lowest priority. To do this, set an interrupt to the lowest priority. This 
interrupt's service routine must push the address of the fifth-priority code on the stack, and run RTI. RTI clears the 
fourth-priority hardware, and then returns into the fifth-priority code, running it at the same interrupt level as the main 
loop.  For example, this permits preemptive software timers that run at the same priority as the main loop. 

All interrupt service routines (ISRs) must be declared “small reentrant”. Also, all routines called by ISRs must be re-
entrant as well. Priorities are set using the IP0 and IP1 SFRs, as follows: 

• IP0 (SFR 0xA9) = 0x1A = 0001 1010 
• IP1 (SFR 0xB9) = 0x2C = 0000 1100 

This results in the priority assignment shown in Table 5-11. 

 

Group IP1 Bit IP0 Bit Priority Affected Interrupts 
0 0 0 0 External interrupt 

0 (DIO) 
UART 1 interrupt - 

1 0 1 1 Timer 0 interrupt - Ext 2 (comparators)
2 1 0 2 External interrupt 

1 (DIO) 
- Ext 3 (CE_BUSY) 

3 1 1 3 Timer 1 interrupt - Ext 4 (comparators)
4 0 1 1 UART 0 interrupt - Ext 5 (EEPROM) 
5 0 0 0 - - Ext 6 (XFER_BUSY, 

RTC_1S 

Table 5-11: Interrupt Priority Assignment 

 5.4.2.1  Pulse Counting Interrupts 

The pulse count code is in meter\pcnt.c. 

There are four digital pulse outputs, and these outputs share a pin with DIO_6, 7, 8 or 9.  DIOs from 0 (the push button) 
to 12 can be configured to generate interrupts, gate a timer, or count a timer (See the data sheet, DIO_RPB..DIO_RRX 
starting at 0x2009). 

The pulse counting interrupts count Wh and VARh pulses by setting up int0 and int1 (generic external interrupts) to 
read the Wh and VARh pulse outputs on DIO_6 and DIO_7.  Although the demo code does not do it, the timers could 
also be used to count pulses, especially at high rates.  The demo code does not currently use timer 1, and uses timer 0 
as described below (in the section on the timer interrupt). 

v1.1v1.1 TERIDIAN Proprietary 54 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

Once per second, the RTC_1_SEC interrupt runs.  It calls a pulse counting routine that takes the counts from the pulse 
interrupts, and adds them to global pulse counts.  These pulse counts roll over at one million (1x106).  This step is 
needed to synchronize the pulse counts with real time, since most tests of the pulse counts compare them against real 
time. 

TSC deprecates pulse counting because the direct CE registers are more precise, and easier to synchronize. The 
accuracies are the same, because the pulse outputs are driven from CE register data. 

 5.4.2.2  FWCOL0 and FWCOL1 

These occur when the CE is active, and there’s an attempt to erase or write to flash. 

TSC’s demo code has no flash write routines in the standard release, so these interrupts are directed to a stub that 
detects spurious interrupts. 

 5.4.2.3  CE_BUSY Interrupt 

The CE_BUSY interrupt (ce_busy_isr() in meter\ce.c) detects mains power failure by reading the CE’s status.  If 
there’s a power failure, it saves two copies of the power registers. 

Why two copies?  The meter cannot predict when a power failure will occur.  So, it always has to have valid data.  The 
first copy is updated by the meter calculations.  The second is copied after the first one is done.  So, one copy or the 
other always has good data.   

Both copies have  a check for bad data.  When the meter starts up, it  uses the first copy with good data. 

Many power grids have reclosers, circuit breakers that reset automatically several times.  When a recloser trips, the 
power grid rapidly switches from two to ten times.  The time between reclosings varies, but is usually near 100 
milliseconds.   

Some utilities simulate recloser operation and test meters for anomalies.  Some meters have anomalies from recloser 
operation. 

The demo code copes with reclosers by saving registers on the first power failure, and then ignoring following power 
failures for up to 1/3 second.  It ignores them by testing a counter (sag_timer) for zero, before saving registers.  It 
restarts the counter when the CE starts up and each time power fails.  It counts down on normal ce_busy interrupts. 

This interrupt occurs very often, 2500 times per second.  So, the interrupt saves MPU time by running all the logic only 
1/8 of the time.  It has a counter. 

 5.4.2.4  PLL_ISR 

When V1 goes below the comparison voltage, the meter IC switches to battery power.  At the same time, the IC’s 
electronics automatically takes action to reduce the power use.  It switches off the CE, ADCs and phase-locked loop, 
and switches the MPU clock from the phase-locked loop to 28kHz (7/8 of the crystal rate, but able to operate the serial 
ports at 300 BAUD).  

It then sets the PLL_FALL bit, which causes an interrupt. 

The interrupt code (pll_isr() in main\batmodes.c)  tests to see if a battery exists. 

Since some meter ICs can operate the MPU with VCC as low as 1.5V, when there is no battery the MPU can corrupt 
some EEPROMs by trying to write to them.  So, if there’s no battery, the interrupt waits forever for the power to come 
back.  If the power does not return, the loop in this high priority interrupt prevents the MPU from trying to write to the 
EEPROM.  Basically, the loop confines the MPU’s low-power behavior to the loop. 

If there’s no battery and the power returns while the interrupt is waiting, the code simulates a reset to start up the meter 
again.  When leaving brownout, the code could just restore the system state in some way, but the CE was turned off, 
and its filters have unlocked from the mains.  A simulated reset reuses reliable pre-existing code, and still starts up the 
meter well before the CE could regain PLL lock. 

If there is a battery, the code immediately performs a simulated reset to quickly get to the battery mode code in 
main\main.c 

The simulated reset in the battery case keeps the battery mode code in one place.  The sleep and LCD-only states 
start the MPU from the reset vector.  So, some location on the reset path is the only place in which all system restart 

v1.1v1.1 TERIDIAN Proprietary 55 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

execution paths can be made to occur.  The early part of main() is convenient, and a simulated reset is an easy, 
reliable way to get there. 

The code does not display the normal reset indications when doing simulated resets, because when debugging 
electrostatic discharge problems, displaying reset indications causes engineers to try to fix the reset pin, rather than 
V1. 

 5.4.2.5  EEPROM Isr 

The IC’s two-wire interface operates at the standard clock rate of about 30kHz.  It can be operated reasonably 
efficiently with a polling interface or an interrupting interface.   

The interrupting interface (IO\eeprom.c) is installed in the demo code as an example.  It uses less CPU time, and 
interacts less with other system software.  The interrupt steps through a state machine that writes the needed bytes to 
read or write data to an Atmel EEPROM with 19-bit addressing. 

A polling interface to the IC’s two-wire interface works well, and TSC uses one to support drivers for many other types 
of EEPROMs.  To install them, see the all-options code set (in io\iiceep.c, io\eepromp.c, io\eep24c08.c) or contact 
factory support.   

Bit-banging drivers are not recommended for the two-wire interface.  In the two-wire interface, each 8 data bits sent are 
followed by a received “ACK” bit.  Some EEPROMs start the ack bit as soon as 50 nanoseconds after the clock line 
falls.  This can easily be before the bit-banging driver switches the data line to an input. The resulting brief, high-
frequency electrical short can cause system anomalies.   

Typical EEPROMs delay 1.5 microseconds before asserting ACK, so bit-banging will usually work on the bench, but in 
high-volume production, an occasional EEPROM will cause bus contention.  It is possible to reduce the contention 
current by placing a 1K resistor in the data line, but it’s even better to use non-contending driver software using the IC’s 
two-wire electronics. 

 5.4.2.6  Timer Interrupt 

timer0 of the MPU is the main system timer (IO\tmr0.c, .h).  The demo code has it call a callback routine, so that the 
timer code can be applied to any need.  Also, the timer code can automatically run the timer as a periodic timer. 

In the demo code, timer 0 is used to generate a 10ms timer tick, which is adjusted for the MPU’s clock speed. The 
timer tick (variable tck_cnt) is started from and used to update the software timers (See Util\stm.c). The software 
timers are updated by the stm_run() function in the main loop of the background task. Eight software timers can be 
simultaneously running. 

If it is desired to change the system timer to timer1, the include file called out in stm.c has to be changed to tmr1.h. 

timer1 is unused, and may be used for other purposes.  Tested code to operate timer 1 is available in the extended 
code release. 

Various macros are available to control the timers: 

• tmr_start(A, B, C) has three parameters: A is the timer time, the number of ticks to reload on each 
interrupt.  B is true if the timer should restart itself when it expires. C is a pointer to a reentrant function. 

• tmr_stop() stops the timer. 

• tmr_running() returns TRUE if the timer is running. 

These routines are very similar to the software timer commands, in stm.h. 

 5.4.2.7  The XFER_BUSY, RTC and NEAR_OVERFLOW Interrupt 

All of these slow events share one external interrupt.  The interrupt is decoded by an interrupt routine in Meter\io653x.c. 

The XFER Busy interrupt (xfer_busyz_isr() in Meter\ce.c) is requested by the CE at the conclusion of every 
accumulation interval. In the 6530 series, waits until the CE is operating, then it enables the pulse outputs.  After that, 
for every interrupt it just sets a flag to tell the background data that fresh metering data is available.  The CE’s data is 
read directly from CE RAM. 

After reset the first second of data from the CE is discarded.  It takes about one second for the PLL in the CE to settle 
and (therefore) for the filtering to be reliable (variable ce_first_pass). 

v1.1v1.1 TERIDIAN Proprietary 56 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

The RTC interrupt performs any resynchronization of the real-time clock.  In the 6530, this loads the latest timing 
adjustment, and transfers pulse counts. 

The near overflow interrupt is a diagnostic tool to find code that causes a watchdog interrupt. 

 5.4.2.8  SERIAL Interrupt 

es0_isr() (IO\ser0.c, CLI\serial0.c) is the ISR servicing UART 0. This isr is just the hardware layer.  It calls an input 
macro (SER0_RCV_INT), and an output macro (SER0_XMIT_INT) that buffer the data.  The macros are defined in the 
options.h include file.  They map to cli0_in() and cli0_out() (in CLI\ser0cli.c).  An AMR routine can be spliced in 
just by writing the input and output code, and changing the options.h file. 

In this ISR, the UART data is sent and received using XON/XOFF flow control. Parity and other serial controls are 
managed in this ISR.   The guts of the code are in ser0cli.c.   

cli0_in() takes a character in, and decides if it is XON or XOFF.  If not, it puts it into a circular buffer and counts it.  
The circular buffer’s index is made to restart by masking (logical anding) it.  If the count of data in the buffer is too big, it 
sends an XOFF.  The XON is sent later, by the code that takes data out of the buffer: see the code that calls 
flow_on(). 

cli0_out() first sees if it has to write a flow character.  If not, then if there’s no more characters to send, it disables 
the transmit interrupt.  If there’s more to send, and the flow is enabled, it gets a character out of the circular transmit 
buffer and sends it.  If the flow is turned off, it disables the transmit interrupt.  

The output code is designed to switch a driving pin, as well.  There’s a flag “has_run”, which is polled by a software 
timer routine, ser0_free_timer().  If has_run is not set, the timer switches off the external pin or driver.  In the 
demo code, this switches DIO2 between OPT_TX from serial output 1, and WPULSE.  The timer is used so that the 
output switches well after the last character is sent.  The serial interrupt overhead is low, because the timer routine is 
only allocated once, at the start of transmission.  Pulse outputs change so slowly that they are invisible to most UARTs. 

The alternative serial port, UART 1 uses an ISR with identical code structure and function (es1_isr in IO\ser1.c and 
CLI\ser1cli.c).  The code can be identical because it uses a different .h file to define different serial IO macros that have 
the same names.  The buffer-level code was written once, and then ported instantly by copying the code and just 
testing it. 

Both serial ports are enabled at all times. 

 5.4.3  Background Tasks 

 5.4.3.1  meter_run() 

This does all the metering calculations.  It’s in Meter\meter.c, called from the main loop main_background() in 
Main\main.c  Putting the calculations in the background makes the code faster because the local variables don’t have 
to be on Keil’s reentrant stack.  They can be statically allocated overlays, instead. 

First, it checks to see if there’s more meter data.  That is, whether an accumulation interval finished and caused a 
xfer_busy interrupt.  It checks the flag, xfer_update set by the xfer_busy() interrupt in meter\ce.c.   

If the flag is clear, then there’s no new meter data, so it returns to the main loop. If there’s new data, it processes it. 

In the processing, first it checks to see if there was a request to clear the metering registers (“)1=2” clears the metering 
registers).  The clearing has to be synchronized with the meter calculation. 

Next it counts accumulation intervals (variable cai).  This count is useful to find the exact number of accumulation 
intervals for calibration or meter tests.  In a real meter, this number is useful in a demand calculation, because the 
average demand in a demand interval is the total VAh in a demand interval, divided by the number of accumulation 
intervals.  Util\math.c has a routine s2f() to convert a power register into a floating point number.  Accumulating 
demand in a power register, and then dividing avoids any possibility of floating point underflow in the demand 
calculation.  The demo code does not include a demand calculation because most customers have preferred 
algorithms. 

The while loop synchronizes the meter calculation with the CE’s accumulation interval. 

RescalePhaseB() is used only in the single-phase demo code.  Some customers use a shunt on one element, and a 
current transformer on the other.  These elements have different Wh/count, and rescaling adjusts PhaseB, usually the 
lower-accuracy, in terms of PhaseA, usually the higher accuracy current sensor. 

v1.1v1.1 TERIDIAN Proprietary 57 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

ComputeRMS() derives the voltages and current numbers used for creep detection. 

ComputeSmallRMS() divides the Wh or VAh by the voltage to derive more accurate current values at small currents.  
This works because the Wh and VARh have better filtering and a lower noise floor than the basic current  calculation.  
This calculation is especially useful to prevent creep using shunts. 

ApplyCreepThreshold() (meter\meter.c) clears the Wh to zero if either the volts or current are below the 
minimum thresholds VThrshld and IThreshld. 

The calculation is designed for use in an AMR system.  Basically, as long as XFER_UPDATE is true, the meter 
calculation is in progress.  TSC has code for a FLAG interface in the all options code set. 

Wh_Accumulate() (meter\Wh.c) adds up the watt-hours.  Since the CE’s output is signed, true four-quadrant 
metering is possible.  The demo code separates code into imports and exports.  Antitamper “absolute value” versions 
are available as well.  The phase shift behavior, DC response, and other signal-processing traits depend on the CE’s 
code.  For special signal processing needs, contact the factory. 

VARh_Accumulate() (meter\VARh.c) adds up the volt-amp-reactive-hours. Since the CE’s output is signed, true four-
quadrant metering is possible.  The demo code separates VARh into imports and exports.  Antitamper “absolute value” 
versions are available as well.   The 6530 does IEEE “pure” signed VARh measurements.  They have the same 
accuracy as the Wh measurements.  The phase shift behavior and other signal-processing traits depend on the CE’s 
code.  For special signal processing needs, contact the factory. 

SelectPulses() (meter\pulse_src.c) selects the pulse sources to emit to the pulse outputs.  Every element’s Wh, 
VARh and VAh are available, as well as totals, A2h, and V2h. 

DetermineFrequency() (meter\freq.c) handles the creep associated with frequency and the mains edge count.  The 
mains edge count is important when the real-time-clock is slaved to the line frequency. 

DeterminePeaks() (meter\Peak.c) detects peaks and sags, over-current, and also temperature excursions, which 
can be a sign of over-current. 

ComputePowerFactor()  performs the power factor calculation once and caches it.  TSC also has sample code to 
calculate phase angles and phase-to-phase voltages.  Contact the factory or see the code set with all options. 

GainCompensation() adjusts the meter’s rate for the current temperature, using a quadratic adjustment.  This is the 
logic that uses PPMC1 and PPMC2 to adjust for the ADC’s voltage reference, and temperature-based changes in the 
current and voltage sensors. 

RTCCompensation() adjusts the rate of the meter’s real-time-clock for temperature, using a quadratic adjustment.  
This is the logic that uses Y_CAL0, Y_CAL1 and Y_CAL2. 

 5.4.3.2  Command Line Interpreter (CLI) 

The command line interpreter is cli(), (in cli\cli.c) called from main_run() (in main\main.c). 

In main_run(), cmd_pending() (in CLI\io.c) gets a line of text from the user.  Then, it returns a nonzero to indicate 
that the line buffer has data.  cmd_pending() is complicated because it echos the characters, and edits the line 
using backspace. 

main_run() then calls cli() to interpret the characters in the line buffer.  cli() calls routines like get_upper() 
(CLI\io.c) to get characters from the line buffer. 

While the idea is simple, the code is surprisingly large, and resists simplification. 

 5.4.3.3  Auto-Calibration 

The auto-calibration is an automated version of the “fast” calibration discussed in the DBUM.   This section describes 
the code, then derives the mathematics. 

Before the calibration starts, the applied (ideal) voltage and current have to be entered by the user in the MPU memory 
locations VCAL and ICAL.  TSC’s experience is that optimal results are obtained with the default two second 
calibration, but this time can be extended by writing the number of accumulation intervals to SCAL. 

The procedure of this calibration method is the same as for the fast calibration procedure, as described in the DBUM: 
The tangent of the ratio of VARh and Wh determines the phase angle. The ratio between applied (ideal) and measured 
voltage determines the voltage gain. However, whereas the calibration spreadsheet uses extensive trigonometric 

v1.1v1.1 TERIDIAN Proprietary 58 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

functions, the same equations were rewritten in the Demo Code to use much simpler mathematical operations that are 
closer to the capabilities of the MPU. 

As with the procedure presented in the DBUM, a signal with the described voltage and current should be applied to the 
meter and held constant during the auto-calibration process. 

The cal_begin() routine starts the calibration state-machine by setting the flag cal_flag to YES, after setting the 
calibration factors to default values, recording the calibration temperature, calculating the temperature compensation 
coefficients and setting the counter cs for calibration cycles. 

The calibration state machine is the routine Calibrate() (in meter\calphased.c) called by meter_run() (in 
meter\meter.c).  After calibration is started by cal_begin(), meter_run() calls Calibrate() once per 
accumulation interval, when new metering data is available. 

Calibrate() uses the variable cs (count of seconds) to control the stabilization delay, measurement time and adjustment 
phase.  cs counts down. 

1) If cs > Scal: The state machine waits for the CE to settle after the unity gain and temperature 
compensation data are loaded in the routine cal_begin(). 

2) If cs = Scal: The variables for cumulative V, Wh and VARh are cleared. 

3) If 0 <= cs <= Scal: For V, Wh and VARh are added to the variables. Using two accumulation intervals is 
enough because it covers both chop polarities of temperature measurements. 

4) If cs = 0: This signals the end of the calibration. measurements are then used to calculate and set the 
calibration coefficients for phase, voltage and currents in CE DRAM. 

5) The adjustments are saved to nonvolatile memory. 

The calibration is fast because the measurements are collected from all the elements simultaneously during the 
measurement interval.  When the gains and phases are adjusted, the code quickly steps through a table of indexes, 
reading the data from each element and writing the adjustments for each element. 

The calibration is so fast that TSC believes that it may pay to use this method to calibrate a meter in equation 2 or 5, 
and then change to the actual metering equation, possibly even reloading the code. 

High accuracy temperature calibration: 

For accuracies up to 0.5%, standard values can compensate the ADC and voltage regulator for temperature.  For 0.2% 
or better accuracy, high accuracy “trimmed” parts are usually required. The trimmed parts have a temperature 
response that is characterized at the factory, and programmed into the part.   

The demo code has sample code to adjust the quadratic temperature parameters of a meter containing a trimmed part.  
See compensation() in meter\calphased.c 

In these meters, the current and voltage sensors also usually have temperature compensation curves, and these 
usually need to be compensated as well. The demo code has an explicit place to combine the data into a single 
quadratic compensation. See compensation() in meter\calphased.c. 

Contact factory support for information about trimmed parts. 

Linear (non-phase-adjusted) calibration: 

In the extended code set, TSC maintains autocalibration code that does a linear adjustment of the gains for current and 
voltage, without adjusting phase. 

Derivation of the calibration equations: 

These calculations assume that during the meter's calibration measurements, the CE  gains are unity, 16384, and the 
phase adjustments are zero.  The applied signal is assumed to be a sine applied to both the current and voltage 
measurement with no phase shift. 

A non-trignometric derivation for the fast calibration is generally superior because the cos() of the typically tiny 
corrective angle Φ is just not that accurate.   

v1.1v1.1 TERIDIAN Proprietary 59 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Here's how it is derived: 
 
To calculate phase correction: 
 

tan (Φ) = -VARh_measured/Wh_measured 
 
The value of tan(Φ) can be used directly without calculating trigonometric values. 
 
For 60Hz metering, from the data sheet, 
 

ce_phase_corr = 1048576 * ((0.02229 * tan(Φ))/(0.1487 - (0.0131 * tan(Φ)))) 
 
For 50Hz metering, from the data sheet, 
 

ce_phase_corr = 1048576 * ((0.0155 * tan(Φ))/(0.1241 - (0.009695 * tan(Φ)))) 
 
For the volts: 
 

V_gain = Volts_applied/Volts_measured 
 
But, the CE’s value for unity is 16,384, so: 
 

ce_v_gain = 16384 * V_gain 
 
For the current: 
 
The meter's signal is a vector sum of the real (Wh) and imaginary (VARh) parts of the power.  i_gain, the current gain, 
needs scaling to eliminate power errors, and rotation in the complex plane to eliminate phase error. 
 
Let Φ be the phase adjust angle.  
A vector is rotated by multiplying by a 2x2 matrix: 
 

cos(Φ)  -sin(Φ) 
sin(Φ)   cos(Φ) 

 
The linear adjustment vector is: 
 

{Wh_applied/(Wh_measured * V_gain), VARh_applied/(VARh_measured * V_gain)} 
 
i_gain is the real part of multiplying the rotation matrix by the linear adjustment vector.:  
 

i_gain = cos(Phi)(Wh_Applied/(Wh_measured * V_gain))  
+ sin(Phi)(VARh_Applied/(VARh_measured * V_gain)) 

 
But, the applied signal's VARh_applied = 0, so that term is negligible: 
 

i_gain = cos(Phi)(Wh_Applied/(Wh_measured * V_gain)) 
 
Further, cos(Phi) = Wh_measured/VAh_measured; So substituting, one gets a classic fast current-calibration equation 
for a meter: 
 

i_gain = Wh_applied / (VAh_measured * V_gain)  
 
VAh_measured is easy to calculate, and the meter's signal processing gives it good linearity and repeatability, so we 
keep it and calculate it: 
 

VAh_measured = sqrt(Wh_measured^2 + VARh_measured^2) 
 
The CE's value for unity is 16384. Substituting: 

v1.1v1.1 TERIDIAN Proprietary 60 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 
ce_i_gain = (16384 * Wh_applied) / (VAh_measured * V_gain) 

See the source file meter\calphased.c for more details.  

 5.4.3.4  EEPROM Read/Write 

The interrupt code is eeprom_isr() in io\eeprom.c.  The read and write commands set variables and then start the 
interrupt. 

On each interrupt, the code reads or writes the next byte to send or receive to the EEPROM data register (EEDATA, 
SFR 0x9E), and then writes a command to the command register (EECTRL, SFR 0x9F).   

For information on the sequence and content of bytes, see the data sheet for an Atmel AT24C256. 

The demo code is designed to run any 19-bit address Atmel EEPROM (i.e. it will also run AT24C1024, AT24C512, 
AT24C128).  However, different sizes of Atmel EEPROMs have different page sizes.  The page size is set in the 
options.h file. 

If the EEPROM interrupt service routine (INT5) returns the value 0x80 (illegal command), the loop should be exited, all 
registers should be refreshed and the operation should be restarted. 

Notes: 

• The extended code set has non-interrupting code to run both 19 and 11-bit Atmel EEPROMs (e.g. AT24C02s) 
as well as a variety of others.  The non-interrupting EEPROM driver code is easier to modify because it just 
reads and writes the bytes that go to and from the EEPROM. 

• For larger EEPROMs, 1010xxR can be the first command (R=1 for read, R = 0 for write operation). 

• The START command should be sent to the EEPROM before any read or write operation 

• The algorithms cover single and multi-byte operations limited to a single page. 

• Special precautions apply when a page boundary is crossed for write operations: When the end of a page is 
reached, the write to the next page has to be preceded by a START command. 

• EEPROMs typically respond to START commands with 5ms delay. 

 5.4.3.5  Battery Test 

The battery test is based on sampling the voltage applied to the VBAT pin during an alternative multiplexer cycle. The 
function used for calculating the battery voltage from the count obtained from the ADC is int32_t mVBat (int32_t v). 

In this function, the ADC sample count is shifted right 9 bits (to account for the left-shift operation automatically done by 
the ADC). The measured value is not very accurate, since the chip-to-chip variations in offset and LSB resolution are 
not calibrated (these may have 5% variations).  

The routine battest_start() may be invoked from the command line interface. battest_start() sets the variable 
bat_sample_cnt to 2. This signals to the XFER_BUSY interrupt (in ce.c) to take two measurement (to account for the 
variations caused by the amplifier chopping). The RTC date is recorded in the structure last_day. That way, an 
automated battery test is run only once per day (when the date changes right after midnight).  

The routine battest_run (void) is called from the part of meter_run() that only operates when the CE is active.  This is 
because the battery test can only run when the CE is active. The routine battest_run (void) compares the current date 
with last_day. If it detects a difference, indicating that the date has just changed), it calls battest_start ().  

 5.4.3.6  Power Factor Measurement 

The power-factor option provides both instantaneous and accumulated (over fractions of an hour) display of power 
factor by phase. All power factor calculations are performed using floating point variables. 

The power factor (PF = cosϕ) calculation is based on the equations: 

P = S * cosϕ = S * PF 

==> PF = P/S, 

with P = real energy, S = apparent energy, PF = power factor 

v1.1v1.1 TERIDIAN Proprietary 61 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

v1.1v1.1 TERIDIAN Proprietary 62 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 

or VAh divided by Wh.  

 5.4.4  Watchdog Timer 

The Demo Code revision 4.4 uses only the hardware watchdog timer provided by the 80515. This fixed-duration timer 
is controlled with SFR register INTBITS (0xF8). 

The hardware watchdog timer requires a refresh by the MPU firmware, i.e. bit 7 of INTBITS set, at least every 1.5 
seconds. If this refresh does not occur, the hardware watchdog timer overflows, and the 80515 is reset as if RESETZ 
were pulled low. When overflow occurs, the bit WD_OVF is set in the configuration RAM. Using the WD_OVF bit, the 
MPU can determine whether a reset or a hardware watchdog timer overflow occurred. The WD_OVF bit is cleared 
when RESETZ is pulled low. 

 5.4.5  Real-Time Clock (RTC) 

The RTC is accessible through the I/O RAM (Configuration RAM) registers RTC_SEC through RTC_YR (addresses 
0x2015 through 0x201B), as described in the data sheets. 

The RTC can be updated any time after the second turns over.  So, when the clock is set, the demo code clears the 
subsecond counter, forcing the second to start now, and then writes the rest of the data to the clock. 

One tricky part of the code is the calculation of the digital adjustment (PREG and QREG), based on temperatures.  The 
code first calculates the adjustment in parts per billion, and then scales it to the adjustment register. 

Another tricky part is that the code includes date and calendar calculations (Julian() and Unjulian())..  Julian() converts 
a date and time to a count of seconds since 00:00 January 1, 2000.  Unjulian() takes a number of seconds, and 
converts it to a date and time.  The routines are based on standard astronomical julian day calculations.  The 
spreadsheet used to develop the algorithm is Doc\JulianDays.xls 

The combination of routines is powerful.  One can easily figure the day of week or day of year, find the time between 
two dates, adjust from GMT to civil time, and validate dates. 

The routines were validated by having another piece of code implement a simulated clock and calendar, and then  
running the combination on a PC.  The test verified that all three routines agreed about the time and date for every 
second of a day, and for every day between January 1, 2000 and December 31, 2100. 

 5.5  MANAGING MISSION AND BATTERY MODES 
After a reset or power up, the processor must first decide what mode it is in and then take the appropriate action. It is 
useful to concentrate all activities related to power modes and reset into one centralized module. The Demo Code 
revision 4.4 does the switching of modes in the main() routine, based on decisions made in batmodes.c.  

It first decides what the next state should be, then enters the state. 

The code uses the following inputs and flags to determine which mode to enter: 

• Battery mode enable jumper (see the DBUM for a detailed description of this input) 
• PLL_OK flag 
• RESET input 
• PB input 

Precautions when adding a battery:  When a battery or other DC supply is added to a Demo Board that is 
powered down, the 71M653x Demo Code will cause the chip to enter Brownout mode and stay in Brownout 
mode. It is possible that the VBAT pins of the chip draws up to 1mA in this state, since the I/O pins are not 

initialized when Brownout mode is entered from a state where the chip is powered down (if Brownout mode is entered 
from Mission mode, the I/O pins are properly initialized, and the chip will enter Sleep mode automatically causing much 
lower supply current into the VBAT).  

In general, to work in an operational meter (not a demo meter), the firmware has to be written to 
handle the case of connecting a battery to a powered-down board (since in a factory setting, 
batteries will most likely be added to meter boards that are powered down). The firmware must 
immediately enter sleep mode in this situation. 

 



71M653X Software User’s Guide    

 5.6  DATA FLOW  
The ADC collects data from the electrical inputs on a cycle that repeats at 2520Hz. On each ADC cycle, the compute 
engine (CE) code digitally filters and adjusts the data using gain parameters (CAL_Ix, CAL_Vx) and phase adjustment 
parameters (PHADJ_x). 

Normally, a calibration operation during manufacturing defines these adjustments and stores them in flash or EEPROM 
to be placed into CE memory. The Demo Code includes a fast self-calibration function that can typically reach 0.05% 
accuracy. (See Calibration() in meter\calphased.c, called from meter_run(0 in meter\meter.c). 

The calibration save and restore operations (cal_save() and cal_restore() ) save and restore all adjustment variables, 
such as the constants for the real-time clock, not just the ones for electrical measurements. 

On each ADC cycle, 2520 times per second, the CE performs the following tasks: 

1. It calculates intermediate results for that set of samples. 

2. It runs a debounced check for sagging mains, with a configurable debounce. 

3. It has three equally-spaced opportunities to pulse each pulse output. 

On each ADC cycle, an MPU interrupt, "ce_busy" (see ce.c, ce_busy_isr() ) is generated. Normally, the interrupt 
service routine checks the CE's status word for the sag detection bits, and begins sag logic processing if a sag of the 
line voltage is detected. 

In the event of a sag detection (announcing a momentary brownout condition or even a blackout), the cumulative 
quantities in memory are written to the EEPROM. 

By the end of each accumulation interval, each second on the Demo Code, the CE performs the following tasks: 

1. It calculates deviation from nominal calibration temperature (TEMP_X). 

2. It calculates the frequency on a particular phase (FREQ_X). 

3. It calculates watt hours (Wh) for each conductor, and the meter (WxSUM_X). 

4. It calculates var hours (VARh) for each phase and the meter (VARxSUM_X). 

5. It calculates summed squares of currents for each phase (IxSQSUM_X). 

6. It calculates summed squares of voltages for each phase (VxSQSUM_X). 

7. It counts zero crossings on the same phase as the frequency (MAINEDGE_X). 

The CE code (see ce\ce3x_ce.c) digitally filters out the line frequency component of the signals, eliminating any long-
term inaccuracy caused by heterodyning between the line frequency and the sampling or calculation rates. This also 
permits a meter to be used at 50 or 60Hz, or with inaccurate line frequencies. 

The CE has several equations of calculation, so that it can calculate according to the most common methods.  

Once per accumulation interval, the MPU requests the CE code to fetch an alternative measurement (alternate multi-
plexer cycle).  

At the end of each accumulation interval, an MPU interrupt, the "xfer_interrupt" occurs (see meter\ce.c, xfer_busy_isr()) 
occurs. This is the signal for the MPU to use the CE’s data. 

At this time, the MPU performs creep detection (ce.c Apply_Creep() ). If the current or the accumulated energy (watt 
hours) are below the minimum, no current or watts are reported. If volts are below the threshold, no frequency or edge 
counts are reported. The MPU's creep thresholds are configurable (VThrshld, IThrshld).  If Ithrshld is 0, creep logic is 
disabled. 

The MPU calculates human-readable values, and accumulates cumulative quantities (see meter\meter.c, meter_run() 
). The MPU scales these values to the PCB's voltage and current sensors (see VMAX and IMAX). 

The CE’s Wh and VARh quantities are signed, permitting the MPU to perform net metering by assigning negative 
values to "export" and positive values to "import" (see meter.c. Wh.c, VAh.c and VARh.c. 

The calculations needed for a meter require more precision than standard C floating point provides. The Demo Code 
has a “meter math” package to add CE Wh or VARh data to a meter register without overflow (see Util\math.c).  There 
are also routines to add a meter register to another meter register (add8), and a routine to convert a meter register to a 
floating point value (s2f(), useful to calculate ratios). 

v1.1v1.1 TERIDIAN Proprietary 63 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

The MPU also places a scaled value into the CE RAM for each pulse output (meter\meter.c, meter_run(), 
meter\pulse_src.c, selectpulses() ). This adjusts the pulse output frequency in such a way as to reflect that 
accumulation's contribution to the total pulse interval. Pulse intervals are cumulative, and cumulatively accurate, even 
though the frequency is updated only periodically. 

Placing the pulse value selection logic into the MPU software means that any quantity from any phase or combination 
of phases can control either pulse output (see PulseSrcFunc[] for a list of transfer functions). 

The MPU also performs temperature adjustments of the real-time clock (rtc_30.c, RTC_Trim(), RTC_Adjust_Trim() ). 
The Demo Code can adjust the clock speed to a resolution of 1 part per billion, roughly one second per thirty years. 
The adjustments include offset (Y_CAL), temperature-linear (Y_CALC) and temperature-squared (Y_CALC2) 
parameters. 

Once a human-readable quantity is available, it can be translated into a set of segments (meter.c, lcd.c) to display on 
the liquid crystal display, or read from a register in memory by means of the command-line interface (cli.c), or possibly 
some other serial protocol such as Flag (see flag.c) or NEMA. 

 5.7  CE/MPU INTERFACE 
The interface between the CE and the MPU is described completely in the 71M653x Data Sheet. 

 5.8  BOOT LOADER 
It is possible to implement code that functions as a boot loader. This feature is useful for field updates and various test 
scenarios. 

See the TERIDIAN Application Note number 031 for details. 

 5.9  SOURCE FILES 
The functionality of the Demo Code is implemented in the following files and directories: 

1. CLI: Command Line Interface – General Commands 
access.c SFR, I/O RAM, MPU and CE memory access routines 
access_x.c extended memory access routines 
c_serial.c parser for command line interface 
cli.c command line interface routines 
cmd_ce.c sub-parser for CE commands 
cmd_misc.c sub-parser for RTC, EEPROM, trim and PS commands 
help.c display of help text 
io.c number conversion functions and auxiliary routines for CLI 
load.c upload and download 
profile.c data collection for support of profile command 
ser0cli.c 
ser1cli.c 
sercli.c buffer serial I/O for the CLI 
 

These files take about 19Kbytes of program space. In production meters, this code  
can easily be removed without major changes to the software.  

 

2. IO: Input/Output 
cal_ldr.c load routines for calibration factors 
eep24C08.c routines supporting the 24C08 EEPROM 
eeprom.c interrupt-driven serial EEPROM routines 
eepromp.c high-speed polling EEPROM routines 
eepromp3.c polling interface for µWire EEPROM 
iiceep.c I2C bus interface using the chip’s I2C hardware 
iolite.c IO subroutines for use by the calibration loader (cal_ldr.c) 
lcd.c initialization, configuration, read and write routines for LCDs 
rtc_30.c RTC read, write, reset, and trim routines 
ser.c baud rate table shared by ser0.c and ser1.c 
ser0.c initialization, configuration, interrupt, read and write routines for SER0 
ser1.c initialization, configuration, interrupt, read and write routines for SER1 

v1.1v1.1 TERIDIAN Proprietary 64 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

tmr0.c initiali zation, configuration, interrupt, read and write routines for TMR0 
tmr1.c initialization, configuration, interrupt, read and write routines for TMR1 
uwrdio.c 3-wire interface using direct control of DIO4 and DIO5.  It can be adapted to nonstandard 
 clock polarities and edges, 4-wire SPI EEPROMs, and TSC chips other than the 71M653x 
 (see comments in the source file) 
uwreep.c a 3-wire interface using the high-speed 3-wire interface hardware of the 71M653x 

3. LCD_VIM828 Code for the Varitronix VIM-828 Display 

Lcd_symbols.h Code to describe which segments are on and off for each character. 

Lcd_vim828_ext.c Displays modes correctly. 

Lcd_vim828_31.c  Tables for the segments used on a 71M6531 demo PCB. 

Lcd_vim828_34.c  Tables for the segments used on a 71M6534 demo PCB. 

4. Main: Main top-level tasks, 653x-specific 
batmodes.c battery mode logic 
defaults.c contains the table of start-up default values 
main.c main() with startup sequence and main task switch 
main.c initialization and main loop 

5. Meter: Metering Functions 
calphased.c auto-calibration 
ce.c initialization, configuration, interrupt, read and write routines for the compute engine 
ce653X.c data exchange between CE data RAM and XRAM 
error.c error recording and logging 
freq.c routines to calculate and display frequency 
io653X.c control of analog front end, multiplexer, RTM, I/O pins 
meter.c contains overall meter logic to calculate and display meter data 
misc.c unused legacy code for managing interrupts and priorities 
pcnt.c code for counting output pulses 
peak_alerts.c detects out-of-range line values 
phase_angle.c calculates and displays voltage-to-current phase angles 
psoft.c generates two additional pulse outputs using DIO pins 
pulse_src.c directs line measurements to any pulse output 
pwrfct.c routines for calculating the power factor 
rms.c calculates and displays Vrms and Irms 
vah.c calculates VAh 
varh.c calculates VARh 
vphase.c calculates voltage-to-voltage phase angles for multiphase meters 
wh.c calculates Wh 

6. Util: Utilities 
dead.c defines unused flash space for the boot loader 
dio.h defines high-level access to DIO pins 
flash.c flash memory read, write, erase, compare and checksum calculation 
irq.c securely disables and enables interrupts 
library.c routines for memory copy, compare, CRC calculation, string length 
math.c contains routines for multiple-precision math 
onek_c.asm test code that must be included in ROMmable images 
oscope.h a utility to trigger oscilloscope loops using DIO7 
priority.h header file defining priorities for IP0 and IP1 
sfrs.c access to SFRs 
startup.a51 startup assembly code 
startup_boot.a51 
startup_boot_secure.a51 
startup_secure.a51 
stm.c software timer routines 
timers.c unused software timer legacy code 
wd.c routines that support the hardware watchdog  
 

v1.1v1.1 TERIDIAN Proprietary 65 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 5.10  AUXILIARY FILES 
A variety of startup files is provided with the Demo Kits. The function of these files is as follows: 

1. STARTUP_30.A51: 
This file provides memory and stack initialization. It is derived from the Keil compiler package. 

2. STARTUP_30_BANKED.A51: 
This file provides memory and stack initialization for a 6530 using code banks. It is derived from the Keil 
compiler package. 

3. STARTUP_SECURE_30.A51: 
This file is almost identical to STARTUP.A51. The only difference is that this variation sets the SECURE bit. 
This bit enables security provisions that prevent external reading of flash memory and CE program memory. 
The code segment below sets the security bit located at SFR register address 0xB2: 
 
STARTUP1: 
    CLR   0xA8^7   ; Disable interrupts 
    MOV   0B2h,#40h   ; Set security bit. 
    MOV   0E8h,#0FFh  ; Refresh nonmaskable watchdog 
 

4. L51_BANK.A51: 
This file provides bank-switching logic for a 6530 using code banks. It is derived from the Keil compiler 
package. 

5. INIT.A51: 
A secondary startup file. It is part of the Keil compiler package. This code is executed, if the application 
program contains initialized variables at file level. 

6. STARTUP_BOOT.A51: 
This startup file is to be used when the code is to be compiled as a bootloader. 

 

 5.11  INCLUDE/HEADER FILES 
In line with common industry practice, each C file in the Demo Code source code has a corresponding header file that 
ends in .H and that provides the interface to the C file’s code. A number of include files are special cases, and provide 
global data or hardware definitions. 

• Main_653x\options.h selects the features used by the code 

• main\option_gbl.h defines global configuration values used in all meter versions. 

• meter\meter.h defines the meter’s configuration and power registers. 

• meter\ce653X.h defines the CE memory used to communicate with the MPU. 

• meter\io653X.h defines the memory-mapped registers of the 653X chips. 

• util\reg653X.h defines the special function registers of the 653X chips. 

• Util\reg80515.h defines the registers common to TSC meter chip 8051s 

• util\stdint.h defines standard integers for TSC meter chips using 8051s. 

 5.11.1  OPTIONS.H 

TSC normally can provide two versions of the demo code.  One version has optional code removed using the utility 
SUNIFDEF.EXE.  This code is small and easier to read, but inflexible.   In this code, options.h documents the features 
that are present and absent in the code.  

TSC’s software engineers develop meter code from a single code set with optional configurations, the “all options” 
version.  It is more complex, and has files for most TSC meter ICs, all meter equations and other optional features that 
TSC has developed.  It is usually provided “as is” with minimal or no testing. 

The two code sets are validated during release by assuring that both code sets produce the same binary when 
compiled with the same compiler. 

v1.1v1.1 TERIDIAN Proprietary 66 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

The file OPTIONS.H controls entire features in the “all options” code set.  When an option is 1, it means that the 
feature is to be compiled and linked into the build. The idea is that by adding or subtracting features, a customer or 
TSC application engineer can quickly tune the code to approximate a desired meter configuration. If the comments in 
OPTIONS.H are not clear, feel free to use grep, or another code-searching tool to locate where the flags occur in the 
code. While TERIDIAN has made a good-faith effort to test representative combinations of compile flags, there are too 
many combinations to test exhaustively. 

When OPTIONS.H is changed in the all-options code, there are three usual results.  Either the build complains that it 
needs some subroutines, or it complains that it has too many subroutines, or it is good. When it needs subroutines, 
enable the option flags for the needed subroutines.  When it has too many subroutines, try to disable the option flags 
for the unneeded subroutines. 

On smaller ICs, if the resulting build is too big to fit the available program memory, then more features must be 
disabled.  Usually this is not an issue on the 653x series. 

Usually, the option flags are tested either right after options.h is included in a file, or around the subroutines. 

 5.11.2  Register Definitions 

Register definitions can be found in the following files: 

• REG80515.H - Register definition for the 80515 MPU core 

• REG653X.H - Register definition of 653X SFRs and I/Os 

• IO653X.H and IO653x.c - I/O RAM register definitions 

• CE653X.H and CE653X.C - CE data and structure declarations 

 5.11.3  Other Include/Header Files 

Other Include/Header files are: 
• CLI.H - Result code and Common ASCII code definition used for CLI 
• HELP.H - HELP message prototype declarations 
• IO.H – I/O subroutines for CLI 
• SER0CLI.H, SER1CLI.H – hardware access layer for UART0/UART1 
• SERCLI.H – include definitions for UART 0/1 debug routines 
• FLAG0.H, FLAG1.H, FLAG.H – shared logic for all FLAG interfaces 
• EEPROM.H – EEPROM 
• II2.H – I2C Interface 
• LCD.H – LCD 
• RTC.H – Real-Time clock 
• SER0.H, SER1.H, SER.H – serial interface 
• SERIAL.H – serial interface API prototypes and definitions 
• TMR0.H, TMR1.H – timer routines 
• UWR.H – microwire (µwire), or three-wire interface 
• BATMODES.H – battery modes (BROWNLOUT, LCD, SLEEP) 
• DEFAULTS.H – default values 
• OPTIONS_GBL.H – global compile-time options 
• OPTIONS.H – general compile-timeoptions, defining meter functionality 
• CALIBRATION.H – calibration 
• CE.H – compute engine interface includes 
• FREQ.H – frequency and main-edge count 
• METER.H – meter structures, enumerates and definitions 
• PCNT.H – pulse counting 
• PEAK_ALERTS.H – voltage/current peak alerts 

v1.1v1.1 TERIDIAN Proprietary 67 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

• PHASE_ANGLE.H – phase angle calculation 
• PSOFT.H – pulse generation by MPU software (external pulse generation) 
• PULSE_SRC.H – pulse source definitions and support 
• RMS.H – RMS calculation 
• VAH.H – VAh accumulation 
• VARH.H – VARh accumulation 
• WH.H – Wh accumulation 
• DIO.H – DIO structures, enumerations and definitions 
• FLASH.H – flash copy and CRC routines 
• IRQ.H – interrupt kernel 
• LIBRARY.H – library routines 
• MATH.H – meter math library 
• PRIORITY.H – interrupt masks and priority definitions 
• SERIAL.H – serial interface structures, enumerates and definitions 
• SFRS.H – low-level API for SFRs and memory 
• STDINT.H – standard integer definitions 
• STM.H – software timer definitions 
• WD.H – watchdog bit definitions 

 5.12  CE IMAGE FILES 
The CE code uses pre-designed, pre-validated algorithms and calculations, which are accurate to the noise floor of the 
integrated circuit, saving substantial engineering and development time. 

The source code for the CE is proprietary. Only the code and data images (binary images) are available to the user. 
The code image must be merged with the MPU code residing in flash memory.  

Images of the CE data and program code are provided with the Demo Kits. They are to be linked into the object code. 
CE images are provided by the following files: 

1. CE31_CE.C: 
This file provides the image of the 71M6531 CE program in C notation. 

2. CE31_DAT.C: 
This file provides the image of the 71M6531 CE default data in C notation. 

3. CE34_CE.C: 
This file provides the image of the 71M6534 CE program in C notation. 

4. CE34_DAT.C: 
This file provides the image of the 71M6534 CE default data in C notation. 

v1.1v1.1 TERIDIAN Proprietary 68 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

 5.13  COMMON MPU ADDRESSES 
In the Demo Code, certain MPU XRAM parameters have been given fixed addresses in order to permit easy external 
access. These variables can be read via the command line interface (if available), with the )n$ command and written 
with the )n=xx command where n is the word address. Note that accumulation variables are 64 bits long and are 
accessed with )n$$ (read) and )n=hh=ll (write) in the case of accumulation variables. 

 

Name Purpose LSB Default )? Signed? Bits 

IThrshldA Starting current, element A 

sqrt(i0sqsum)*(216), 
0 in this position 
disables creep logic for 
both element A and B. 

513421 (6531) 
433199 (6533, 
6534) 
0.08A, just less 
than 0.1A.  Without 
high-accuracy CE 
code, the noise 
floor is around 
0.076A 

)0 unsigned 32 

Config Configure meter operation on 
the fly. 

bit 0:** reserved; 
0:VA=Vrms*Irms; 
1:VA=sqrt(Wh2+VARh2) 
bit1: 
1=clear accumulators 
(e.g. “)1=2”) 
bit2:1=Calibration mode 
bit3:**Reserved: 
1=Enable Tamper  

0 
 
Do nothing 

)1 N/A 8 

VPThrshld sqrt(v0sqsum)*216 

906156350 (6531) 
764569660 (6533 
& 6534) 
240V*sqrt(2) 
*120% 

)2 unsigned 32 error if exceeded. 

error if exceeded. sqrt(i0sqsum)*216 

544498635 (6531) 
275652520 (6533 
& 6534) 
50.9A 
30A*sqrt(2) *120% 

)3 unsigned IPThrshld 32 

Y_Cal_Deg0 RTC adjust 100ppb 
0 
Read only at reset 
in demo code. 

)4 signed 16 

Y_Cal_Deg1 RTC adjust, linear by temp. 10ppb*ΔT, in 0.1˚C 0 )5 signed 16 
Y_Cal_Deg2 RTC adjust, squared by temp. 1ppb*ΔT2, in 0.1˚C 0 )6 signed 16 

v1.1v1.1 TERIDIAN Proprietary 69 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 

PulseWSource 
PulseVSource 
 

Wh Pulse source, 
VARh pulse source 
selection 

0=wsum 
1=w0sum 
2=w1sum 
3=w2sum‡ 
4=varsum 
5=var0sum 
6=var1sum 
7=var2sum‡ 
8=i0sqsum 
9=i1sqsum 
10=i2sqsum‡ 
11=insqsum 
12=v0sqsum 
13=v1sqsum† 
14=v2sqsum‡ 
15=vasum** 
16=va0sum** 
17=va1sum** 
18=va2sum‡ 
19=wsum_i** 
20=w0sum_i** 
21=w1sum_i** 
22=w2sum_i‡ 
23=varsum_i* 
24=var0sum_i* 
25=var1sum_i* 
26=var2sum_i‡ 
27=wsum_e** 
28=w0sum_e** 
29=w1sum_e** 
30=w2sum_e‡ 
31=varsum_e** 
32=var0sum_e** 
33=var1sum_e** 
34=var2sum_e‡ 

0 (wsum) 
4 (varsum) 
 
In demo code, these are the values 
from the element with the maximum 
current. 
 
A different equation can be chosen 
as a compilation option, and these 
become sums. 

)7 
)8 

unsigned 8 

v1.1v1.1 TERIDIAN Proprietary 70 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

Vmax Scaling Maximum 
Volts for PCB 0.1V 

6000 
600.0V, from the PCB’s 
design. 

)9 unsigned 16 

ImaxA 
Scaling Maximum 
Volts for PCB element 
A 

0.1A 
2080 
208.0A, from the PCB’s 
design. 

)A unsigned 16 

ppmc1 ADC linear adjust with 
temperature 

parts per million per degree 
centigrade 

0 
temp_nom, )14, must 
be set to a real value 
from ]7B before this 
can work. 
Then it should become 
-150 

)B signed 16 

ppmc2 ADC quadratic adjust 
with temperature 

parts per million per degree 
centigrade squared 

0 
Should become   
-392 after setting 
temp_nom 

)C signed 16 

Pulse 3 
source 

Source for software 
pulse output 3** Indexed as )7 

0 
wsum; requires 
software pulse module. 

)D unsigned 8 

Pulse 4 
source  

Source for software 
pulse output 4** Indexed as )7 

4 
varsum; 
requires software pulse 
module. 

)E unsigned 8 

Scal Accumulation intervals 
of autocalibration** 

Count of accumulation 
intervals of calibration. 

2 
2 accumulation 
intervals covers both 
chop polarities. 

)F unsigned 16 

Vcal Volts of 
autocalibration** 

0.1V rms of AC signal applied 
to all elements during 
calibration. 

2400 
240V is a standard full-
scale set-up for meter 
test. 

)10 unsigned 16 

Ical Amps of 
autocalibration** 

0.1A rms of AC signal applied 
to all elements during 
calibration.  Power factor must 
be 1. 

300 
30A is a standard full-
scale set-up for meter 
test. 

)11 unsigned 16 

VThrshld 

Volts at which to 
measure frequency, 
zero crossing, etc. 
 

sqrt(v0sqsum)*216 

88992958 (6531) 
75087832 (6533 & 
6534) 
40V 
A real meter should use 
sag, but the demo 
operates with a power 
supply. 

)12 unsigned 16 

v1.1v1.1 TERIDIAN Proprietary 71 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 

PulseWidth Maximum time pulse 
is on. 

microseconds = 
(2*PulseWidth + 1)*397, 
0xFF disables this feature.  
Takes effect only at start-up. 

50 
 
10ms 

)13 signed 16 

temp_nom 

Nominal temperature, 
the temperature at 
which calibration 
occurs. 

Units of TEMP_RAW, from 
CE. 

0x408D1800  
847662 (6531) 
0x3DCC7800 
(6533, 6534) 
From a real PCB at 
23C 

)14 unsigned 32 

ImaxB 1 
Scaling Maximum 
amps for PCB 
element B 

0.1A 
2080 
 
208.0A 

)15 unsigned 16 

ncount 2 

The time that neutral 
current can exceed 
INThrsld before the 
neutral bit is 
asserted. 

Count of accumulation 
intervals 10, ~10 secs )15 unsigned 16 

Starting current, 
element B sqrt(i0sqsum)*(216) 

513421 (6531) 
433199 (6533 & 
6534) 
0.08A, same 
rationale as 
Ithrshld 

)16 unsigned 32 IThrshldB 1  

Maximum valid 
neutral current sqrt(i0sqsum)*(216) 

641776 
 
0.1A 

)16 unsigned INThrshld 2 32 

VBatMin Minimum valid battery 
current. Same as Vbat, below 

0x00E54D4C 
(6531) 
0x00723D00 (6533 
& 6534) 
2V on a real PCB; 
should be adjusted 
for battery and 
chip. 

)17 unsigned 32 

CalCount Count of calibrations 
Counts number of times 
calibration is saved, to a 
maximum of 255. 

 )18 unsigned 8 

RTC copy 
Nonvolatile copy of 
the most recent time 
the RTC was read. 

Sec, Min, Hr, Day, Date, 
Month, Year  

)19, 
1A, 
1B, 
1C, 
1D, 
1E, 
1F 

unsigned 8 
each 

deltaT 
Difference between 
raw temperature and 
temp_nom 

Units of TEMP_RAW, from 
CE.  )20, signed 32 

Frequency Frequency Units from CE.  )21 unsigned 32 

v1.1v1.1 TERIDIAN Proprietary 72 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

Vbat 
Last measured battery voltage.* (Note: battery 
voltage is measured once per day, except 
when it is being displayed). 

]7 / (2^9) (ADC counts, 
logically shifted right 9 bits) )22 unsigned 32 

Vrms_A Vrms, element A sqrt(v0sqsum)*(216) )24 unsigned 32 
Irms_A Irms, element A sqrt(i0sqsum)*(216) )25 unsigned 32 
Vrms_B Vrms, element B**,† sqrt(v1sqsum)*(216) )26 unsigned 32 
Irms_B Irms, element B sqrt(i1sqsum)*(216) )27 unsigned 32 
Vrms_C Vrms, element C‡ sqrt(v2sqsum)*(216) )28 unsigned 32 
Irms_C Irms, element C‡ sqrt(i2sqsum)*(216) )29 unsigned 32 

Status Status of meter 
Bits: 
See table below. 

)2A unsigned 32 

CAI Count of accumulation intervals since reset, or 
last clear (“)1=2”) count )2b signed 32 

Whi** Imported Wh, all elements. LSB of w0sum )2c signed 64 
Whi_A** Imported Wh, element A “ )2e signed 64 
Whi_B** Imported Wh, element B “ )30 signed 64 
Whi_C**‡ Imported Wh, element C “ )32 signed 64 
VARhi* Imported VARh, all elements. LSB of w0sum )34 signed 64 
VARhi_A Imported VARh, element A “ )36 signed 64 
VARhi_B Imported VARh, element B “ )38 signed 64 
VARhi_C*‡ Imported VARh, element C “ )3A signed 64 
VAh** Volt-amps, all elements. LSB of w0sum )3C signed 64 
VAh_A** Volt-amps, element A “ )3e signed 64 
VAh_B** Volt-amps, element B “ )40 signed 64 
VAh_C**‡ Volt-amps, element C “ )42 signed 64 
Whe** Exported Wh, all elements. LSB of w0sum )44 signed 64 
Whe_A** Exported Wh, element A “ )46 signed 64 
Whe_B** Exported Wh, element B “ )48 signed 64 
Whe_C**‡ Exported Wh, element C “ )4A signed 64 
VARhe** Exported VARh, all elements. LSB of w0sum )4C signed 64 
VARhe_A** Exported VARh, element A “ )4e signed 64 
VARhe_B** Exported VARh, element B “ )50 signed 64 
VARhe_C**‡ Exported VARh, element C “ )52 signed 64 
Whn Net metered, all elements LSB of w0sum )54 signed 64 
Whn_A Net metered Wh, element A, for autocalibration “ )56 signed 64 
Whn_B Net metered Wh, element B, for autocalibration “ )58 signed 64 
Whn_C‡ Net metered Wh, element C, for autocalibration “ )5A signed 64 
VARhn Net metered VARh, sum, all elements LSB of w0sum )5c signed 64 

VARhn_A Net metered VARh, element A, for 
autocalibration “ )5e signed 64 

v1.1v1.1 TERIDIAN Proprietary 73 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 
VARhn_B Net metered VARh, element B, for autocalibration “ )60 signed 64 
VARhn_C*‡ Net metered VARh, element C, for autocalibration “ )62 signed 64 
MainEdgeCnt Count of edges Count of zero-crossings. )64 unsigned 32 
Wh Default sum of Wh, nonvolatile LSB of w0sum )65 signed 64 
Wh_A Wh, element A, nonvolatile “ )67 signed 64 
Wh_B Wh, element B, nonvolatile “ )69 signed 64 
Wh_C‡ Wh, element C, nonvolatile “ )6B signed 64 
StatusNv Nonvolatile status See Status )6D n/a 32 

‡ Three phase chips (i.e. 6533, 6534) only. 
1 Two phase chips (i.e. 6531), this compilation option is normally on to enable    mixing a shunt and CT as current 
sensors.  Uses same space as neutral current threshold. 
2 Three phase chips (i.e. 6533. 6534) with neutral current, this compilation option is normally on to enable tests of 
neutral current. Uses same space as Threshold B. 

 

Table 5-12: MPU Memory Locations 

 

 

v1.1v1.1 TERIDIAN Proprietary 74 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

Discussion of the bits in Status: 

Bit 
No. 

Discussion Name 

CREEP  0 Indicates that all elements are in creep mode.  The CE’s pulse variables will be “jammed” 
with a constant value on every accumulation interval to prevent spurious pulses.  Note that 
creep mode therefore halts pulsing even when the CE’s pulse mode is “internal”. 

MINVC‡ 1 Element C has a voltage below VThrshld.  This forces that element into creep mode. 

PB_PRESS 2 A push button press was recorded at the most recent reset or wake from a battery mode.  
Recorded because the push button flag in the hardware must be cleared in order to reenter 
a power-saving mode.  May be unused in some softwares. 

SPURIOUS 3 An unexpected interrupt was detected. 

MINVB 4 Element B has a voltage below VThrshld.  This forces that element into creep mode. 

MAXVA 5 Element A has a voltage above VThrshldP. 

MAXVB 6 Element B has a voltage above VThrshldP. 

MAXVC‡ 7 Element C has a voltage above VThrshldP. 

MINVA 8 Element A has a voltage below VThrshld.  This forces that element into creep mode.  It 
also forces the frequency and main edge count to zero. 

WD_DETECT 9 The most recent reset was a watchdog reset.  This usually indicates a software error.  

MAXIN‡ 10 The neutral current is over INThrshld.  In a real meter this could  indicate faulty distribution 
or tampering. 

MAXIA 11 The current of element A is over IThrshld.  In a real meter this could  indicate overload. 

MAXIB 12 The current of element B is over IThrshld.  In a real meter this could  indicate overload. 

MAXIC‡ 13 The current of element C is over IThrshld.  In a real meter this could  indicate overload. 

MINT 14 The temperature is below the minimum, -40C, established in option_gbl.h,   This is not very 
accurate in the demo code, because the calibration temperature is usually poorly 
controlled, and the default temp_nom is usually many degrees off.  –40C is the minimum 
recommended operating temperature of the chip. 

MAXT 15 The temperature is above the maximum, 85C, established in option_gbl.h,   This is not 
very accurate in the demo code, because the calibration temperature is usually poorly 
controlled, and the default temp_nom is usually many degrees off.  85C is the maximum 
recommended operating temperature of the chip. 

BATTERY_BAD 16 Just after midnight, the demo code sets this bit if VBat < VBatMin.  The read is infrequent 
to reduce battery loading to very low values.  When the battery voltage is being displayed, 
the read occurs every second, for up to 20 seconds. 

CLOCK_TAMPER 17 Clock set to a new value more than two hours from the previous value. 

CAL_BAD 18 Set after reset when the read of the calibration data has a bad longitudinal redundancy 
check or read failure. 

CLOCK_UNSET 19 Set when the clock’s current reading is A) More than a year after the previously saved 
reading, or B) Earlier than the previously saved reading, or C) There is no previously saved 
reading.  In this case, the clock’s time is preserved, but clock software cannot compensate 
for drift while it was turned off, because it cannot find the interval of the power failure. 

POWER_BAD 20 Set after reset when the read of the power register data has a bad longitudinal redundancy 
check or read failure in both copies.  Two copies are used because a power failure can 
occur while one of the copies is being updated. 

GNDNEUTRAL 21 Indicates that a grounded neutral was detected. 

TAMPER 22 Tamper was detected †** 

v1.1v1.1 TERIDIAN Proprietary 75 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Bit 
No. 

Discussion Name 

SOFTWARE 23 A software defect was detected.  error_software() was called.  E.g.: In banked code, a 
subroutine address outside common code is given as a callback routine.  Or: irq_enable() 
(interrupt disable) is called more than irq_disable(). 

SAGA 25 Element A has a sag.  Set in real time by the CE and detected by the ce_busy interrupt 
(ce_busy_isr() in ce.c) within 8 sample intervals, about 2.6ms.  A transition from normal 
operation to SAGA causes the power registers to be saved, because the demo PCB is 
powered from element A.  For a multiphase power supply, modify the bit mask constant 
POWERED_PHASE, in options.h  to select the sag bits from the most-significant 8 bits of 
Status, then recompile.  In this case, all the bits in POWERED_PHASE must become 
asserted to cause a save of the powered registers. 

SAGB 26 Element A has a sag.  Set in real time by the CE and detected by the ce_busy interrupt 
(ce_busy_isr() in ce.c) within 8 sample intervals, about 2.6ms.  On the 6520, the demo 
code operates with an equation that does not use element B’s voltage, but the meter 
simulates this by wiring element A’s V to VB on the chip.

SAGC‡ 27 Element C has a sag.  Works like other sag bits. 

F0_CE 28 A square wave at the line frequency, with a jitter of up to 8 sample intervals, about 2.6ms.  
The jitter is caused because the ce_busy interrupt only executes all of its code every 8th 
sample interval. 

ONE_SEC 31 Changes each accumulation interval. 

‡ Three phase chips (i.e. 6533, 6534) only. 

Table 5-13: MPU Status Bits 

 

v1.1v1.1 TERIDIAN Proprietary 76 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

 5.14  FIRMWARE APPLICATION INFORMATION 

 5.14.1  General Design Considerations 

 5.14.1.1  Multitasking 

The meter appears to do many things at once.  How does this happen? 

Each “task” is a subroutine call in the main loop in Main\main.c: main_run().  The tasks are called repeatedly by the 
main loop, giving each of them many opportunities to use the MPU.  They usually check for “data present”, and then 
either exit or process the data and then exit.  Prominent examples include: meter_run() in meter\meter.c (the 
meter’s main process), cli() in cli\cli.c (the command line interface’s process), stm_run() in Util\stm.c (the 
software timers’ update task). 

This scheme is well suited to such a small system, but it also has problems when an IO process must wait for input or 
output.  This happens in only two major subsystems, the serial command line interface, and the metering system. 

While the serial command logic is waiting for another serial character, it calls a subset of the main loop, in Main\main.c 
main_background().  main_background() does all of the meter’s main loop except for serial protocols.  In that 
way, the meter keeps “running” while the serial IO is “waiting.” 

The main metering routine, Meter\meter.c meter_run(), skips most of its logic until a flag, ce_update, is set.  At 
this point meter_run() runs to completion.  meter_run() performs many calculations.  These calculations stop the 
rest of the main loop from running for up to several hundred milliseconds (depends on clock speed).  This delay is 
nearly impossible for a person to see, so it does not affect human I/O at all.  The time-critical machine I/O during this 
period is handled by interrupts that buffer data for the main loop. 

 5.14.1.2  Synchronization 

Interrupts do the work that needs immediate attention, then set a flag or count to start code that runs in the main loop.  
To keep the main loop simple, the flag, the routine to run in the main loop, and the interrupt code should be defined in 
the class’s .c file.  The main loop should just call the “run” routine continually. 

Software timers (Util\stm.c, .h) are started by an interrupt that counts every 10 milliseconds in real time.  In the main 
loop, stm_run() decrements software timer variables and runs the associated callback routine if a timer expires.  
stm_run() calculates the real interval since its last invocation in order to reduce jitter. 

The code also has a shared, calibrated delay loop routine, in IO/delay.c.  It’s calibrated in the normal clock modes, and 
runs at reasonable rates in all clock modes, including brownout mode. 

State machines are invoked in the main loop.  The main loop will just call a “run” routine with no parameters and no 
returns.   No state variables or other state-machine logic will be defined in the main loop. 

 5.14.1.3  Bank Switching 

The code has to be able to grow to fill the 128KB to 256KB memory space of this chip.  So, it is bank-switched. 

Keil’s standard bank-switching schemes were all tested for speed, and then the fastest was left installed. See 
Util\L51_BANK.A51, for the modified Keil assembly file that performs the bank switching. 

The selected Keil scheme sets the bank-sfr register FL_BANK directly, from code.  Keil’s bank-switching scheme has 
the linker build a table of global subroutine entry-points in common memory.  Calls to global subroutines are actually to 
an entry in the table, which switches the bank and jumps to the the bank-switching routines.  The SUG has more 
details, including debugging suggestions. 

Fast interrupts has to be in the common page, so that their code is always available.  Slower interrupts have a 
trampoline in the common page that performs a bank-switching call to the main interrupt code.  This permits entire 
modules to be placed in different banks, so that the code’s functionally-pure structure doesn’t have to be damaged  in 
order to do bank-switching. The trampolines are in Meter\io653x.c, with other shared interrupt logic. 

v1.1v1.1 TERIDIAN Proprietary 77 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

The Keil linker’s dependency command must be used to tell the linker about the caller of every routine called via a 
function pointer.  If this is not done, Keil’s address for the called routine is often in a bank, and the bank is rarely the 
current bank.  So, the caller goes to the called routine’s address, but in the wrong bank.  This doesn’t work. 

When the linker is told that a called routine is called from a caller, then it places a bank-switching stub for that routine in 
the common bank, and the call via function pointer works splendidly.   

The function pointer issue is a problem for the timer code, and the software timer code.  These call an error function 
when they get function pointer addresses greater than 0x7FFF. 

 5.14.1.4  Economic Usage of RAM 

The IC has only 3K of RAM for use by the MPU.  There are two main tricks to fit the data in: 

• The main-loop organization lets Keil’s linker use overlays to maximum advantage, multiplying the utility of the 
small amount of RAM. 

• Also, the big pieces of stable data are global, and shared.  Most of them are in Totals, a large C structure 
defined in meter\meter.h.  Totals contains all MPU calibration and register items.  The CE interface is in CE, a 
large C structure defined in meter\ce653x.h. 

The largest unshared items are the serial buffers, defined in serial0cli.c and serial1cli.c.  For most people, removing 
serial1 has no effect at all on the usability of the debug interface, and it frees the port and RAM for use by an AMR 
system. 

 5.14.1.5  Trading Space for Speed 

The 8051 has seven types of memory space.  If used correctly, they can help code run faster. 

The Keil compiler provides memory type names like “data” “xdata” and “pdata” so that the programmer can place 
particular data items in particular memory spaces.  See the manual for more information. 

Some memory areas are faster to access, because the code to access the memory is shorter.  In decreasing order: 

The code keeps a few critical high-speed bit-flags in BDATA, the fastest, rarest memory. 

The code keeps a few high-speed counters in DATA, a fast data space.  This is intentionally underutilized to make 
room for customer data. 

The code makes very little use of IDATA in order to conserve stack space. 

The CE’s output registers are mapped to PDATA.  This gives the math fast access to the CE output values. 

XDATA is used for most variable data. 

CODE is used for code, and a few large tables, like the CE’s code and initialization data. 

 5.14.1.6  Object-Oriented Design 

First, is it worth it?  An object-oriented design can use the same control code to run similar electronics or data.  This 
has several advantages. The big one for firmware is that the higher levels of the firmware can quickly change to use 
other related devices with a minimum of introduced defects. 

The trick in a small embedded system is to implement a base class (the “integration interface”) in a way that is efficient 
and not too hard to understand.   

In this design, a base class is an include file of macros (i.e. a “.h” file).   Two schemes will be used. 

When there are several devices or data structures and switching is not needed, each device will have its own .h file.  
The macros and function prototypes will provide an interface that is the same for all callers.  For example, instead of 
including ser.h, and calling ser0_getc(), this scheme will have the caller include ser0.h, and then call ser_getc().  By 
including ser1.h, the same calling code can be instantly ported to serial port 1. 

If dynamic calling is needed, the .h file can conceal switching code that tests a bit and selects a daughter-class’s 
methods.  For example Cli\sercli.c conceals an interface that can write to either UART, based on a port parameter. 

These schemes are efficient in the 8051, producing code as fast as individual calls for each daughter class. 

v1.1v1.1 TERIDIAN Proprietary 78 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

The classic C++ scheme uses a table of subroutine pointers for each class.  It performs poorly on the 8051.  The 8051 
accesses tables of indirect addresses rather slowly. 

 5.14.1.7  Reconfiguring “Glue Logic” 

Compilation switches enable cases.  In many cases, code can include a different include (.h) file to customize for a 
different device.  If code is not enabled, it shouldn’t run or be in the code. 

For released code, or other point releases, an “unifdef” utility will be used to remove unused conditional code.  This 
makes the code easier to read, but reduces flexibility. 

 5.14.1.8  DSP Operations 

Teridian’s solution for providing a superios electricity metering IC has been to use a simplified 32-bit digital signal 
processor, the CE, triggered by the ADC multiplexer. Since DSP Code is too hard to develop, prewritten DSP code is 
provided for the CE. This code is suitable for most metering applications, with optimized performance going right to the 
chip’s noise floor.  It helps that metering is a standard application for most customers. 

 5.14.1.9  Coping with Various Current Sensors 

The MPU code has Imax and Imax2.  The calculations automatically convert data from phase B into the same units as 
phase A, if the “dual Imax” compilation option is set.  See meter\meter.c RescalePhaseB(). 

 5.14.1.10  User Interface 

The main user interface is an RS-232 command line interface with a help system.  This consumes a surprisingly large 
amount of code because it performs line editing. 

There is code that controls an LCD.  The meter chip has bits in its I/O area that turn each LCD segment on and off.  
The segments form segments of numerals, etc.  Software arranges to turn the right segments on and off in order to 
show numbers and annunciators.  The code for this looks up a bit mask for each character to decide which pieces of 
numeral to turn on and off. 

In this demo software, pressing the pushbutton changes the display items, or wakes the meter from its low power 
mode.  Most meters have at least one operating switch.  The classic is a magnetic reed switch controlled by a magnet 
outside the meter enclosure.  Real meters (but not this demo software) use it to step through a menu system. 

 5.14.1.11  Operating without User Interface 

The EEPROM can be initialized in a programmer with the calibration data.  This saves the code and data needed by 
the meter. 

 5.14.1.12  Communication with a Computer 

This demo code implements both a CLI, and the CP.  Code is available for FLAG. 

The classic scheme, not provided by this demo code, is to use a serial port communicating via either an infra-red LED 
and phototdiode, or a low-speed current-loop. The infrared interface is popular in areas where the meter-reader has 
access to the meter. The current-loop is popular when the meters are inside a building.  In this case, a connector is 
avialable on the outside of the building to read all the meters within it. 

 5.14.1.13  Support of Automatic Meter Reading 

The meter must keep running, but must also present a consistent set of data for the asynchronous  meter-reading 
system.  The solution is to make a stable copy at a controlled time in the metering cycle, and then let the AMR system 
read the stable data. 

When the hand-held unit logs on, the serial protocol sets a flag (update_register) asking the meter to copy the 
registers to stable storage. See Meter\meter.c, the call to Update_register() in meter_run(). When the stable 
copy is available, the flag register_available is set to true. 

If a read request occurs while the copy is going on (i.e. register_available is false), the protocol requests that the 
message be resent (see Flag\Flag0.c orflag1.c, case “R”  of the NoError case of do_cmd()).  This negative 

v1.1v1.1 TERIDIAN Proprietary 79 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

acknowledge is supposed to occur when the message was garbled, but in this case has the effect of delaying the read 
command until the copy is complete and a stable copy of the meter data is available for use by the protocol. 

When the AMR system logs-off, or the AMR interface times out, the flags are reset to mark the stable copy invalid. 

 5.14.1.14  Communication between MPU and CE 

The communication between CE and MPU has evolved since early versions.  The current best practice is to divide the 
CE’s data into four parts. 

1. Configuration data set by the MPU, and read by the CE.  This includes gains and other static adjustments. 

2. Constant data needed by the CE, and never adjusted by the MPU.  The MPU simply sets it.  It could be fixed, 
stored in the CE’s program code, but isn’t. 

3. Data read and written by both CE and MPU.  These usually begin execution as constant values.  This includes 
pulse input values set by the MPU, which can alternatively be set by the CE’s native code, and the main gain 
adjustment for making the meter run at different speed in different temperatures. 

4. Data written by the CE, and initialized by the MPU to zero.  This includes all of the CE’s output values. 

Parts 1, 2, and 3 are set to defaults from a table of constants in the MPU’s code area. 

Part 1 is saved and restored as part of the EEPROM configuration, as an overlay of the constants. 

Part 4 is cleared to zero by the MPU, to permit the table of constants to be as small as possible. 

In the 6530, unlike earlier versions, reading and writing the CE is transparent because the CE and MPU share the 
RAM.  No copy is necessary, which saves both MPU time, and RAM.  The destination table and CE was moved to start 
of RAM location zero.  The CE’s output data was moved to location 0x0200, so that PDATA can still be used to access 
it quickly. 

 5.14.1.15  Timing Control 

The chip has two high-speed timers.  It also has an electronic clock.  Further, there is a timer to wake the chip from its 
low power modes.  The demo code has facilities to demonstrate all of these. 

 5.14.1.16  6531: Calculation of max(VA*IA, VA*IB) Option, Equation 0 

The global flow of Wh calculation is an important optimization, and will be selected by compile flag: 

Vrms_A = sqrt(v0sqsum) from the CE. 

Irms_A = sqrt(i0sqsum) from the CE. 

Irms_B = sqrt(i1sqsum) from the CE. 

Volts and Current are now available for all elements. 

Figure Wh, VARh and VAh for this accumulation interval:  

If Vrms_A < Vthreshold (i.e. there’s no voltage, probably tampering) 

         Figure watts with a default voltage, but don’t lie about sensed voltage: 

 Vrms_A = 0 

if abs(Irms_A) > IThreshold,  

va0sum = Irms_A * defaultV 

w0sum = va0sum 

 else 

  set them to zero 

 varh0 = 0 

Repeat for element B 

else 

v1.1v1.1 TERIDIAN Proprietary 80 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 Get Wh (wxsum) and VARh (varxsum) from CE: 

 w0sum, w1sum (element Wh for one accumulation interval),  

        var0sum, var1sum (element VARhs are from CE. 

va0sum = sqrt(w0sum2 + var0sum2) 

va1sum = sqrt(w0sum2 + var0sum2) 

endif 

va0sum, va1sum, w0sum, w1sum, var0sum, var1sum are now available. 

Figure current, the best available way: 

If Irms_A < noise-floor of current measurement && Vrms_A > 0 

 Irms_A = va0sum/Vrms_A 

If Irms_N < noise-floor of current measurement && Vrms_A > 0 

 Irms_B = va1sum/Vrms_A 

Do the creep calculation: 

If (Vrms_A < Vthreshold) 

 creep mode, set element A and B’s voltage, current and watts to zero 

else 

if (Irms_A < Ithreshold) 

  creep mode: set element A’s current and watts to zero 

if (Irms_B < Ithreshold) 

  creep mode: set element B’s current and watts to zero 

Set the pulse outputs. 

Sum positive values to normal registers, negative values to export registers. 

 5.14.1.17  6534: Calculation of VA*IA+VB*IB+VC*IC Option, Equation 5 

The global flow of Wh calculation is an important optimization, and will be selected by compile flag: 

Vrms_A = sqrt(v0sqsum) from the CE. 

Irms_A = sqrt(i0sqsum) from the CE. 

etc. for B and C 

Volts and Current are now available for all elements. 

Figure Wh, VARh and VAh for this accumulation interval:  

If Vrms_A < Vthreshold (i.e. there’s no voltage, probably tampering) 

         Figure watts with a default voltage, but don’t lie about sensed voltage: 

 Vrms_A = 0 

if abs(Irms_A) > IThreshold,  

va0sum = Irms_A * defaultV 

w0sum = va0sum 

 else 

  set them to zero 

 varh0 = 0 

else 

v1.1v1.1 TERIDIAN Proprietary 81 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 Get Wh (w0sum) and VARh (var0sum) from CE: 

va0sum = sqrt(w0sum2 + var0sum2) 

endif 

Repeat for elements B and C 

va0sum,.. va2sum, w0sum,.. w2sum, var0sum,.. var2sum are now available. 

Figure current, the best available way: 

If Irms_A < noise-floor of current measurement && Vrms_A > 0 

 Irms_A = va0sum/Vrms_A 

Repeat for elements B and C 

Do the creep calculation: 

If (Vrms_A < Vthreshold) 

 creep mode, set element A’s voltage, current and watts to zero 

else 

if (Irms_A < Ithreshold) 

  creep mode: set element A’s current and watts to zero 

Repeat for element B and C 

Set the pulse outputs. 

Sum positive values to normal registers, negative values to export registers. 

 5.14.1.18  How Register Data is Stored 

The registers cannot just be kept as a floating point number.  When floating point numbers are added, the mantissa of 
the smaller number has to be shifted to the right, losing precision, so that it can be added to the mantissa of the larger.  
In less than an hour, a meter implemented with 32-bit floating point arithmetic begins losing billing revenue because of 
underflow. 

In the Teridian implementation, a variable wh_cnt contains the number of CE counts per Wh.   

The registers are stored as a 32-bit count of Wh, and a 32-bit remainder in CE counts.  The math adds the new CE 
value to the fractional part, and then transfers even Whs to the Wh count.  To do that, it divides the fraction by wh_cnt 
to get the new Wh to add to the count of Wh.  Then, it multiples the number of Wh by wh_cnt to get the number of CE 
counts to subtract from the fractional CE count.  This logic is in normalize8() inUtil\math.c. 

This scheme has no underflow.  It has a tiny, controlled round-off of ½ of a CE LSB per Wh, which the CE calibration 
arranges to average to zero.  Otherwise, all the fractional data is preserved.  The overflow is perfectly controlled, and  
is made to wrap around to zero at a decimal limit.   

The register logic is applied so that the registers only increase.  Negative values of watt hours are subtracted from an 
“export” register. 

wh_cnt does not usually change; in a real meter, this would be a constant, not a variable.  However, in TSC’s demo 
meter, the Imax and Vmax (see glossary) are variables, and therefore so must the CE counts per Wh.  So, wh_cnt is 
recalculated on each accumulation interval by the routine wh_cnt_set(), defined in Util\math.c. 

Unlike earlier demo code versions, this register math is easy to modify to use realistic units.   The WH_RESOLUTION (in 
Util\mmath.h) is already realistic number, 1.0 (Wh), with a UNITS_RANGE limit of a billion (1x109) Wh.  

The display routines (in Meter\wh.c) can divide the registers by 1000 in order to display KWh.  This is controlled by a 
compilation flag, DISPLAY_KWH, which also changes the decimal points and labels for the LCD. 

The registers cannot be kept only in RAM.  If there is a power failure, they would be lost.  The logical scheme is to write 
them to the EEPROM once each accumulation interval.  The problem is that the EEPROM has only 1 million  writes, 
and these would be used up in a few years.  So, the revenue registers are kept in a special block of memory, the C 
structure Totals.Acc.  This data is saved only when there is a power failure. 

v1.1v1.1 TERIDIAN Proprietary 82 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 5.14.1.19  Managing Power Failures 

There is no way to delay power failure to a convenient time, so the meter must always have a valid value for its 
revenue registers.  There are two copies of the register data: Totals.Acc, and Totals.AccB.  When Totals.Acc is valid, 
and its checksum is calculated, it is copied to Totals.AccB.  Therefore, in normal operation, one of these is always 
valid. 

Both are saved by the power failure detection logic. When the meter starts up, it checks both, and uses the first one 
with a valid checksum. 

Version 4.6 and later implement a true power failure interrupt from the CE.  External interrupt INT0 on the MPU is set 
up on DIO_9, the same pin as Y_PULSE, one of the spare pulse outputs from the CE (see meter\ce_30.c ce_init()).  
The CE’s configuration variable CE_STATE has four additional bits, 16:19 which enable and select the elements 
sensed for power failure.   The CE detects power failures as before, but now checks selected status bits in order to 
cause an MPU interrupt.  When all of the elements fail, the CE pulses Y_PULSE, causing an MPU interrupt, which 
saves the power registers to the EEPROM (see ce_sag_isr () in Meter\ce_30.c). 

Before version 4.6, the CE detected power failures by detecting when each mains voltage stayed below a threshold for 
a configurable number of samples, usually 80 decimal, about two cycles.  The MPU discovered this state by reading 
the CE’s status register.  The polling test if the CE’s status registers was done in the CE busy interrupt 
(\meter\ce.c\ce_busy_isr ()), that occurs once per sample time, about  every 396 microseconds.  To save the MPU’s 
time, the sample is compared only once per sample. 

 5.14.1.20  Pulse Counting 

In version 4.6 and later, INT0 is used for the sag interrupt, therefore it cannot be used to count pulses.  Therefore, the 
pulse counting assigns timer 1 (formerly unused) to count the watt-hour pulse.  The gate of timer 1 is set to the correct 
DIO, and timer 1 is set to be a 16 bit counter.  (see pcnt_init() in Meter\pcnt_30.c) 

The counter is read once per second, in the real-time-clock’s timer interrupt. 

The counter is read as two 8-bit values.  The lower value could turn over while being read.  So, the logic re-reads the 
lower value if the upper value changes.  The exact logic is read-upper, read-lower, read-upper second time.  If the 
second time of the upper counter is different from the first, read the lower again. 

After that, each second the number of pulses in that second is the current value of the timer’s register less the previous 
value.  This math automatically handles turn-over of the counter as long as less than 32768 pulses occurred in the last 
second .  For example, say the timer turns over from 0xFFFE to 0x0002.  In signed 16 bit math, this is 2 – (-2), or 4. 

int1 is still used to count VARh, with one interrupt per pulse. 

Before version 4.6, int0 counted watt-hour pulses, and int1 counted var-hour pulses. 

 5.14.1.21  Battery Modes 

The IC has several battery modes.  See the section on the battery mode logic for more information, including a state 
diagram, and special problems. 

The demo code displays the main watt-hours when the pushbutton is pressed, as an example of a typical need in a real 
meter.  It does this with full use of the battery modes for minimum power. 

 5.14.1.22  Real-Time Performance 

The main figure of merit is the time to update the registers and display a new result.  This is about 50 milliseconds 
when the MPU runs at 5MHz.  This is faster than earlier demo codes (i.e. 200ms on the 6513) because:  

1. The data from the CE is not copied. 

2. CE data is accessed as PDATA.  This permits any register to be used as an indirection pointer. 

3. The calculations use fast floating point logic, rather than the custom-written 64-bit multiple-precision math of 
some earlier versions. 

 

v1.1v1.1 TERIDIAN Proprietary 83 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

v1.1v1.1 TERIDIAN Proprietary 84 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 

 5.14.2  Firmware Application: Selected Tasks 

 5.14.2.1  Sag Detection 

A sag is an undervoltage condition that persists for more than one period. A shorter undervoltage condition is called a 
dip (see Figure Figure 5-1). The occurrence of sags can announce an impending loss of power. Since accumulated 
energy values etc. in the meter will have to be saved to non-volatile memory in the case of loss of power, a sag can be 
used to initiate data saving operations. Some applications may instead save or count the sag event for the purpose of 
recording power quality data. 

dip

sag

 
Figure 5-1: Sag and Dip Conditions 

Sag detection is performed by the CE, based on the CE DRAM registers SAG_THR and SAG_CNT. SAG_THR defines 
the threshold which the input voltage has to be continuously below, and SAG_CNT defines the number of samples 
required to trigger the sag bit (see Figure 5-2).  

16.67ms

SAG_THR

SAG_CNT

84 samples

16.67ms16.67ms

SAG_THR

SAG_CNT

84 samples

 
Figure 5-2: Sag Event 

When the CE detects a sag that meets the sag conditions specified in SAG_THR and SAG_CNT on one of the input 
voltage channels, it will reflect this in the corresponding bit (SAG for single-phase, or SAG_A, SAG_B, SAG_C for poly-
phase) of the CE STATUS Word. See the CE Interface section in the 653X Data Sheet for details. 

The demo code saves the power registers to the EEPROM when a sag is detected.  It also has a timer to avoid 
multiple saves because of grid-switching from a recloser or noisy power when the grid starts up.  See the  5.4.2.3 about 
the CE_BUSY interrupt for more information. 

See Application Note AN651X_044 for more information. 

 5.14.2.2  Temperature Measurement 

The temperature output of the on-chip temperature sensor (TEMP_RAW) is provided by the CE in CE DRAM location 
0x7B. The relative chip temperature deltaT (MPU location 0x20) is derived by subtracting the raw temperature from the 
nominal temperature (TEMP_NOM) and multiplying it with a constant factor. Thus, once the raw temperature obtained 
at a known environmental temperature is stored in TEMP_NOM, deltaT will always reflect the deviation from nominal 
temperature. The scaling is in tenths of Centigrades, i.e. a reading of 75 means that the measured temperature is 
7.5°C higher than the reference temperature.



71M653X Software User’s Guide    

 5.14.2.3  Temperature Compensation for Measurements 

The internal voltage reference of the 653X ICs is calibrated during device manufacture. Trim data is stored in on-chip 
fuses. The temperature coefficients TC1 and TC2 are given as constants that represent typical component behavior. 

The bandgap temperature is provided to the embedded MPU, which then may digitally compensate the power outputs. 
This permits a system-wide temperature correction over the entire system rather than local to the chip. The 
incorporated thermal coefficients may include the current sensors, the voltage sensors, and other influences. Since the 
band gap is chopper stabilized via the CHOP_EN bits, the most significant long-term drift mechanism in the voltage 
reference is removed. 

The CE applies the gain supplied by the MPU in GAIN_ADJ. This external type of compensation enables the MPU to 
control the CE gain based on any variable, and when EXT_TEMP = 15, GAIN_ADJ is an input to the CE. 

 5.14.2.4  Temperature Compensation for the RTC 

The flexibility provided by the MPU allows for compensation of the RTC using the substrate temperature. To achieve 
this, the crystal has to be characterized over temperature and the three coefficients Y_CAL, Y_CALC, and Y_CAL_C2 
have to be calculated. Provided the IC substrate temperatures tracks the crystal temperature the coefficients can be 
used in the MPU firmware to trigger occasional corrections of the RTC seconds count, using the RTC_DEC_SEC or 
RTC_INC_SEC registers in I/O RAM. 

Example: Let us assume a crystal characterized by the measurements shown in Table 5-14. 

 
Deviation from 

Nominal 
Temperature [°C] 

Measured 
Frequency [Hz] 

Deviation from 
Nominal 

Frequency [PPM] 
+50 32767.98 -0.61 
+25 32768.28 8.545 

0 32768.38 11.597 
-25 32768.08 2.441 
-50 32767.58 -12.817 

Table 5-14: Frequency over Temperature 

The values show that even at nominal temperature (the temperature at which the chip was calibrated for energy), the 
deviation from the ideal crystal frequency is 11.6 PPM, resulting in about one second inaccuracy per day, i.e. more 
than some standards allow. As Figure 5-3 shows, even a constant compensation would not bring much improvement, 
since the temperature characteristics of the crystal are a mix of constant, linear, and quadratic effects. 

 

32767.5
32767.6
32767.7
32767.8
32767.9

32768
32768.1
32768.2
32768.3
32768.4
32768.5

-50 -25 0 25 50

 
Figure 5-3: Crystal Frequency over Temperature 

v1.1v1.1 TERIDIAN Proprietary 85 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

One method to correct the temperature characteristics of the crystal is to obtain coefficients from the curve in Figure 31 
by curve-fitting the PPM deviations A fairly close curve fit is achieved with the coefficients a = 10.89, b = 0.122, and c = 
–0.00714 (see Figure 32). 

f = fnom * (1 + a/106 + T * b/106 + T2* c/106) 
When applying the inverted coefficients, a curve (see Figure 5-4) will result that effectively neutralizes the original 
crystal characteristics. The frequencies were calculated using the fit coefficients as follows: 

 

32767.5
32767.6
32767.7
32767.8
32767.9

32768
32768.1
32768.2
32768.3
32768.4
32768.5

-50 -25 0 25 50

crystal
curve fit
inverse curve

  
Figure 5-4: Crystal Compensation 

The MPU Demo Code supplied with the TERIDIAN Demo Kits has a direct interface for these coefficients and it directly 
controls the QREG and PREG registers. This interface is implemented by the MPU variables Y_CAL, Y_CALC, and 
Y_CALC2 (MPU addresses 0x04, 0x05, 0x06). For the Demo Code, the coefficients have to be entered in the form: 

1000
2_

100
_

10
_)( 2 CALCYTCALCYTCALYppmCORRECTION ⋅+⋅+=  

Note that the coefficients are scaled by 10, 100, and 1000 to provide more resolution. For our example case, the 
coefficients would then become (after rounding): 

Y_CAL = 109, Y_CALC = 12, Y_CALC2 = 7  

Alternatively, the mains frequency may be used to stabilize or check the function of the RTC. For this purpose, the CE 
provides a count of the zero crossings detected for the selected line voltage in the MAIN_EDGE_X address. This count 
is equivalent to twice the line frequency, and can be used to synchronize and/or correct the RTC. 

 5.14.2.5  Validating the Battery 

For applications that utilize the RTC it is very important to validate the battery. A brief loss of battery power when the 
653X IC is powered down may result in corrupted RTC data. 

The battery monitor function can be used to obtain the battery charge status. 

After battery power is lost, the RTC is usually invalid, and the MPU start-up code will then set it to read the year 2001, 
the month January, and the day 1 (2001/01/01). The time information will be 01:01:01. If the MPU firmware program 
detects the date 01/01/2001 upon power-up or reset, it is safe to conclude that the RTC is corrupted, most likely due to 
a missing or low-voltage battery. 

 

v1.1v1.1 TERIDIAN Proprietary 86 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 5.15  ALPHABETICAL FUNCTION REFERENCE 
 
Function/Routine 
Name Description Input Output File Name 

add8_4(r, wh_ce) 

Adds Wh inCE counts to a 
register r, converting to display 
units.  No underflow or fractional 
value is lost. 

uint8_tx *r, in32_t none Util\math.c 

add8_8 (r0, r1) Adds register r1 to register r0. uint8_tx *r0, 
uint8_tx *r1 none Util\math.c 

Apply_Creep_Threshol
d() Prevents creep. void void Meter\meter.c 

batmode_is_brownout 
() 

Returns true if battery mode is 
brownout.  False is mission 
mode 

void bool Main\batmode.c 

batmode_lcd () 
Enters LCD-only mode from 
brownout mode.  Exit from LCD-
only mode resembles a reset. 

void void Main\batmode.c 

batmode_sleep () 
Enters sleep mode from 
brownout mode.  Exit from sleep 
mode resembles a reset. 

void void Main\batmode.c 

batmode_wait_minutes 
() Sets the wake timer in minutes. uint16_t minutes none Main\batmode.c 

batmode_wait_seconds 
() Sets the wake timer in seconds. uint16_t seconds none Main\batmode.c 

cal_begin() starts auto-calibration process none bool Meter\calphased.c 

cal_restore() Restores calibration from 
EEPROM none bool Meter\calphased.c 

cal_save() saves calibration data to 
EEPROM none none Meter\calphased.c 

Calc_Voltage_Phase() 
Calculates phase angles 
between voltages of different 
phases. 

void void Meter\vphase.c 

Calibration() processes measurements 
during auto-calibration none none Meter\calphased.c 

ce_active() returns CE status none bool Meter\io651x.c 

ce_enable() Enables or disables the CE bool enable none Meter\io651x.c 

ce_init() Initializes the CE none bool Meter\ce.c 

ce_reset() resets the CE none none Meter\io651x.c 

cli () command Line Interpreter none none Cli\cli.c 

cli_init() Initializes the SLI's interface to 
any serial port. 

enum 
SERIAL_PORT 
port, enum 
SERIAL_SPD 
speed, bool 
xon_xoff 

bool Cli\sercli.c 

cli0_init() Initializes the SLI's interface to 
SER0 

enum 
SERIAL_SPD 
speed, bool 
xon_xoff 

bool Cli\ser0cli.c 

cli1_init() 
Initializes the SLI's interface to 
SER1 

enum 
SERIAL_SPD 
speed, bool 

bool Cli\ser1cli.c 

v1.1v1.1 TERIDIAN Proprietary 87 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Function/Routine 
Name Description Input Output File Name 

xon_xoff 

cmax() returns maximum of unsigned 
char 'a' and 'b'.   uint8_t a, uint8_t b uint8_t Util\math.c 

cmd_ce () processes CE commands none none cmd_ce.c 

cmd_ce_data_access() Processes context for CE DATA none none Cli\access.c 

cmd_download() 
downloads/uploads code/data 
between various sources and 
serial port 

none none Cli\load.c 

cmd_eeprom() processes EEPROM commands none none Cli\cmd_misc.c 

cmd_error() assigns generic command mode 
error result code none none Cli\cli.c 

cmd_load() implements user dialog for 
data/code download/upload none none Cli\load.c 

cmd_meter() processes "M" commands none none Meter\meter.c 

cmd_mpu_data_access(
) 

processes context for MPU 
DATA none none Cli\access.c 

cmd_power_save() processes power save 
command none none Cli\cmd_misc.c 

cmd_rtc() processes RTC commands none none Cli\cmd_misc.c 

cmd_trim() processes trim commands none none Cli\cmd_misc.c 

cmin() returns minimum of unsigned 
char 'a' and 'b'.  uint8_t a, uint8_t b uint8_t Util\math.c 

Compute_Phase_Angle(
) Computes the V/I phase angle. void void Meter\phase_angle.c 

Compute_RMS() Computes Vrms and Irms. void void Meter\rms.c 

CRC_Calc() 
calculates standard 16-bit CRC 
polynomial per ISO/IEC 3309 on 
flash memory (x16+x12+x5+1) 

uint8_tr *ptr, 
uint16_t len, U01 
set 

bool Util\flash.c 

CRC_Calc_NVR() 
calculates the 16-bit CRC 
polynomial per ISO/IEC 3309 on 
NVRAM 

uint8_tx *ptr, 
uint16_t len, U01 
set 

bool Util\math.c 

ctoh() converts ascii hex character to 
hexadecimal digit uint8_t c uint8_t Cli\load.c 

date_lcd () Displays the current date. void void IO\rtc_30.c 

Delta_Time () Figure the elapsed time 
between two times. 

struct RTC_t start, 
struct RTC_t end 

int32_t 
seconds IO\rtc_30.c 

Determine_Frequency(
) 

Sets the frequency.  Uses sag 
status and voltage thresholds to 
return 0 if the voltages are off. 

void void Meter\freq.c 

Determine_Peaks() 

Sets status bits if voltages, 
currents or temperature are 
outside limits. Sag tests are in 
xfer_busy_int() 

void void Meter\peak_alerts.c 

divide() *u /= *v 
uint8_tx *u, uint8_tx 
*v, m, n, uint8_tx 
*v0 

uint8_t Util\math.c 

divide_ () *u /= *v 
uint8_tx *u, uint8_tx 
*v, m, n, uint8_tx 
*v0 

none Util\math.c 

divide_1() *x /= y uint8_tx *x, y, n none Util\math.c 

v1.1v1.1 TERIDIAN Proprietary 88 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

Function/Routine 
Name Description Input Output File Name 

done() exits control uint8_td *c *c Cli\cli.c 

EEProm_Config() 
connects/disconnects DIO4/5 
for I2C interface to serial 
EEPROM 

bool access, 
uint16_t page_size, 
uint8_t tWr 

none IO\eeprom.c, 
IO\eepromp3.c 

es0_isr () serial port 0 service routine none none IO\ser0.c 

es1_isr() serial port 1 service routine none none IO\ser1.c 

frequency_lcd () Displays the frequency on the 
LCD. void void Meter\freq.c 

get_ce_constants() 

Copies CE configuration 
constants to a data structure so 
they can be viewed in the 
emulator. 

void void Meter\ce.c 

get_char() gets next character from CLI 
buffer none uint8_t cli\io.c 

get_char_d() gets next character from CLI 
buffer uint8_t idata *d uint8_t cli\io.c 

get_digit() gets next decimal (or hex) digit 
from CLI buffer uint8_t idata *d uint8_t cli\io.c 

get_long() converts ascii decimal (or hex) 
long to binary number none int32_t cli\io.c 

get_long_decimal() converts ascii decimal long  to 
binary number. uint8_t c int32_t cli\io.c 

get_long_hex() converts ASCII hexadecimal 
number to binary number none U32 cli\io.c 

get_num() converts ascii decimal (or hex) 
number to binary number none S08 cli\io.c 

get_num_decimal() converts ascii decimal number 
to binary number none S08 cli\io.c 

get_num_hex() converts ascii hexdecimal byte 
to binary number none uint8_t cli\io.c 

get_short() converts ascii decimal (or hex) 
short to binary number none int16_t cli\io.c 

get_short_decimal() converts ascii decimal short to 
binary number none int16_t cli\io.c 

get_short_hex() converts ascii hexdecimal short 
to binary number none uint16_t cli\io.c 

htoc() converts hexadecimal digit to 
ascii hex character uint8_t c uint8_t Cli\load.c 

IICGetBit() gets a bit, used to reset some 
parts none uint8_t io\iiceep.c 

IICInit() initializes DIO4/5 as EEPROM 
interface none none io\iiceep.c 

IICStart() IIC bus's start condition none none io\iiceep.c 

IICStop() IIC bus's stop condition none none io\iiceep.c 

init_meter() Initializes meter to default 
values none none defaults.c 

IRQ_DEFINES 
Defines variables used by 
macros to enable and disable 
interrupts. 

n/a n/a util\irq.h 

v1.1v1.1 TERIDIAN Proprietary 89 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Function/Routine 
Name Description Input Output File Name 

irq_disable() Disables interrupts. void void util\irq.c 

IRQ_DISABLE() 

The fastest way to disable 
interrupts.  Requires 
IRQ_DEFINES to be earlier in 
the code, or that the needed 
symbols be defined. 

n/a n/a util\irq.h 

irq_enable() Enables interrupts void void util\irq.c 

IRQ_ENABLE() 

The fastest way to enable 
interrupts.  Requires 
IRQ_DEFINES to be earlier in 
the code, or that the needed 
symbols be defined. 

n/a n/a util\irq.h 

irq_init() Initializes interrupt control. void void util\irq.c 

labsx() returns the absolute value int32_t x S332 Util\math.c 

latan2() returns the arcTangent int32_t sy, int32_t 
sx U32 Util\math.c 

LCD_CE_Off() displays “CE OFF” on LCD none none io\lcd.c 

LCD_Command() turns LCD on or off, clears 
display uint8_t LcdCmd none io\lcd.c 

LCD_Config() configures LCD parameters 

uint8_t num, enum 
eLCD_mode bias, 
enum LCD_CLK 
clock 

none io\lcd.c 

LCD_Data_Read() reads from selected icon of LCD uint8_t Icon uint16_t io\lcd.c 

LCD_Data_Write() writes to selected icon of LCD uint8_t icon, 
uint16_t Mask none io\lcd.c 

LCD_Hello() displays “HELLO” on LCD none none io\lcd.c 

LCD_Init() clears LCD, enables LCD 
segment drivers none none io\lcd.c 

LCD_Mode Display a mode number. Uint8_t mode none io\lcd.c 

LCD_Number() Displays a number on the LCD. 

Int32_t number 
uint8_t 
num_digits_before_
decimal_point, 
uint8_t 
num_digits_after_d
ecimal_point 

none io\lcd.c 

lmax() returns maximum of unsigned 
long ‘a’ and ‘b’. U32 a, U32 b  U32 Util\math.c 

lmin() returns minimum of unsigned 
long ‘a’ and ‘b’. U32 a, U32 b U32 Util\math.c 

log2() returns binary logarithm uint16_t k uint8_t Util\math.c 

LRC_Calc_NVR () 
Calculates a longitudinal 
redundancy check (bitwise 
parity) 

Bool (ok/bad) Pointer, 
length, set Util\library.c 

Lroundf() 
Returns long rounded from float.  
Standard C99 library routine not 
provided by Keil 

Long Float Util\math.c 

main_background() executes background 
processing none none main.c 

main_edge_cnt_lcd () Displays either the Uint8_t select void Meter\freq.c 

v1.1v1.1 TERIDIAN Proprietary 90 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

Input Output File Name Function/Routine 
Name Description 

instantaneous edge count, or 
the cumulative edge count. 

initiates soft reset main_soft_reset() none none main.c 

max() returns maximum of unsigned 
int  ‘a’ and ‘b’.   

uint16_t a, uint16_t 
b uint16_t options_glib.h 

memcpy_cei () 
Copies from IDATA to the CE 
memory. 

Int32x_t *pDst, 
int32i_t *pSrc, 
uint8_t len 

void Meter\ce.c 

memcpy_cer () 
Copies from flash to the CE 
memory. 

Int32x_t *pDst, 
int32r_t *pSrc, 
uint8_t len 

void Meter\ce.c 

memcpy_cex () 
Copies from XDATA to the CE 
memory. 

Int32x_t *pDst, 
int32x_t *pSrc, 
uint8_t len 

void Meter\ce.c 

memcpy_ice () 
Copies from the CE memory to 
IDATA. 

Int32i_t *pDst, 
int32x_t *pSrc, 
uint8_t len 

void Meter\ce.c 

memcpy_xce () 
Copies from the CE memory to 
XDATA. 

Int32x_t *pDst, 
int32x_t *pSrc, 
uint8_t len 

void Meter\ce.c 

memget_ce () Reads a word of the CE 
memory int32i_t *pDst int32_t Meter\ce.c 

memset_ce () Sets a word of the CE memory int32i_t *pDst, 
int32_t src void Meter\ce.c 

meter_lcd () Display the current quantity on 
the LCD. Void void Meter\meter.c 

meter_run () Performs meter data 
processing. Void void Meter\meter.c 

memcmp_rx() compares xdata to flash code 
uint8_tr *rsrc, 
uint8_tx *xsrc, 
uint16_t len 

S08 library.c 

memcmp_xx() compares xdata to xdata 
uint8_tx *xsrc1, 
uint8_tx *xsrc2, 
uint16_t len 

S08 library.c 

memcpy_ix() copies xdata to idata 
uint8_ti *dst, 
uint8_tx *src, 
uint8_t len 

none library.c 

memcpy_px() Copies data to serial EEPROM U32 Dst, uint8_tx 
*pSrc, uint16_t len enum 

IO\eeprom.c, 
IO\eepromp.c, 
IO\eepromp3.c 

memcpy_rce() reads from or writes to flash 
int32_tr *dst, 
int32_tx *src, 
uint8_t len 

none Util\flash.c 

memcpy_rx() Copies xdata to code (flash) 
uint8_tr *dst, 
uint8_tx *src, 
uint16_t len 

bool Util\flash.c 

memcpy_xi() Copies idata to xdata 
uint8_tx *dst, 
uint8_ti *src, 
uint8_t len 

none library.c 

memcpy_xp() 
copies data from serial 
EEPROM 

uint8_tx *pDst, U32 
Src, uint16_t len enum 

IO\eeprom.c, 
IO\eepromp.c, 
IO\eepromp3.c 

memcpy_xr() copies xdata from code (flash) uint8_tx *dst, none library.c 

v1.1v1.1 TERIDIAN Proprietary 91 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Function/Routine 
Name Description Input Output File Name 

uint8_tr *src, 
uint16_t len 

memcpy_xx() copies xdata to xdata 
uint8_tx *dst, 
uint8_tx *src, 
uint16_t len 

none library.c 

memset_x() sets xdata to specified value 
uint8_tx *dst, 
uint8_t s, uint16_t 
len 

none library.c 

meter_initialize() initializes most I/O functions 
thaty read line power none none meter.c 

meter_totals () 
Display a selected quantity on 
the LCD. 

Uint8_t 
select,uint8_t 
phase 

void meter.c 

microseconds2tmr_reg
() Converts to timer’s count. Number uint16_t tmr0.h, tmr1.h 

milliseconds() 
Converts milliseconds to clock 
ticks, usually for a software 
timer. 

Any number uint16_t stm.h 

milliseconds2tmr_reg
() Converts to timer’s count. Number uint16_t tmr0.h, tmr1.h 

min() returns minimum of unsigned int  
‘a’ and ‘b’.   

uint16_t a, uint16_t 
b uint16_t options_glib.h 

MPU_Clk_Select() selects MPU clock speed enum MPU_SPD 
speed bool IO\serial.c 

MPU_Clk_Select() Describes the clock speed of 
the MPU to a serial interface. 

Enum 
SERIAL_PORT 
port, enum 
eMPU_DIV speed 

bool Cli\sercli.c 

MPU_Clk_Select0() Describes the clock speed of 
the MPU to the serial interface. 

Enum eMPU_DIV 
speed bool Cli\ser0cli.c 

MPU_Clk_Select1() Describes the clock speed of 
the MPU to the serial interface. 

Enum eMPU_DIV 
speed bool Cli\ser1cli.c 

multiply_1() W = x * y uint8_tx *w, 
uint8_tx *x, y, n uint8_t Util\math.c 

multiply_4_1() (uint32_t) w  = (uint32_t) x * 
(uint8_t) y 

uint8_tx *w, 
uint8_tx *x, y uint8_t Util\math.c 

multiply_4_4() 
(uint64_t) w  = (uint32_t) x * 
(uint32_t) y 

uint8_tx *w, 
uint8_tx *x, uint8_tx 
*y 

none Util\math.c 

multiply_8_1() (uint64_t) w  = (uint64_t) x * 
(uint8_t) y 

uint8_tx *w, 
uint8_tx *x, y uint8_t Util\math.c 

multiply_8_4() 
(uint96_t) w  = (uint64_t) x * 
(uint32_t) y 

uint8_tx *w, 
uint8_tx *x, uint8_tx 
*y 

none Util\math.c 

normalize8() 

Puts a register into normal form.  
I.e., fractional part is less than 
one display unit, both units and 
fraction are positive or zero, and 
display units is less than the 
UNITS_RANGE. 

Uint8_tx *r   void Util\math.c 

operating_lcd () Displays the number of hours of 
operation. Void void Io\rtc_30.c 

OperatingHours() Calculates hours of operation 
from the last valid mark. None int32_t hours Io\rtc_30.c 

v1.1v1.1 TERIDIAN Proprietary 92 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

Function/Routine 
Name Description Input Output File Name 

OSCOPE_INIT Defines DIO_7, the VAR pulse 
output as a DIO. N/a n/a Util\oscope.h 

OSCOPE_ONE Set DIO_7, the same pin as the 
VARh pulse output, to high. N/a n/a Util\oscope.h 

OSCOPE_TOGGLE Inverts DIO_7, the same pin as 
the VARh pulse output. N/a n/a Util\oscope.h 

OSCOPE_ZERO Set DIO_7, the same pin as the 
VARh pulse output, to low. N/a n/a Util\oscope.h 

pcnt_accumulate() Accumulates counts from the 
previous second. Void void Meter\pcnt.c 

pcnt_init () Initialize logic to count output 
pulses. Void void Meter\pcnt.c 

pcnt_lcd() Display pulse count on LCD uint8_t select void Meter\pcnt.c 

pcnt_start() Starts plse-counting for a fixed 
number of seconds. Int16_t seconds void Meter\pcnt.c 

pcnt_update() Synchronizes pulse counts with 
noninterrupting code. Void void Meter\pcnt.c 

phase_angle_lcd () Displays a V/I phase angle. Uint8_t phase void meter\phase_angle.c 

psoft_init () Initializes software pulse 
outputs. Void void Meter\psoft.c 

psoft_out() Generates two additional pulse 
outputs. Call from ce_busy_isr void void Meter\psoft.c 

psoft_update () 

The inputs are watt hours, as 
generated by the CE, and set 
the extra pulse generators to 
blink at the same rate as CE 
pulse outputs, with the same 
units.  This should be called 
each time a new accumulation 
interval has data. 

int32_t pulse3_in, 
int32_t pulse4_in void Meter\psoft.c 

put_char() puts character into CLI buffer uint8_t idata *c none cli\io.c 

Read_Trim() reads the trim value for selected 
trim word enum eTRIM select S08 Meter\io653x.c 

rms_I_lcd() Displays current. Uint8_t phase void Meter\rms.c 

rms_v_lcd() Displays voltage. Uint8_t phase void Meter\rms.c 

RTC_Adjust_Trim() Safely sets the compensation 
variables. 

Bool clr_cnt, 
int32_t value none IO\rtc_30.c 

RTC_Compensation() 
Calculates and adjusts the 
temperature compensation for 
the RTC. 

None none IO\rtc_30.c 

rtc_isr () Interrupt code to adjust clock 
each second. Void void IO\rtc_30.c 

RTClk_Read() reads current values of RTC none none IO\rtc_30.c 

RTClk_Reset() resets the RTC none none IO\rtc_30.c 

RTC_Trim() Calculates the temperature 
compensation using Y_Cals none int32_t ppb IO\rtc_30.c 

RTClk_Write() writes/sets to RTC none none IO\rtc_30.c 

s2f() 
Returns the floating point CE 
units value closest to the 
register value.  Can lose up to 

uint8x_t *register float util\math.c 

v1.1v1.1 TERIDIAN Proprietary 93 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Input Output File Name Function/Routine 
Name Description 

40 bits of precision.  Use only to 
calculate ratios. 

Converts seconds to clock ticks, 
usually for a software timer. seconds() Any number uint16_t Util\stm.h 

SelectPulses() 

Selects pulse sources for 2 CE 
pulse outputs, and optionally, for 
two additional software pulse 
outputs.  The controls are in 
MPU variables initialized from 
the default table. 

Void void Meter\pulse_src.c 

send_a_result() sends passed result code to 
UART uint8_t c none Cli\cli.c 

send_byte() sends a [0, 255] byte to DTE. S08 n none cli\io.c 

send_char() sends single character uint8_t c none cli\io.c 

send_crlf() sends <CR><LF> out to UART. None none cli\io.c 

send_digit() sends single ASCII hex or 
decimal digit out to SERIAL0 uint8_t c none cli\io.c 

send_help() sends text in code at specified 
location to serial port uint8_tr * code *s none Cli\cli.c 

send_hex() sends byte out SERIAL0 in HEX uint8_t n none cli\io.c 

send_long() sends a [0, 9,999,999,999] 
value to DTE. Int32_t n none cli\io.c 

send_long_hex() sends a [0, FFFFFFFF] value to 
DTE U32 n none cli\io.c 

send_num() sends a [0, 9,999,999,999] 
value to DTE 

int32_t n, uint8_t 
size none cli\io.c 

send_result() looks up result code, primes 
pump for result codes none none Cli\cli.c 

send_rtc() displays RTC data none none Cli\cmd_misc.c 

send_short() sends a [0, 99,999] value to 
DTE. Int16_t n none cli\io.c 

send_short_hex() sends a [0, FFFF] value to DTE uint16_t n none cli\io.c 

ser_disable_rcv_rdy(
) Disable the receive interrupt. Void void Io\ser0.h, ser1.h 

ser_disable_xmit_rdy
() Disable the transmit interrupt. Void void Io\ser0.h, ser1.h 

ser_enable_rcv_rdy() Enable the receive interrupt. Void void Io\ser0.h, ser1.h 

ser_enable_xmit_rdy(
) Enable the transmit interrupt. Void void Io\ser0.h, ser1.h 

Ser_initialize() 
configures the serial port 
specified in the include file 
ser0.h or ser1.h 

enum baud none Io\ser0.h, ser1.h 

ser_rcv () Get a byte from the serial port. Void uint8_t Io\ser0.h, ser1.h 

ser_rcv_err() Returns true if the last received 
byte had an error. Void bool Io\ser0.h, ser1.h 

ser_rcv_rdy() Returns true if the serial port 
has gotten another byte. Void bool Io\ser0.h, ser1.h 

ser_xmit () Send a byte to the serial port. Uint8_t void Io\ser0.h, ser1.h 

ser_xmit_err() Returns true if the last sent byte 
had an error. Void bool Io\ser0.h, ser1.h 

v1.1v1.1 TERIDIAN Proprietary 94 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

Function/Routine 
Name Description Input Output File Name 

ser_xmit_free () 
Unimplemented routine to 
permit other uses of transmit 
electronics. 

Void void Io\ser0.h, ser1.h 

ser_xmit_off () Unimplemented routine to 
disable transmit electronics. Void void Io\ser0.h, ser1.h 

ser_xmit_on () Unimplemented routine to 
enable transmit electronics. Void void Io\ser0.h, ser1.h 

ser_xmit_rdy() Returns true if the serial port 
can send another byte. Void bool Io\ser0.h, ser1.h 

Serial_CRx() Receive a string up to a 
maximum length. 

Enum 
SERIAL_PORT 
port, uint8x_t 
*buffer, uint16_t len 

uint16_t 
length-
received 

Cli\sercli.c 

Serial_CTx() Transmit a string up to a 
maximum length. 

Enum 
SERIAL_PORT 
port, uint8x_t 
*buffer, uint16_t len 

uint16_t 
length-sent Cli\sercli.c 

Serial_CRx() gets additional bytes from the 
receive buffer 

enum 
SERIAL_PORT 
port, uint8_tx 
*buffer, uint16_t len 

uint16_t Io\sercli.c 

Serial_CTx () puts additional bytes into the 
transmit buffer 

enum 
SERIAL_PORT 
port, uint8_tx 
*buffer, uint16_t len 

uint16_t Io\sercli.c 

Serial_Rx() Receive a string of any length. 

Enum 
SERIAL_PORT 
port, uint8x_t 
*buffer, uint16_t len 

none Cli\sercli.c 

Serial_Rx () sets up receive buffer and starts 
receiving 

enum 
SERIAL_PORT 
port, uint8_tx 
*buffer, uint16_t len 

enum 
SERIAL_RC 
data 

Io\sercli.c 

Serial_RxFlowOff() 
Force an XOFF to be sent on 
the selected port. 

Enum 
SERIAL_PORT 
port 

none Cli\sercli.c 

Serial_RxFlowOn() 
Force an XON to be sent on the 
selected port. 

Enum 
SERIAL_PORT 
port 

none Cli\sercli.c 

Serial_RxLen() 
returns the number of bytes 
received 

enum 
SERIAL_PORT 
port 

uint16_t Io\sercli.c 

Serial_Tx() Transmit a string of any length. 

Enum 
SERIAL_PORT 
port, uint8x_t 
*buffer, uint16_t len 

none Io\sercli.c 

Serial_Tx() sets up transmission buffer and 
starts transmission 

enum 
SERIAL_PORT 
port, uint8_tx 
*buffer, uint16_t len 

enum 
SERIAL_RC 
data 

Io\sercli.c 

Serial_TxLen() 
returns the number of bytes left 
to transmit 

enum 
SERIAL_PORT 
port 

uint16_t Io\sercli.c 

Serial0_CRx() Receive a string up to a 
maximum length. 

Uint8x_t *buffer, 
uint16_t len 

uint16_t 
length- Cli\ser0cli.c 

v1.1v1.1 TERIDIAN Proprietary 95 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Function/Routine 
Name Description Input Output File Name 

received 

Serial0_CTx() Transmit a string up to a 
maximum length. 

Uint8x_t *buffer, 
uint16_t len 

uint16_t 
length-sent Cli\ser0cli.c 

Serial0_Rx() Receive a string of any length. Uint8x_t *buffer, 
uint16_t len none Cli\ser0cli.c 

Serial0_RxFlowOff() Force an XOFF to be sent on 
this port. None none Cli\ser0cli.c 

Serial0_RxFlowOn() Force an XON to be sent on this 
port. None none Cli\ser0cli.c 

Serial0_Tx() Transmit a string of any length. Uint8x_t *buffer, 
uint16_t len none Cli\ser0cli.c 

Serial1_CRx() 
Receive a string up to a 
maximum length. 

Uint8x_t *buffer, 
uint16_t len 

uint16_t 
length-
received 

Cli\ser1cli.c 

Serial1_CTx() Transmit a string up to a 
maximum length. 

Uint8x_t *buffer, 
uint16_t len 

uint16_t 
length-sent Cli\ser1cli.c 

Serial1_Rx() Receive a string of any length. Uint8x_t *buffer, 
uint16_t len none Cli\ser1cli.c 

Serial1_RxFlowOff() Force an XOFF to be sent on 
this port. None none Cli\ser1cli.c 

Serial1_RxFlowOn() Force an XON to be sent on this 
port. None none Cli\ser1cli.c 

Serial1_Tx() Transmit a string of any length. Uint8x_t *buffer, 
uint16_t len none Cli\ser1cli.c 

SFR_Read() reads from SFR uint8_t s, S08d *pc enum 
SFR_RC Util\sfrs.c 

SFR_Write() writes to SFR uint8_t s, uint8_t 
c_set, uint8_t c_clr 

enum 
SFR_RC Util\sfrs.c 

start_tx_ram() sends RAM string out PC UART uint8_tx *c none cli\io.c 

start_tx_rslt() sends ROM string out PC UART uint8_tr *c none cli\io.c 

stm_run() 
This counts down the software 
timers when called from the 
main loop. 

Void void Util\stm.c 

stm_start() 

Starts a software timer.  If 
restart is zero, the timer stops, 
otherwise it continues 
indefinitely. When a timer 
expires, its function is run. 
Timers count down and are 
deallocated if they cease to run. 

Uint16_t 
tick_count, uint8_t 
restart, void (code 
*fn_ptr) (void) 

volatile 
uint16x_t 
*cnt_ptr 

Util\stm.c 

stm_stop() 
Uses a count pointer from start 
to identify which software timer 
to stop. 

Volatile uint16x_t 
*cnt_ptr void Util\stm.c 

stm_wait() Waits for the passed number of 
clock ticks. Uint16_t void Util\stm.c 

strlen_r () returns length of string in flash 
code uint8_tr *src uint16_t Util\library.c 

strlen_x() returns length of string in xdata uint8_tx *src uint16_t Util\library.c 

sub8_4(r, wh_ce) register r -= CE units uint8_tx *r, long 
wh_ce none Util\math.c 

sub8_8(r0, r1) register r0 -= register r1 uint8_tx *x, uint8_tx none Util\math.c 

v1.1v1.1 TERIDIAN Proprietary 96 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

Function/Routine 
Name Description Input Output File Name 

*y 

temperature_lcd() 
Displays the current delta from 
the calibration temperature in 
degrees C on the LCD. 

Void void Meter\meter.c 

time_lcd () Displays the current time. Void void io\rtc_30.c 

tmr_disable () Halt a timer. None none io\tmr0.h, tmr1.h 

tmr_enable () Lets a timer run (timer start 
does this by default) none none io\tmr0.h, tmr1.h 

tmr_running () Returns true if the timer is 
running. none bool io\tmr0.h, tmr1.h 

tmr_start () Starts a hardware timer. 

Uint16_t time (in 
timer units), uint8_t 
restart_flag (zero 
means interrupt 
once), void (code 
*pfn) (void) (code to 
execute) 

none io\tmr0.h, tmr1.h, tmr0.c, 
tmr1.c 

tmr_stop () Stops a hardware timer. None none io\tmr0.h, tmr1.h 

tmr0_isr () Timer interrupt for TMR0 none none io\tmr0.c 

tmr1_isr () Timer interrupt for TMR1 none none io\tmr1.c 

update_register () 
Move data from AMR’s copy of 
power registers into power 
registers. 

Void void Meter\meter.c 

uwr_busy_wait () Wait for programming complete 
indication. None none io\uwrdio.c, uwreep.c2 

uwr_init () Initialize a 3-wire (similar to 
uWire™) interface none none io\uwrdio.c, uwreep.c2 

uwr_read () Get a counted string of bytes. Uint8x_t *pbOut, 
uint16_t cnt none io\uwrdio.c, uwreep.c2 

uwr_select () 
Select a chip by passing its 
address; 0 = none; This must be 
ported to new PCBs. 

Uint8_t address none io\uwrdio.c, uwreep.c2 

uwr_write () Transmit a counted string of 
bytes. 

Uint8x_t *pbOut, 
uint16_t cnt 

bool true = 
success. Io\uwrdio.c, uwreep.c2 

Ah_Accumulate() Calculates VAh void void meter\vah.c 

VARh_Accumulate() Calculates VARh void void meter\varh.c 

voltage_phase_lcd() Display voltage phases on LCD. Uint8_t select void meter\vphase.c 

wd_create() Creates a software watchdog. Uint8_t wd void util\wd.c 

wd_destroy() Destroys a software watchdog. Uint8_t wd void util\wd.c 

wd_reset() 

Resets a software watchdog.  If 
all software watchdogs have 
been reset, the hardware 
watchdog is reset. 

Uint8_t wd void util\wd.c 

wh_accumulate() Calculate watt hours. Void void meter\wh.c 

wh_brownout_to_lcd() Displays a precalculated 6-digit 
number. Uint32_t number void meter\wh.c 

wh_cnt_set() Sets wh_cnt to the number of 
CE Wh units per display unit. void void util\math/c 

wh_lcd() Displays a watt-hour value on 
the LCD in milliwatt-hours. uint8_t *val void meter\wh.c 

v1.1v1.1 TERIDIAN Proprietary 97 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

Function/Routine 
Name Description Input Output File Name 

wh_sum_export () 
Adds  (0 - w1) to s, only if w1 is 
negative, yielding a total of 
exported power in w. 

uint8x_t *s, int32i_t 
*wl void meter\wh.c 

Adds w1 to s, only if w1 is 
positive, yielding a total of 
imported power in w. 

wh_sum_import () 
uint8x_t *s, int32i_t 
*wl void meter\wh.c 

wh_sum_net() Adds w1 to s, yielding a net sum 
of watthours in s. 

uint8x_t *s, int32i_t 
*wl void meter\wh.c 

wh_to_long () 

Convert a 64-bit internal watts 
count to a 6-digit value (i.e. this 
is the routine that precalculates 
values for 
wh_brownout_to_lcd()). 

uint8_t *val uint32_t meter\wh.c 

 

 5.16  ERRATA 
The up-to-date list of known issues with revision 4.4.15 of the Demo Code can be found in the readme.txt file contained 
in the 653x_demo ZIP file shipped with the Demo Kits. 

The factory should be contacted for updates to the Demo Code. 

Known Firmware Errata for version 4.4.15 are listed in the table below. 
 
Number Issue Comment 

   
   
   
   
   

v1.1v1.1 TERIDIAN Proprietary 98 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 5.17  PORTING 71M6511/6513 CODE TO THE 71M653X 

 5.17.1  Flash Use 

The biggest issue when moving code from the 6511/6513 to the 71M653x is the increased program memory. While the 
71M6511 and 6513 have 64K, the 71M6531 has 128K and the 71M6534 has 256K.  The 653x defaults to a 64K 
configuration, so code from earlier meter chips will fit easily. 

Creating banked code that uses the extra flash is a substantial discussion in itself.  See the section “Creating banked 
code.” 

 5.17.2  Extra RAM 

The MPU now has access to 4K of RAM, up from 2K.  Roughly 1K is allocated to the CE, leaving 3K. 

 5.17.3  CE Data Location is at XDATA 0x0000 

CE data now resides in roughly the first 1K bytes of RAM, from 0x0000 to 0x03FF.  The exact CE RAM usage varies 
with different CE code versions, with single-phased CE codes taking less RAM, and three-phase CE codes taking up to 
the limit.  Nonstandard CE codes may take more than 1K, but these will come with instructions. 

Standard CE configuration begins at 0x0010.  Standard CE output areas begin at 0x0200. 

The Keil compiler must be configured to avoid the CE RAM.  If not, both the CE code and MPU code will misbehave 
when the MPU writes data into the CE code’s internal data area and vice-versa. 

 5.17.4  CE Data Access is Transparent to the MPU 

The MPU can now simply read and write the CE RAM.  No special buffering or access routines are required. 

The demo code, for example, no longer copies data from the CE’s output area to the MPU RAM.  The Keil C code 
simply uses the CE’s output data.   

It’s fast to access the CE’s output as PDATA variables, so in the demo code, the PDATA page register (SFR 0xB7) is 
set to 0x200.  The CE output registers begin on a page boundary, 0x200. 

 5.17.5  Read-only areas in MPU RAM 

The direct-memory-access ADC writes automatically to XDATA locations 0x0000..0x000E, so these are not stable for 
memory tests, and there is no way to disable the writes.  Also 0x000F is a read-only alternate location of the chip’s 
version identification. 

 5.17.6  CE Code Location 

Another difference between 71M6511/6513 and the 71M653x is that the CE code now resides in the flash. It is not 
copied to the CE program RAM as in the 71M651X chips. Instead, the register CE_LCTN, bits 0…7 at XDATA 0x20A8 
is set to the most significant 8 bits of the program flash address where the CE program resides. It is best to place the 
CE program in a high code bank so it does not compete with the MPU for flash.  The demo code puts it near the end of 
the last bank. 

 5.17.7  CE Causes Flash Write-Protection 

Since the CE resides in flash memory, there are safeguards that prevent the CE program memory from being erased or 
reprogrammed while the CE is running.  

When programming flash memory from an emulator, the CE must first be disabled by writing 00 to XDATA 0x2000. 
Only then, programming of the flash memory can occur. 

Most practical flash write code simply disables the CE, writes the flash, and enables the CE.  This is the fastest way to 
write the flash, and the metering values for the disabled period can be interpolated. 

Automated flash writes with the CE running are theoretically possible.  The writes have to be synchronized with an 
interrupt from the correct (trailing) edge of the CE_BUSY signal.  Also, with three phase CE code, there is usually only 

v1.1v1.1 TERIDIAN Proprietary 99 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

enough time to write one byte before the next CE run starts. This would confine a transparent flash write scheme to a 
maximum data rate of 2520 bytes per second.  If the MPU disables interrupts at all, the write can miss the window and 
fail.  In this case, the write can detect a failure to write by examining and clearing the FWCOL0 bit.  If the FWCOL1 bit 
is set, the write was in progress when the CE pass should have started.  In this case, the code must count the failed 
CE code passes and prorate the metering data.  Prorating the metering data is unacceptable to many users. 

 5.17.8  Watchdog Location 

The watchdog reset bit moved to bit 7 of SFR 0xF8.  The other bits of this register are read-only. 

 5.17.9  Software Watchdog Now Deprecated 

The 651x series had a software watchdog that was part of the 8051 core, and which could be disabled by software.  
The 653x series no longer supports the core’s watchdog.  Instead, use the standard watchdog, which cannot be 
disabled by software. 

 5.17.10  Real Time Clock Compensation 

The real-time clock compensation is very different from the 651x series.  Fixed rate adjustments are nonvolatile and 
automatic, so that they continue when the MPU is not operating. 

The 32 KHz crystal rate can be measured precisely in the factory by using a precision frequency counter to measure 
the 1 second or 4 second output from the TMUX pin.  During this measurement, the RTCA_ADJ register should be set 
to the middle of its range, 0x40, and PREG and QREG should be set to the middle of their range. 

After this, the capacitance driving the crystal can be adjusted by have the meter software write and preserve a value for 
the real time clock analog adjustment, RTCA_ADJ XDATA 0x2011. 

After RTCA_ADJ is set, the clock rate can be remeasured using the frequency counter with TMUX. 

In operation the clock’s rate can be digitally adjusted for temperature or to follow the line frequency by adjusting the 
PREG and QREG registers.  These are actually a single register that adds or subtracts a count after a certain number 
of counts. 

Setting PREG and QREG to zero will cause the seconds register to count at ½ Hz, rather than 1 Hz. 

 5.17.11  Battery Modes 

One of the most significant innovations for the 71M653x is the battery-power feature. This feature provides three 
operational modes that apply when the supply voltage is removed and the chip is powered by the battery. The 
operation modes and their transitions are shown in Figure 5-5, State Diagram of Operating Modes. 

In the brownout mode, operation continues at 32kHz, and RAM and DIO pins remain powered. However, the clock 
slows down and is so slow that the timers and serial port give dramatically different timings. Only the RTC, and its 1-
second interrupt run at an unchanged speed.  

In addition to the flags given in Figure 5-5, State Diagram of Operating Modes, the following considerations apply to 
state transitions: 

• Mission to brownout mode: The MPU keeps running, but the clock slows down. 

• Brownout to mission mode:  The MPU keeps running, but the clock speeds up. 

• LCD or sleep mode to brownout mode: The MPU will start code execution at address 0x000. 

The sleep and LCD modes shut down all of the 71M653x’s internal and XDATA RAM, as well as the pin drivers for 
DIOs, and most of the memory cells that store the hardware configuration.   

The lack of nonvolatile memory during the battery modes can be disconcerting at first. Only GP0..GP7 and the clock 
are guaranteed nonvolatile.  GP0..GP7 are cleared on reset. 

In particular, the meter should be designed so that the DIO pins and serial port outputs do not need to be powered in 
battery modes. 

The data sheet for the 71M653x shows which bits are reset, and which are maintained in the battery modes. 

The transitions between the modes are managed by changes in supply voltage, transitions of the push button pin 
signal, and a wake-up timer.   

v1.1v1.1 TERIDIAN Proprietary 100 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

The push-button operation is very simple: Pressing the button wakes the part from LCD or sleep mode into brownout 
mode. Afterward, a bit is set: IE_PB, bit 4 of IFLAGS, SFR E8. 

One of the characteristics of the 71M653x is that it is not able to enter LCD or sleep mode if IE_PB or IE_WAKE (the 
wake timer’s bit, see below) are set. The Demo Code clears these bits at the earliest convenient instant, transferring 
their state to bits in the demo firmware’s status variable. This technique preserves data about how the chip last woke, 
but also permits the chip to transition to the LCD and sleep modes easily. 

V3P3SYS
rises

V3P3SYS
falls

MISSION

BROWNOUT

LCD

SLEEP or

V1 > VBIAS
V1 <= VBIAS

LCD_ONLY

RESET &
VBAT_OK

RESET

IE_PLLRISE
-> 1

IE_PLLFALL
-> 1

IE_PB -> 1
IE_WAKE ->

1
PB

timer

timer
PB

RESET &

V3P3SYS
rises

V3P3SYS
rises

VBAT_OK

VBAT_OK

VBAT_OK

VBAT_OK

SLEEP

 
Figure 5-5, State Diagram of Operating Modes 

 5.18  PORTING 71M6521 CODE TO THE 71M653X 

 5.18.1  Flash Use 

The biggest issue when moving code from the 6521 to the 71M653x is the increased program memory. While the 
71M6521 has 32K, most 653x series have at least 128K and the 71M6534 has 256K.  The 653x defaults to a 64K 
configuration, so code from earlier meter chips will fit easily. 

Creating banked code that uses the extra flash is a substantial discussion in itself.  See the section “Creating banked 
code.” 

 5.18.2  Extra RAM 

The MPU now has access to 4K of RAM, up from 2K.  Roughly 1K is allocated to the CE, leaving 3K. 

v1.1v1.1 TERIDIAN Proprietary 101 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 5.18.3  CE Data Location is at XDATA 0x0000 

CE data now resides in roughly the first 1K bytes of RAM, from 0x0000 to 0x03FF.  The exact CE RAM usage varies 
with different CE code versions, with single-phased CE codes taking less RAM, and three-phase CE codes taking up to 
the limit.  Nonstandard CE codes may take more than 1K, but these will come with instructions. 

Standard CE configuration begins at 0x0010.  Standard CE output areas begin at 0x0200. 

The Keil compiler must be configured to avoid the CE RAM.  If not, both the CE code and MPU code will misbehave 
when the MPU writes data into the CE code’s internal data area and vice-versa. 

 5.18.4  CE Data Access is Transparent to the MPU 

The MPU can now simply read and write the CE RAM.  No special buffering or access routines are required. 

The demo code, for example, no longer copies data from the CE’s output area to the MPU RAM.  The Keil C code 
simply uses the CE’s output data.   

It’s fast to access the CE’s output as PDATA variables, so in the demo code, the PDATA page register (SFR 0xB7) is 
set to 0x200.  The CE output registers begin on a page boundary, 0x200. 

 5.18.5  Read-only areas in MPU RAM 

The direct-memory-access ADC writes automatically to XDATA locations 0x0000..0x000E, so these are not stable for 
memory tests, and there is no way to disable the writes.  Also 0x000F is a write-only alternate location of the chip’s 
version identification. 

 5.18.6  CE Code Location 

The 6521 also keeps CE code in flash.  However the CE_LCTN register in the 653x series has 6 or 7 bits.  It’s prudent 
to move the CE code out of page zero.  Page zero often becomes crowded with data and tables in a banked 
application, and the CE code and data initialization are relatively large tables that are easy to move. It is best to place 
the CE program in a high code bank so it does not compete with the MPU for flash.  The demo code puts it near the 
end of the last bank. 

 5.18.7  CE Causes Flash Write-Protection 

Like the 6521, since the CE resides in flash memory, there are safeguards that prevent the CE program memory from 
being erased or reprogrammed while the CE is running.  

When programming flash memory from an emulator, the CE must first be disabled by writing 00 to XDATA 0x2000. 
Only then, programming of the flash memory can occur. 

Most practical flash write code simply disables the CE, writes the flash, and enables the CE.  This is the fastest way to 
write the flash, and the metering values for the disabled period can be interpolated. 

Automated flash writes with the CE running are theoretically possible.  The writes have to be synchronized with an 
interrupt from the correct (trailing) edge of the CE_BUSY signal.  Also, with three phase CE code, there is usually only 
enough time to write one byte before the next CE run starts. This would confine a transparent flash write scheme to a 
maximum data rate of 2520 bytes per second.  If the MPU disables interrupts at all, the write can miss the window and 
fail.  In this case, the write can detect a failure to write by examining and clearing the FWCOL0 bit.  If the FWCOL1 bit 
is set, the write was in progress when the CE pass should have started.  In this case, the code must count the failed 
CE code passes and prorate the metering data.  Prorating the metering data is unacceptable to many users. 

 5.18.8  Watchdog Location 

The watchdog reset bit moved to bit 7 of SFR 0xF8.  The other bits of this register are read-only. 

 5.18.9  Software Watchdog Now Deprecated 

The 652x series had a software watchdog that was part of the 8051 core, and which could be disabled by software.  
The 653x series no longer supports the core’s watchdog.  Instead, use the standard watchdog, which cannot be 
disabled by software. 

v1.1v1.1 TERIDIAN Proprietary 102 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 5.18.10  Real Time Clock Compensation 

The real-time clock compensation is very different from the 652x series.  Fixed rate adjustments are nonvolatile and 
automatic, so that they continue when the MPU is not operating. 

The 32 KHz crystal rate can be measured precisely in the factory by using a precision frequency counter to measure 
the 1 second or 4 second output from the TMUX pin.  During this measurement, the RTCA_ADJ register should be set 
to the middle of its range, 0x40, and PREG and QREG should be set to the middle of their range. 

After this, the capacitance driving the crystal can be adjusted by have the meter software write and preserve a value for 
the real time clock analog adjustment, RTCA_ADJ XDATA 0x2011. 

After RTCA_ADJ is set, the clock rate can be remeasured using the frequency counter with TMUX. 

In operation the clock’s rate can be digitally adjusted for temperature or to follow the line frequency by adjusting the 
PREG and QREG registers.  These are actually a single register that adds or subtracts a count after a certain number 
of counts. 

Setting PREG and QREG to zero will cause the seconds register to count at ½ Hz, rather than 1 Hz. 

 5.18.11  Battery Modes 

The battery modes strongly resemble the 6521.  In particular, the RAM is unpowered in sleep and LCD-only mode. 

In the 653X the LCD registers are also unpowered in sleep mode to save power.   

The 653x has 8 bytes of nonvolatile RAM, GP0..GP7. At this time, in A01 and A02 versions of the IC, GP0..7 are 
cleared at reset, but remain unchanged in battery modes.  Later versions may preserve these register in reset. 

In the 653x, fixed-rate clock compensation is in hardware and continues to run in sleep mode.  Code is not needed to 
compensate the clock when leaving sleep mode. 

The 653x sleep mode consumes less than 1 microamp, far better than the 6521.  

 5.18.12  Watchdog Reset 

In the 653x, the watchdog reset is equivalent to the reset pin.  So, after a watchdog reset, the 653x does not require 
reinitialization to a reset state, and the 6521 did. 

 5.18.13  Temperature Compensation   

When operating with “internal” temperature compensation, the 71M653X uses MPU-based temperature compensation 
similar to the 6521 for the metering.   

The real time clock’s temperature compensation is also MPU-based, but has a different algorithm, because it must set 
the hardware rate register. 

 

v1.1v1.1 TERIDIAN Proprietary 103 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

v1.1v1.1 TERIDIAN Proprietary 104 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

16
 

 6  80515 MPU REFERENCE 
An 80515 core is implemented on the TERIDIAN 71M653X chips. This section is intended for software engineers who 
plan to use the 80515.  

The MPU core is described in detail in the 6531, 6533, and 6534 data sheets, except for the instruction set, which is 
presented in this chapter. 

 6.1  THE 80515 INSTRUCTION SET 
All 80515 instructions are binary code compatible and perform the same functions as they do with the industry standard 
8051. The following tables give a summary of the instruction set cycles of the 80515 MPU core. 

Table 6-7 and Table 6-8 contain notes for mnemonics used in instruction set tables. 

Table 6-9 through Table 6-17 show the instruction hexadecimal codes, the number of bytes, and the number of 
machine cycles required for each instruction to execute. 

 

Rn  Working register R0-R7 
direct  256 internal RAM locations, any Special Function Registers 
@Ri  Indirect internal or external RAM location addressed by register R0 or R1 
#data  8-bit constant included in instruction 
#data 16  16-bit constant included as bytes 2 and 3 of instruction 
bit  256 software flags, any bit-addressable l/O pin, control or status bit 
A  Accumulator 

Table 6-1: Notes on Data Addressing Modes 

 
addr16  Destination address for LCALL and LJMP may be anywhere within the 64-kB of program memory 

address space. 
addr11 Destination address for ACALL and AJMP will be within the same 2-kB page of program memory 

as the first byte of the following instruction. 
rel  SJMP and all conditional jumps include an 8-bit offset byte. Range is +127/-128 bytes relative to 

the first byte of the following instruction 

Table 6-2: Notes on Program Addressing Modes

v1.1v1.1 TERIDIAN Proprietary 105 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 6.1.1  Instructions Ordered by Function  

Mnemonic Description Code Bytes Cycles
ADD A,Rn  Add register to accumulator 28-2F 1 1 
ADD A,direct  Add direct byte to accumulator 25 2 2 
ADD A,@Ri  Add indirect RAM to accumulator 26-27 1 2 
ADD A,#data  Add immediate data to accumulator 24 2 2 
ADDC A,Rn  Add register to accumulator with carry flag 38-3F 1 1 
ADDC A,direct  Add direct byte to A with carry flag 35 2 2 
ADDC A,@Ri  Add indirect RAM to A with carry flag 36-37 1 2 
ADDC A,#data  Add immediate data to A with carry flag 34 2 2 
SUBB A,Rn  Subtract register from A with borrow 98-9F 1 1 
SUBB A,direct  Subtract direct byte from A with borrow 95 2 2 
SUBB A,@Ri  Subtract indirect RAM from A with borrow 96-97 1 2 
SUBB A,#data  Subtract immediate data from A with borrow 94 2 2 
INC A  Increment accumulator 04 1 1 
INC Rn  Increment register 08-0F 1 2 
INC direct  Increment direct byte 05 2 3 
INC @Ri  Increment indirect RAM 06-07 1 3 
INC DPTR  Increment data pointer A3 1 1 
DEC A  Decrement accumulator 14 1 1 
DEC Rn  Decrement register 18-1F 1 2 
DEC direct  Decrement direct byte 15 2 3 
DEC @Ri  Decrement indirect RAM 16-17 1 3 
MUL AB  Multiply A and B A4 1 5 
DIV  Divide A by B 84 1 5 
DA A  Decimal adjust accumulator D4 1 1 

Table 6-3: Arithmetic Operations

v1.1v1.1 TERIDIAN Proprietary 106 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

Mnemonic Description Code Bytes Cycles
ANL A,Rn  AND register to accumulator 58-5F 1 1 
ANL A,direct  AND direct byte to accumulator 55 2 2 
ANL A,@Ri  AND indirect RAM to accumulator 56-57 1 2 
ANL A,#data  AND immediate data to accumulator 54 2 2 
ANL direct,A  AND accumulator to direct byte 52 2 3 
ANL direct,#data  AND immediate data to direct byte 53 3 4 
ORL A,Rn  OR register to accumulator 48-4F 1 1 
ORL A,direct  OR direct byte to accumulator 45 2 2 
ORL A,@Ri  OR indirect RAM to accumulator 46-47 1 2 
ORL A,#data  OR immediate data to accumulator 44 2 2 
ORL direct,A  OR accumulator to direct byte 42 2 3 
ORL direct,#data  OR immediate data to direct byte 43 3 4 
XRL A,Rn  Exclusive OR register to accumulator 68-6F 1 1 
XRL A,direct  Exclusive OR direct byte to accumulator 65 2 2 
XRL A,@Ri  Exclusive OR indirect RAM to accumulator 66-67 1 2 
XRL A,#data  Exclusive OR immediate data to accumulator 64 2 2 
XRL direct,A  Exclusive OR accumulator to direct byte 62 2 3 
XRL direct,#data  Exclusive OR immediate data to direct byte 63 3 4 
CLR A  Clear accumulator E4 1 1 
CPL A  Complement accumulator F4 1 1 
RL A  Rotate accumulator left 23 1 1 
RLC A  Rotate accumulator left through carry 33 1 1 
RR A  Rotate accumulator right 03 1 1 
RRC A  Rotate accumulator right through carry 13 1 1 
SWAP A  Swap nibbles within the accumulator C4 1 1 

Table 6-4: Logic Operations

v1.1v1.1 TERIDIAN Proprietary 107 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 

Mnemonic Description Code Bytes Cycles
MOV A,Rn  Move register to accumulator E8-EF 1 1 
MOV A,direct  Move direct byte to accumulator E5 2 2 
MOV A,@Ri  Move indirect RAM to accumulator E6-E7 1 2 
MOV A,#data  Move immediate data to accumulator 74 2 2 
MOV Rn,A  Move accumulator to register F8-FF 1 2 
MOV Rn,direct  Move direct byte to register A8-AF 2 4 
MOV Rn,#data  Move immediate data to register 78-7F 2 2 
MOV direct,A  Move accumulator to direct byte F5 2 3 
MOV direct,Rn  Move register to direct byte 88-8F 2 3 
MOV direct1,direct2  Move direct byte to direct byte 85 3 4 
MOV direct,@Ri  Move indirect RAM to direct byte 86-87 2 4 
MOV direct,#data  Move immediate data to direct byte 75 3 3 
MOV @Ri,A  Move accumulator to indirect RAM F6-F7 1 3 
MOV @Ri,direct  Move direct byte to indirect RAM A6-A7 2 5 
MOV @Ri,#data  Move immediate data to indirect RAM 76-77 2 3 
MOV DPTR,#data16  Load data pointer with a 16-bit constant 90 3 3 
MOVC A,@A+DPTR  Move code byte relative to DPTR to accumulator 93 1 3 
MOVC A,@A+PC  Move code byte relative to PC to accumulator 83 1 3 
MOVX A,@Ri  Move external RAM (8-bit addr.) to A E2-E3 1 3-10 
MOVX A,@DPTR  Move external RAM (16-bit addr.) to A E0 1 3-10 
MOVX @Ri,A  Move A to external RAM (8-bit addr.) F2-F3 1 4-11 
MOVX @DPTR,A  Move A to external RAM (16-bit addr.) F0 1 4-11 
PUSH direct  Push direct byte onto stack C0 2 4 
POP direct  Pop direct byte from stack D0 2 3 
XCH A,Rn  Exchange register with accumulator C8-CF 1 2 
XCH A,direct  Exchange direct byte with accumulator C5 2 3 
XCH A,@Ri  Exchange indirect RAM with accumulator C6-C7 1 3 
XCHD A,@Ri  Exchange low-order nibble indirect RAM with A D6-D7 1 3 

Table 6-5: Data Transfer Operations 

v1.1v1.1 TERIDIAN Proprietary 108 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

Mnemonic Description Code Bytes Cycles
ACALL addr11  Absolute subroutine call xxx11 2 6 
LCALL addr16  Long subroutine call 12 3 6 
RET  Return from subroutine 22 1 4 
RETI  Return from interrupt 32 1 4 
AJMP addr11  Absolute jump xxx01 2 3 
LJMP addr16  Long jump 02 3 4 
SJMP rel  Short jump (relative addr.) 80 2 3 
JMP @A+DPTR  Jump indirect relative to the DPTR 73 1 2 
JZ rel  Jump if accumulator is zero 60 2 3 
JNZ rel  Jump if accumulator is not zero 70 2 3 
JC rel  Jump if carry flag is set 40 2 3 
JNC  Jump if carry flag is not set 50 2 3 
JB bit,rel  Jump if direct bit is set 20 3 4 
JNB bit,rel  Jump if direct bit is not set 30 3 4 
JBC bit,direct rel  Jump if direct bit is set and clear bit 10 3 4 
CJNE A,direct rel  Compare direct byte to A and jump if not equal B5 3 4 
CJNE A,#data rel  Compare immediate to A and jump if not equal B4 3 4 
CJNE Rn,#data rel  Compare immed. to reg. and jump if not equal B8-BF 3 4 
CJNE @Ri,#data rel  Compare immed. to ind. and jump if not equal B6-B7 3 4 
DJNZ Rn,rel  Decrement register and jump if not zero D8-DF 2 3 
DJNZ direct,rel  Decrement direct byte and jump if not zero D5 3 4 
NOP  No operation 00 1 1 

Table 6-6: Program Branches 

 
Mnemonic Description Code Bytes Cycles
CLR C  Clear carry flag C3 1 1 
CLR bit  Clear direct bit C2 2 3 
SETB C  Set carry flag D3 1 1 
SETB bit  Set direct bit D2 2 3 
CPL C  Complement carry flag B3 1 1 
CPL bit  Complement direct bit B2 2 3 
ANL C,bit  AND direct bit to carry flag 82 2 2 
ANL C,/bit  AND complement of direct bit to carry B0 2 2 
ORL C,bit  OR direct bit to carry flag 72 2 2 
ORL C,/bit  OR complement of direct bit to carry A0 2 2 
MOV C,bit  Move direct bit to carry flag A2 2 2 
MOV bit,C  Move carry flag to direct bit 92 2 3 

Table 6-7: Boolean Manipulations

v1.1v1.1 TERIDIAN Proprietary 109 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 6.1.2  Instructions Ordered by Opcode (Hexadecimal) 

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic 
0x00  NOP  0x20  JB bit.rel  0x40  JC rel 
0x01  AJMP addr11  0x21  AJMP addr11  0x41  AJMP addr11 
0x02  LJMP addr16  0x22  RET  0x42  ORL direct,A 
0x03  RR A  0x23  RL A  0x43  ORL direct,#data
0x04  INC A  0x24  ADD A,#data  0x44  ORL A,#data 
0x05  INC direct  0x25  ADD A,direct  0x45  ORL A,direct 
0x06  INC @R0  0x26  ADD A,@R0  0x46  ORL A,@R0 
0x07  INC @R1  0x27  ADD A,@R1  0x47  ORL A,@R1 
0x08  INC R0  0x28  ADD A,R0  0x48  ORL A,R0 
0x09  INC R1  0x29  ADD A,R1  0x49  ORL A,R1 
0x0A  INC R2  0x2A  ADD A,R2  0x4A  ORL A,R2 
0x0B  INC R3  0x2B  ADD A,R3  0x4B  ORL A,R3 
0x0C  INC R4  0x2C  ADD A,R4  0x4C  ORL A,R4 
0x0D  INC R5  0x2D  ADD A,R5  0x4D  ORL A,R5 
0x0E  INC R6  0x2E  ADD A,R6  0x4E  ORL A,R6 
0x0F  INC R7  0x2F  ADD A,R7  0x4F  ORL A,R7 
0x10  JBC bit,rel  0x30  JNB bit.rel  0x50  JNC rel 
0x11  ACALL addr11  0x31  ACALL addr11  0x51  ACALL addr11 
0x12  LCALL addr16  0x32  RETI  0x52  ANL direct,A 
0x13  RRC A  0x33  RLC A  0x53  ANL direct,#data 
0x14  DEC A  0x34  ADDC A,#data  0x54  ANL A,#data 
0x15  DEC direct  0x35  ADDC A,direct  0x55  ANL A,direct 
0x16  DEC @R0  0x36  ADDC A,@R0  0x56  ANL A,@R0 
0x17  DEC @R1  0x37  ADDC A,@R1  0x57  ANL A,@R1 
0x18  DEC R0  0x38  ADDC A,R0  0x58  ANL A,R0 
0x19  DEC R1  0x39  ADDC A,R1  0x59  ANL A,R1 
0x1A  DEC R2  0x3A  ADDC A,R2  0x5A  ANL A,R2 
0x1B  DEC R3  0x3B  ADDC A,R3  0x5B  ANL A,R3 
0x1C  DEC R4  0x3C  ADDC A,R4  0x5C  ANL A,R4 
0x1D  DEC R5  0x3D  ADDC A,R5  0x5D  ANL A,R5 
0x1E  DEC R6  0x3E  ADDC A,R6  0x5E  ANL A,R6 
0x1F  DEC R7  0x3F  ADDC A,R7  0x5F  ANL A,R7 

Table 6-8: Instruction Set in Hexadecimal Order

v1.1v1.1 TERIDIAN Proprietary 110 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic 
0x60  JZ rel  0x80  SJMP rel  0xA0  ORL C,bit 
0x61  AJMP addr11  0x81  AJMP addr11  0xA1  AJMP addr11 
0x62  XRL direct,A  0x82  ANL C,bit  0xA2  MOV C,bit 
0x63  XRL direct,#data  0x83  MOVC A,@A+PC  0xA3  INC DPTR 
0x64  XRL A,#data  0x84  DIV AB  0xA4  MUL AB 
0x65  XRL A,direct  0x85  MOV direct,direct  0xA5  Reserved 
0x66  XRL A,@R0  0x86  MOV direct,@R0  0xA6  MOV @R0,direct 
0x67  XRL A,@R1  0x87  MOV direct,@R1  0xA7  MOV @R1,direct 
0x68  XRL A,R0  0x88  MOV direct,R0  0xA8  MOV R0,direct 
0x69  XRL A,R1  0x89  MOV direct,R1  0xA9  MOV R1,direct 
0x6A  XRL A,R2  0x8A  MOV direct,R2  0xAA  MOV R2,direct 
0x6B  XRL A,R3  0x8B  MOV direct,R3  0xAB  MOV R3,direct 
0x6C  XRL A,R4  0x8C  MOV direct,R4  0xAC  MOV R4,direct 
0x6D  XRL A,R5  0x8D  MOV direct,R5  0xAD  MOV R5,direct 
0x6E  XRL A,R6  0x8E  MOV direct,R6  0xAE  MOV R6,direct 
0x6F  XRL A,R7  0x8F  MOV direct,R7  0xAF  MOV R7,direct 
0x70  JNZ rel  0x90  MOV 

DPTR,#data16  
0xB0  ANL C,bit 

0x71  ACALL addr11  0x91  ACALL addr11  0xB1  ACALL addr11 
0x72  ORL C,direct  0x92  MOV bit,C  0xB2  CPL bit 
0x73  JMP @A+DPTR  0x93  MOVC 

A,@A+DPTR  
0xB3  CPL C 

0x74  MOV A,#data  0x94  SUBB A,#data  0xB4  CJNE A,#data,rel 
0x75  MOV direct,#data  0x95  SUBB A,direct  0xB5  CJNE A,direct,rel 
0x76  MOV @R0,#data  0x96  SUBB A,@R0  0xB6  CJNE @R0,#data,rel
0x77  MOV @R1,#data  0x97  SUBB A,@R1  0xB7  CJNE @R1,#data,rel
0x78  MOV R0.#data  0x98  SUBB A,R0  0xB8  CJNE R0,#data,rel 
0x79  MOV R1.#data  0x99  SUBB A,R1  0xB9  CJNE R1,#data,rel 
0x7A  MOV R2.#data  0x9A  SUBB A,R2  0xBA  CJNE R2,#data,rel 
0x7B  MOV R3.#data  0x9B  SUBB A,R3  0xBB  CJNE R3,#data,rel 
0x7C  MOV R4.#data  0x9C  SUBB A,R4  0xBC  CJNE R4,#data,rel 
0x7D  MOV R5.#data  0x9D  SUBB A,R5  0xBD  CJNE R5,#data,rel 
0x7E  MOV R6.#data  0x9E  SUBB A,R6  0xBE  CJNE R6,#data,rel 
0x7F  MOV R7.#data  0x9F  SUBB A,R7  0xBF  CJNE R7,#data,rel 

Table 6-9: Instruction Set in Hexadecimal Order

v1.1v1.1 TERIDIAN Proprietary 111 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 

Opcode Mnemonic Opcode Mnemonic 
0xC0  PUSH direct  0xD0  POP direct 
0xC1  AJMP addr11  0xD1  ACALL addr11 
0xC2  CLR bit  0xD2   SETB bit 
0xC3  CLR C  0xD3  SETB C 
0xC4  SWAP A  0xD4  DA A 
0xC5  XCH A,direct  0xD5  DJNZ direct,rel 
0xC6  XCH A,@R0  0xD6  XCHD A,@R0  
0xC7  XCH A,@R1  0xD7  XCHD A,@R1  
0xC8  XCH A,R0  0xD8  DJNZ R0,rel  
0xC9  XCH A,R1  0xD9  DJNZ R1,rel  
0xCA  XCH A,R2  0xDA  DJNZ R2,rel  
0xCB  XCH A,R3  0xDB  DJNZ R3,rel  
0xCC  XCH A,R4  0xDC  DJNZ R4,rel  
0xCD  XCH A,R5  0xDD  DJNZ R5,rel  
0xCE  XCH A,R6  0xDE  DJNZ R6,rel  
0xCF  XCH A,R7  0xDF  DJNZ R7,rel  
0xE0  MOVX A,@DPTR 0xF0  MOVX @DPTR,A 
0xE1  AJMP addr11 0xF1  ACALL addr11 
0xE2  MOVX A,@R0 0xF2  MOVX @R0,A 
0xE3  MOVX A,@R1 0xF3  MOVX @R1,A 
0xE4  CLR A 0xF4  CPL A 
0xE5  MOV A,direct 0xF5  MOV direct,A 
0xE6  MOV A,@R0 0xF6  MOV @R0,A 
0xE7  MOV A,@R1 0xF7  MOV @R1,A 
0xE8  MOV A,R0 0xF8  MOV R0,A 
0xE9  MOV A,R1 0xF9  MOV R1,A 
0xEA  MOV A,R2 0xFA  MOV R2,A 
0xEB  MOV A,R3 0xFB  MOV R3,A 
0xEC  MOV A,R4 0xFC  MOV R4,A 
0xED  MOV A,R5 0xFD  MOV R5,A 
0xEE  MOV A,R6 0xFE  MOV R6,A 
0xEF  MOV A,R7 0xFF  MOV R7,A 

Table 6-10: Instruction Set in Hexadecimal Order

v1.1v1.1 TERIDIAN Proprietary 112 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

 6.1.3  Instructions that Affect Flags 

Instruction Affected Flag Instruction Affected Flag 

C OV AC C OV AC 
ADD X X X CLR C 0   

ADDC X X X CPL C X   
SUBB X X X ANL C, bit X   
MUL 0 X  ANL C, /bit X   
DIV 0 X  ORL C, bit X   
DA X   ORL C, /bit X   

RRC X   MOV C, bit X   
RLC X   CJNE X   

SETB C 1       

Table 6-11: Instructions Affecting Flags 

Note: Operations affecting the PSW or bits in the PSW will also affect flag settings 

v1.1v1.1 TERIDIAN Proprietary 113 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

 

 

v1.1v1.1 TERIDIAN Proprietary 114 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



71M653X Software User’s Guide    

 

7
 7  APPENDIX 

 7.1  ACRONYMS 
AC Alternating Current – current with changing polarity 

AMR Automated Meter Reading, usually performed via an optical port or modem 

ANSI American National Standardization Institution, part of ISO 

ANSI C C Programming Language, standardized by ANSI in 1983. Keil C, used throughout this User’s Guide 
is not strictly ANSI compliant. 

API Application Programming Interface 

C The C Programming Language, as defined by Kernighan and Ritchie 

CE Computation Engine 

<CR> Carriage Return or Enter Key on PC Keyboard 

COM  Communication Port 

CPU  Control Processor Unit (MPU) 

DC Direct Current 

EEP Engineering Evaluation Platform (Demo Board) 

EEPROM Electrically Erasable PROM 

FLAG An international protocol for reading of meters using an optical port, initially developed by Ferranti 
and Landis&Gyr 

GB Gigabyte(s) 

ICE In-Circuit Emulator 

IDE Integrated Development Environment – usually a combination of editor, compiler, assembler, linker, 
debugger, ICE 

IEC International Electrotechnical Commission (Geneva, Switzerland) 

INT Interrupt 

ISO International Standards Organization 

ISR Interrupt Service Routine 

KB Kilobyte(s) – 1,024 bytes 

LCD  Liquid Crystal Display 

<LF> Line-feed character 

LSB Least Significant Bit 

MB Megabyte(s) – 1,024 kilobytes 

MPU Microprocessor/microcontroller Unit 

v1.1v1.1 TERIDIAN Proprietary 115 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 



 71M653X Software User’s Guide 

MSB Most Siginificant Bit 

NV Non-Volatile 

PC  Personal Computer, Program Counter 

PROM Programmable ROM 

PSU Power Supply Unit 

PSW Program Status Word 

RAM  Random Access Memory 

ROM  Read Only Memory 

SFR Special Function Register (of the 8051 MPU) 

TOU Time-of-Use (variable metering tariffs usually based on time of day) 

TSC  TERIDIAN Semiconductor Corporation 

USB  Universal Serial Bus 

VA Volt-Amperes (apparent power unit) 

VAh Volt-Ampere-Hour (apparent energy unit) 

VAR Reactive Power 

VARh Reactive energy unit 

W Watt (power unit) 

WD Watchdog 

WDT Watchdog timer 

WEMU51 The emulator control program by Signum Systems 

Wh Watt-Hour (energy unit) 

 

 7.2  REVISION HISTORY 
 

Revision Date Description 
1.0 11-2-2007 Initial release 

1.1 5-7-2008 
Added useful excerpts from the SDD. Removed most of 80515 MPU core 
description (contained in data sheets), except op-code tables. 
Added description of Intel Hex File formats for regular and banked code. 

 

 

 

Software User Guide: This User Guide contains proprietary product definition information of TERIDIAN Semiconductor Corporation 
(TSC) and is made available for informational purposes only. TERIDIAN assumes no obligation regarding future manufacture, unless 
agreed to in writing. 
 
If and when manufactured and sold, this product is sold subject to the terms and conditions of sale supplied at the time of order 
acknowledgment, including those pertaining to warranty, patent infringement and limitation of liability. TERIDIAN Semiconductor 
Corporation (TSC) reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is 
cautioned to verify that a data sheet is current before placing orders. TSC assumes no liability for applications assistance. 
 

TERIDIAN Semiconductor Corp., 6440 Oak Canyon Road, Suite 100, Irvine, CA 92618-5201 
TEL (714) 508-8800, FAX (714) 508-8877, http://www.teridian.com 

 
5/8/2008  

v1.1v1.1 TERIDIAN Proprietary 116 of 116 

© Copyright 2005-2008 TERIDIAN Semiconductor Corporation 

http://www.teridian.com/

	 1  INTRODUCTION
	 1.1  USING THIS DOCUMENT
	 1.2  RELATED DOCUMENTATION
	 1.3  COMPATIBILITY STATEMENT

	 2  DESIGN GUIDE
	 2.1  HARDWARE REQUIREMENTS
	 2.2  SOFTWARE REQUIREMENTS
	 2.3  SOFTWARE ARCHITECTURE
	 2.4  UTILITIES
	 2.4.1  D_MERGE
	 2.4.2  CE_MERGE
	 2.4.3  BANK_MERGE


	DESIGN REFERENCE
	 3.1  PROGRAM MEMORY
	 3.2  DATA MEMORY
	 3.3  PROGRAMMING THE 71M653X CHIPS
	 3.4  DEBUGGING OF THE 71M653X CHIPS
	 3.5  TEST TOOLS
	 3.5.1  Running the 653X_Demo.hex Program
	 3.5.2  CLI Commands
	 3.5.3  Command (Macro) Files


	TOOL INSTALLATION GUIDE
	 4.1  INSTALLING THE PROGRAMS FOR THE ADM51 EMULATOR
	 4.2  INSTALLING THE WEMU PROGRAM (CHAMELEON DEBUGGER)
	 4.3  INSTALLING THE ADM51 USB DRIVER
	 4.4  INSTALLING UPDATES TO THE EMULATOR PROGRAM AND HARDWARE
	 4.5  CREATING A PROJECT
	 4.6  INSTALLING THE KEIL COMPILER
	 4.7  CREATING A PROJECT FOR THE KEIL COMPILER
	 4.7.1  Directory Structure
	 4.7.2  Adjusting the Keil Compiler Settings
	 4.7.3  Manually Controlling the Keil Compiler Settings

	 4.8  OUTPUT FILE FORMAT
	 4.8.1  Basic Intel Hex Format
	 4.8.2  Intel Hex386 File Format

	 4.9  WRITING BANK-SWITCHED CODE
	 4.9.1  Hardware Overview
	 4.9.2  Software Overview
	 4.9.3  Software Tool Versions
	 4.9.4  Setup of the Compiler Project
	 4.9.5  Startup
	 4.9.6  Bank-Switching Code
	 4.9.7  Page Table Setup and Debug
	 4.9.8  Producing a Banked Hex File
	 4.9.9  Placing Interrupts in Banked Code
	 4.9.10  Calling Banked Functions via Function Pointers
	 4.9.11  Putting Constants in Banks
	 4.9.12  Write-Protecting Flash in the 653X

	 4.10  PROJECT MANAGEMENT TOOLS
	 4.11  ALTERNATIVE COMPILERS
	 4.12  ALTERNATIVE EDITORS
	 4.13  ALTERNATIVE LINKERS

	DEMO CODE DESCRIPTION
	 5.1  80515 DATA TYPES AND COMPILER-SPECIFIC INFORMATION
	 5.1.1  Data Types
	 5.1.2  Compiler-Specific Information

	 5.2  DEMO CODE OPTIONS AND PROGRAM SIZE
	 5.3  PROGRAM FLOW
	 5.3.1  Startup and Initialization

	 5.4  BASIC CODE ARCHITECTURE
	 5.4.1  Initialization
	 5.4.2  Interrupts
	 5.4.2.1  Pulse Counting Interrupts
	 5.4.2.2  FWCOL0 and FWCOL1
	 5.4.2.3  CE_BUSY Interrupt
	 5.4.2.4  PLL_ISR
	 5.4.2.5  EEPROM Isr
	 5.4.2.6  Timer Interrupt
	 5.4.2.7  The XFER_BUSY, RTC and NEAR_OVERFLOW Interrupt
	 5.4.2.8  SERIAL Interrupt

	 5.4.3  Background Tasks
	 5.4.3.1  meter_run()
	 5.4.3.2  Command Line Interpreter (CLI)
	 5.4.3.3  Auto-Calibration
	 5.4.3.4  EEPROM Read/Write
	 5.4.3.5  Battery Test
	 5.4.3.6  Power Factor Measurement

	 5.4.4  Watchdog Timer
	 5.4.5  Real-Time Clock (RTC)

	 5.5  MANAGING MISSION AND BATTERY MODES
	 5.6  DATA FLOW 
	 5.7  CE/MPU INTERFACE
	 5.8  BOOT LOADER
	 5.9  SOURCE FILES
	 5.10  AUXILIARY FILES
	 5.11  INCLUDE/HEADER FILES
	 5.11.1  OPTIONS.H
	 5.11.2  Register Definitions
	 5.11.3  Other Include/Header Files

	 5.12  CE IMAGE FILES
	 5.13  COMMON MPU ADDRESSES
	 5.14  FIRMWARE APPLICATION INFORMATION
	 5.14.1  General Design Considerations
	 5.14.1.1  Multitasking
	 5.14.1.2  Synchronization
	 5.14.1.3  Bank Switching
	 5.14.1.4  Economic Usage of RAM
	 5.14.1.5  Trading Space for Speed
	 5.14.1.6  Object-Oriented Design
	 5.14.1.7  Reconfiguring “Glue Logic”
	 5.14.1.8  DSP Operations
	 5.14.1.9  Coping with Various Current Sensors
	 5.14.1.10  User Interface
	 5.14.1.11  Operating without User Interface
	 5.14.1.12  Communication with a Computer
	 5.14.1.13  Support of Automatic Meter Reading
	 5.14.1.14  Communication between MPU and CE
	 5.14.1.15  Timing Control
	 5.14.1.16  6531: Calculation of max(VA*IA, VA*IB) Option, Equation 0
	 5.14.1.17  6534: Calculation of VA*IA+VB*IB+VC*IC Option, Equation 5
	 5.14.1.18  How Register Data is Stored
	 5.14.1.19  Managing Power Failures
	 5.14.1.20  Pulse Counting
	 5.14.1.21  Battery Modes
	 5.14.1.22  Real-Time Performance

	 5.14.2  Firmware Application: Selected Tasks
	 5.14.2.1  Sag Detection
	 5.14.2.2  Temperature Measurement
	 5.14.2.3  Temperature Compensation for Measurements
	 5.14.2.4  Temperature Compensation for the RTC
	 5.14.2.5  Validating the Battery


	 5.15  ALPHABETICAL FUNCTION REFERENCE
	 5.16  ERRATA
	 5.17  PORTING 71M6511/6513 CODE TO THE 71M653X
	 5.17.1  Flash Use
	 5.17.2  Extra RAM
	 5.17.3  CE Data Location is at XDATA 0x0000
	 5.17.4  CE Data Access is Transparent to the MPU
	 5.17.5  Read-only areas in MPU RAM
	 5.17.6  CE Code Location
	 5.17.7  CE Causes Flash Write-Protection
	 5.17.8  Watchdog Location
	 5.17.9  Software Watchdog Now Deprecated
	 5.17.10  Real Time Clock Compensation
	 5.17.11  Battery Modes

	 5.18  PORTING 71M6521 CODE TO THE 71M653X
	 5.18.1  Flash Use
	 5.18.2  Extra RAM
	 5.18.3  CE Data Location is at XDATA 0x0000
	 5.18.4  CE Data Access is Transparent to the MPU
	 5.18.5  Read-only areas in MPU RAM
	 5.18.6  CE Code Location
	 5.18.7  CE Causes Flash Write-Protection
	 5.18.8  Watchdog Location
	 5.18.9  Software Watchdog Now Deprecated
	 5.18.10  Real Time Clock Compensation
	 5.18.11  Battery Modes
	 5.18.12  Watchdog Reset
	 5.18.13  Temperature Compensation  


	80515 MPU REFERENCE
	 6.1  THE 80515 INSTRUCTION SET
	 6.1.1  Instructions Ordered by Function 
	 6.1.2  Instructions Ordered by Opcode (Hexadecimal)
	 6.1.3  Instructions that Affect Flags


	APPENDIX
	 7.1  ACRONYMS
	 7.2  REVISION HISTORY


