asiC

www.terasic.com

Apolio §

Essential Instrument of
High Performance Computing

- Terasic Inc.

www. terasic.com

Contents
L0d 0T T (= i IR 0 11 V7 - 4
Chapter 2 Examples FOr FPGA ceeeeeeeeeeeeeesss s s e s e ssnnmsnssss s nenens 5
21 Configure Si5341TAIN RTL ... 5

2.2 Basic Nios Il control demo for SI15341A/ Temperature/ Power/ Fan13

2.3 DDR4 SDRAM RTL TESt ..eeeiiiiiiee et 18
2.4 DDR4 SDRAM Test by NiOS Ilccoiuiiiieiiiiiie e 20
2.5 Board Information P ... 24
Chapter 3 Examples for HPS SOC ...t s 28
3.1 HPS 1x6 GPIO HEAdEr ... 28
3.2 HPS LED/KEY ...ttt e e e e 32
3.3 Network SOCKELcooiiiiie e 35
3.4 Setup USB Wi-Fi DONGIE........uuumuuieiiiiiiiiiiiiiiiiiiiinenneneeeeennees 42
3.5 HPS Control FPGALED ... 46
3.6 BUild C/CH+ ProjECL.......eeiiiiiiiiie e 51
Chapter 4 Additional Informationcccoooimmmmmiemcciiinninnnnneens 52
41 GettiNg HeIP oeeee e 52

Taiwan: +8868-3-5750-880 : L W 5w @ 9F, No.176, Sec. 2, Gongdao 5th Rd,

FAX: +886-3-5726-890 3 i | DSt b iy East Dist, Hsinchu City, Taiwan 30070

aslC| Apollo-S10 3 www.terasic.com

www. terasic.com

User Manual October 14,
2020

Chapter 1

Overview

his Manual will introduce the various application demonstrations on Apollo

S10 SoM board. These demonstrations cover most of the interfaces on Apollo

S10 SoM. Let users familiarize using these interfaces of the Apollo S10 SoM
board. Demonstrations according to FPGA fabrics and HPS are divided into three
categories:

B Pure use of FPGA fabric resources (Chapter 2)
B Pure use of HPS fabric resources (Chapter 3)

Finally, to complete the following demonstration, user needs to install the following
software in the computer:

B Intel Quartus® Prime Pro Edition Software Version 19.4.0 or later.
B Intel SoC Embedded Design Suite(EDS) Professional Edition

aslC| Apollo-S10 4 www.terasic.com

www. terasic.com

User Manual October 14,
2020

Chapter 2

Examples For FPGA

his chapter provides examples of advanced designs implemented by RTL or

Qsys on the Apollo S10 SoM board. These reference designs cover the

features of peripherals connected to the FPGA, such as DDR4, temperature
monitor, PLL clock setting and Power monitor. All the associated files can be found in
the directory \Demonstrations\FPGA of Apollo S10 SoM System CD.

2.1 Configure Si5341A in RTL

There are two Silicon Labs Si5341A clock generators on Apollo S10 FPGA board can
provide adjustable frequency reference clock (See Figure 2-1) for FMC/FMC+
connectors and DDR4 memory. The Si5341A clock generator can output four
differential frequencies from 100Hz ~ 712.5Mhz though 12C interface configuration.
This section will show you how to use FPGA RTL IP to configure each Si5341A PLL
and generate users desired output frequency to each peripheral.

asic| Apollo s10S0M S www.terasic.com

W, EErasic, com Demonstration OCtOber 14,

Manual 2020

1:8 Clock Buffer (LVCMOS)

Cypress
USB

UB2 MAX10

Default: 266.667 MHz (DDR4A)

Default; 644,53125 MHz (FMC-0)

A

Clock for Configuration and
Transcelver Calibration 125MHz
OsC
HPS Clock 25MHz
OosC
100MHz
OsC

Default: §44.53125 MHz (FMC-1) _

Crystal Default: 300 MHz (DDR4B)
48MHz 2

Default: 644.53125 MHz (FMCP-0)

Default: §44.53125 MHz (FMCP-1)

Default: 644.53125 MHz (FMCP-2)

10-Output Clock Generator

Figure 2-1 Clock tree of the Apollo S10 SoM

B Creating Si5341A Control IP

The Si5341A control IP is located in the folder: "\Demonstrations\FPGA\Si5341A _IP" in
the System CD. Developers can use the IP directly in their Quartus top. Developers
can refer to the example in Demonstrations/FPGA/Clock Controller folder. This
example shows how to instantiate the IP in Quartus top project.

Also, System Builder tool (located in System CD) can be used to help developer to set
Si5341A to output desired frequencies, and generate a Quartus project with control IP.
In the System Builder window, users can select desired frequencies by selecting a
desired output frequency in the pull down menu as shown in Figure 2-2. For details
about the System Builder, please refer to Chapter 3 — System Builder in the Apollo S10
SoM user manual.

asic| Apolio S10SoM 6 www.terasic.com
www.teresic.cem - Demonstration October 14,
Manual

2020

Terasic Apolio $10V1.1.0 x,

~System Corfiguration
Board Type | S10(19X280HU2FBIET VG) v
Froject Mame: |51o |
Top Flle Type: :\,.-'er"og -
HICLOCK I Bution 1 2
MLED K2 4 Switch x 2
DOR4A{FPGAHPS) [DDR4B(FPGA)
FSiBRd 14 4 System Irfo
HPS
~FMC Expansian
7 EMC i _
SiEaAlA : _ I0Voitage: 18V (Defautt) - FMC
DDR4B_REFCLK pir: 266667 v MHz FMC HPC-/ITA Standard v ‘
FMC_REFCLKO_p/i: 54453125 | MHz Prefix Name: HPC
FMC_REFCLK_pin: MHz ‘
FMCP_REFCLKO.pi: BN y 7 [FMCe . .
: 1AW (Default vl :
FMCP_REFCLKT pin: 250 0 MHz 10 vottage: [1AV e g
126.0 FMC+ (VI TAB7.4] Y
FMCP_REFCLKZ pi: | 5o g MHz § =
; Prefix Name:
LYDS_REFCLK ph 2700 MHz S

:DefauItSeﬂin_gz Load Seffing... Save Seffing.. Generats... | | Exit

Figure 2-2 Select Desired Si5341A output frequency

B Using Si5341 control IP
Table 2-1 lists the instruction ports of Si5341A Controller IP.

Table 2-1 Si5341A Controller Instruction Ports

[Pt IDiectn __ Descripton |
iCLK input |System Clock (50Mhz)
Synchronous Reset
(0: Module Reset, 1: Normal)

iStart input |Start to Configure (positive edge trigger)
iDDR4B_REFCLK
iFMC_REFCLKO
iFMC_REFCLK1 _ Setting Si5341A Output Channel
iFMCP_REFCLKO nput Frequency Value
iFMCP_REFCLK1
iFMCP_REFCLK2

iRST_n input

aslic| Apollo S10 SoMm 7 www.terasic.com
www.teresic.cem - Demonstration October 14,

Manual 2020

iLVDS_REFCLK

Si5341A Configuration status
oPLL_REG_CONFIG_DONE | output |(0: Configuration in Progress, 1:
Configuration Complete)
12C_DATA inout |[I2C Serial Data to/fromSi5341A
12C_CLK output |[I2C Serial Clock to Si5341A

As shown in Table 2-2 and Table 2-3, both two Si5341A control IP have preset several
output frequency parameters, if users want to change frequency, users can fill in the
input ports "iDDR4B_REFCLK ", "iFMC_REFCLKO", "iFMC_REFCLK1", "
iFMCP_REFCLKOQ", "iIFMCP_REFCLK1", "iIFMCP_REFCLK2", and " iLVDS_REFCLK"
with desired frequency values and recompile the project. For example, in the
components Si5341A1, change

. iIFMC_REFCLKO ("XCVR_REF_644M53125),
to. iIFMC_REFCLKO ("XCVR_REF_322M265625),

Recompile project, the Si5341A OUTO channel (for FMC) output frequency will change
from 644.53125Mhz to 322.26562Mhz.

Table 2-2 Si5341A Controller Reference Clock Frequency Setting for FMC/FMC+
iFMC_REFCLKO0/1

iFMCP_REFCLKO0/1/2 | Si5341A Channel Clock Frequency(MHz)

Input Setting
4'h0 644.53125
4'h1 322.265625
4'h2 250
4'h3 125
4'h4 100
4'h5 270

Table 2-3 Si5341A Controller Reference Clock Frequency Setting for DDR4B
iDDR4B_REFCLK

Si5341A Channel Clock Frequency(MHz)

Input Setting
4'h0 300
asic| Apolio S10SoM 8 www.terasic.com
wwwterssic.com - Demonstration October 14,
Manual

2020

4'h1 266.667
4'h2 233.333
4'h3 166.667

Users can also dynamically modify the input parameters, and input a positive edge
trigger for “iStart”, then, Si5341A output frequency can be modified.

After the manually modifying, please remember to modify the corresponding frequency
value in SDC file.

B Modify Clock Parameter for Your Own Frequency

If the Si5341A control IP built-in frequencies are not users’ desired, users can refer to
the below steps to the modify control IP register parameter settings to modify the IP to
output a desired frequency.

1. Firstly, download ClockBuilder Pro Software (See Figure 2-3), which is
provided by Silicon Labs. This tool can help users to set the Si5341A’s output
frequency of each channel through the GUI interface, and it will automatically
calculate the Register parameters required for each frequency. The tool
download link:
http://url.terasic.com/clockuilder ro oftware

asic| Apolio S10SoM 9 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

B clockBuilder Pro Wizard - Silicon Labs - O

ClockBuilder Pro Wizard o
We Make Timing Simple O

SILICON LABS

Work With a Design Quick Links

[Create New Project Silicon Laks Timing Selutions
Knowledge Base
m Fa {3 n]

& Open Project
Applications Documentation

: Convert Existing Project/NVM File
10/40/100G Line Card White Paper
Clock Generators for Cloud Data Centers White

&) Open Sample Project

iili: No EVB Present Selecting the Right Clocks for Timin
Ne evaluation board has been detacted. Synchronization Applications App Note

ClockBuilder Pro Documentation

CBPro Overview

CBPro Tools & Support for In-System Programming
Includes walkthroughs of frequency-on-the-fly, full configuration,
and partial configuration programming scenarios.

CLI User's Guide
Release MNotes - Knowledge Base

Figure 2-3 ClockBuilder Pro Wizard

2. After the installation, select Si5341, and configure the input frequency and
output frequency as shown in Figure 2-4.

asic Apollo S10 SoM 10 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

ﬁ New 515341 Project - ClackBuilder Pro = m] x|

ClockBuilder Provaz #. SILICON LABS
Step 6 of 10 - Define Output Clocks v Configuring Si5341ABCD Rev D
Disabled N Divider / o |
Qutput Mode State Format Frequency DCO/ ZDM ‘
outo [enabl.. [[stepL.. [wvosisv [[s00 Mtz Bl ® [os¢ | [HZ]oum
|
outt [Fnabl.. || stopl. | tvbs18v [4|[200 MHz - -) 3o |
out2 [Enabl.. [l Stopl. [vbs1.8v 4| [166 MH: - -) L Slowz |
|
outz |enabl.. [J| stopL.] vostsv [[300 MHz - - () g 2o |
out4 [unused 0 B B i | 3 {3 goum ‘
outs [Enabl.. [‘StopL. [vpsisv [[300 MH: - - () 3 L3t ,
oute |unused [rx [s B [| I | || e
; : : -I:zoun |
out7 [Enabl.. [‘Stopl.. B 'tvbsisv 4| [644 MHz - I - ()
ouTs
ouTe |Unused ﬁi N/A B B i. B | 1A ii E
ouTa
outs |unused [- | R B (- | Y | N =

| Clock Placement Wizard ... |

C'-) Frequency Plan Valid @ Design OK QA

Figure 2-4 Define Output Clock Frequencies on ClockBuilder Pro Wizard

3. After the setting is completed, ClockBuilder Pro Wizard generates a Design
Report(text), which contains users setting frequency corresponding register
value (See Figure 2-5).

asic| Apolio S10SoM 11 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

[m]

Bl New 515341 Project - ClockBuilder Fro
ClockBuilder Pro vas
Design Dashboard v

SILICON LABS

B8 si5341 Design Report - O ®

Your Si5341 design is complete. You should save yoii = e 9" Report

-Uverall power 1LNCIUges on-cNilp power O1SS1PAT10N and Adds OLTTErentlal Load power 01SS1pation To &

i . % 5 i estimate total power requiresents.
Zk Edit Configuration with Wizard -Above are estimstes only: power and temperature should be measured on your PCB.
Design 1D & Notes » Revision = Host Intefad -selection of appropriate Theta-JA is required for most accurate estimate. Ideally, selsct “User
LU-RHKQQ.‘:H%ZDM %uﬂm.’i!s&k.&e T 0 Specified Theta-J4' and enter a Theta-J4 value based on the thermal properties of your PCH.
Output Clocks * DCO « Planner + LOS » Settings
Lecation Setting Mame Decimal Value Hex Value
@x0086[23:0] TDOL_VERSION 8 ExB00060
©xB088[6:8] [2C_ADDR 116 Bx74 &
@xee17[a] SYSINCAL_INTR_MSK 8 7]
€x0017[1] LOSXAXE INTR_MSK] exe
ax0e17[2] LOSREF_INTR_MSK] o
@x0017[3] LOL_TNTR_MSK (] 7]
Bx0817[5] SME_TMOUT_THTR_MSK @ Bxf
©x8018[3:8] LOSIN_INTR_MSK 11 BxE
6x8021[a] IN_SEL_REGETRL 1 Bl
ox@ez1[2:1] IN_SEL 8 7]
6x0022[1] OE 8]
0x0028[3] SPI_3IWIRE (] (]
@x0028[5] AUTO_NDIV_UPDATE] 7]
@x002C[3:0] LOS_EN 1 51
@x002C[4] LOSXAXB_DIS 1 el
©x00820[1:8] LOSE VAL TIME 1 Bl
e . ©x08020[3:2] LOS1 VAL TIME o %]
ﬁ Silicon Labs Cloud Services ©x08030[5:4] LOSZ_VAL_TIME 8 7]
You can create a custom part number for Your| gxeean[7:6] LOS2_VAL_TIME [ox@
which can be used to order factory pre-progral — exee2£[15:8] LOS8_TRG_THR 132 PRBECE
devices. Or reguest a phase noise report forth - exee3a[is:@] LOS1_TRG_THR o EROAOR
design. €x0032[15:0] LOS2_TRG_THR] EuEa00
@x0034[15:0] LOS3_TRE_THR (] Bx0000 2
@ Frequency Plan Valid @ Design OK TYP'“" | Copy to Clipboar | | Save Report | L Ask for Help | Close

Figure 2-5 Open Design Report on ClockBuilder Pro Wizard

4. Open Si5341 control IP sub-module “si5341a_i2c_reg_controller.v “ as shown
in Figure 2-6, refer to Design Report parameter to modify sub-module
corresponding register value (See Figure 2-7).

(O Quartus Prime Pro Edition - G:/tmp/apoolo-s10/tocl/SystemBuilder/Cot

File Edit WView Project Assignments Processing Tools Window
BEZHEH ARk OC =
NP CHE QM 0

Project Navigator Qt@®
Instance Entity smbinational ALLT icat
Stratix 10 15X 280HUZFS0ETVG
~ W sraw 183 (2) 57(
~ T <i5347a_controller 510 SIS5341A_.. 181(0) 57(
MF clock_divider clock_divider 7(7) 7(7
i edge_detector edge detector_... | 1(1) 202
M\Eﬁ i2c bus controller |i2c_bus_contre.. 71(71) 17 (

c_reg_controller 5i5347a_i2c_re.. 55(54) 10(

v initial_config initial_config 47 (47) 21

Figure 2-6 Sub-Module file "Si5341A_i2c_reg_controller.v"

asic| Apolio S10SoM 12 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

si5341a_i2c_reg_controller.v
M rome X @ si153a12.12c_reg_controllery X

Design Report

EMDEE sl D8 BE Y -
T 515341 Design Report
405
405 R — wire all reg address value end S Design Repart
407
408 {f==——======== assign all parameter value ————=——=—) .
409 Location Setting Mame Decimel Value Hex Value
410 wire LOSFB_IN_INTR_MSK =
411 wire I8 SEL _SECCTEL = Hx@086[23:0] TOOL_VERSION] OxBHH0E
412 fwire IN_SEL - exoeeB[6:8] 12C_ADDR 118 ouTs
413 ; exee17[e] SYSINCAL INTR FSK ® ox0
414 wire OUTALL_DISABLE_LOW = BxPE17[1] LOSKEXBE_IMNTR_MSK 2] Gxi
zig | axeeL7[2] LOSREF_INTR_MSK ® Bxa
” " Bx0017[3] LOL_INTR_MSK 2] [:EL]
:i; ot gtlg—g:" =3 3 axoe17[5] SHE_TMOUT_INTR_MSK @ ox0
415 wire QUTO_RDIV_FORCEZ §// = bisrtordivider ™ B¥@@18[3:8] LOSIN_INTR_MSK 14 BxE
4320 wiie OUTO_FORMAT o Bx2821[8] IN SEL REGCTRL 1 ol
421 wire QUTC_SYNC_EN = 1 exae21[2:1] TN SEL 3 e]
422 wire OUTO_DIS_STATE = 0 ExaE2z (1] 0F [] G
423 wire OUTO_CMOS_DRY -0 x082E[3] SPI_3WIRE (] axe
424 wire auT_cM = 143 /= B3 3Tvds// Bx@828[5] ALTD_NDTV_LIPDATE o Gxd
425 wire QUTO_AMPL = & 5 Bx2B2C[3:8] LOS_EN 1 258
426 wire QUTO_MUX_SEL HO e BxEE2C[4] LOSXAXE_DIS 1 Bl
427 wire QUTO_INV e @xAB20[1:8] LOSE_VAL_TIME 1 Bxl
gig i : or @x0220[3:2] LOS1_VAL_TIME o ox0
s :1 I',g gt{i—z?“ =3 BxAB2D[5:4] LOSZ_VAL_TIME 8 B8
43 /fwire OLTL_RDIV_FORCER? = 0 //0 R divider value i ExgEH[70] . LOSS_yAL TIME B axo
432 wire [2:0] OUTL_FORMAT = & 8x@B2E[15:@] LOSA_TRG THR 148 BxBA24
433 wire OQUTL_SYNC_EN =il

Figure 2-7 Modify Si5341A Control IP Base on Design Report

After modifying and compiling, Si5341A can output new frequencies according to the
users’ setting.

Note :
No need to modify all Design Report parameters in si5341a_i2c_reg_controller.v, users
can ignore parameters which have nothing to do with the frequency setting

2.2 Basic Nios Il control demo for

S15341A/ Temperature/ Power/ Fan

This demonstration shows how to use the Nios Il processor to program programmable
clock generators (Si5341A) on the FPGA board, how to measure the power
consumption based on the built-in power measure circuit. The demonstration also
includes a function of monitoring system temperature with the on-board temperature
sensor and monitoring fan rotation speed.

B System Block Diagram

Figure 2-8 shows the system block diagram of this demonstration. The Si5341A clock
generator is controlled through [2C controllers driven by Nios Il program. The 12V input
power monitor, temperature sensor and fan controller connected to the MAX10 FPGA

asic Apollo S10 SoM 13 www.terasic.com

October 14,
Manual 2020

www. terasic.com

Demonstration

and controlled by internal logic circuits. All collected status data or control commands
will be sent to the SPI slave block so that the Stratix 10 FPGA can read it through the
SPI interface.

In the Stratix 10 FPGA, an SPI master IP (implemented by HDL) will read these
external sensor data from the MAX10 FPGA through SPI interface. The Nios system
will read these information or output the PLL control settings through PIO controllers.

FPGA MAX10 FPGA

Platform
Designer

Temperature |

Fan Speed

| Power Monitor |

Figure 2-8 Block Diagram of the Nios Il Basic Demonstration
The system provides a menu in nios-terminal, as shown in Figure 2-9 to provide an
interactive interface. With the menu, users can perform the test for the external
programmable PLL and board info sensor. Note, pressing ‘ENTER’ should be followed
with the choice number.

asic| Apolio S10SoM 14 www.terasic.com

wwwteresicsom Demonstration October 14,

Manual 2020

BN |intelFPGA_pro\ 19 4\quartus\binb64\nios2-terminal exe - O X

Figure 2-9 Menu of Demo Program

In board info test, the program will display local temperature, remote temperature, 12V
input power monitor and fan rotation speed. The remote temperature is the FPGA
temperature, and the local temperature is the board temperature where the
temperature sensor located. A power monitor IC (LTC2945) embedded on the board
can monitor real-time current and power. This IC can work out current/power value as
multiplier and divider are embedded in it. There is a sense resistor R4 (0.003 Q) for
LTC2945 in the circuit, when power on the Apollo S10, there will be a voltage drop
(named ASENSE Voltage) on R4. Based on sense resistors, the program of power
monitor can calculate the associated voltage, current and power consumption.

In the external PLL programming test, the program will program the PLL first, and
subsequently use TERASIC custom Platform Designer CLOCK_COUNTER IP to count
the clock count in a specified period to check whether the output frequency as changed
as configured. For Si5341A programming, please note the device 12C address is OxEE.
The program can control the Si5341A to configure the output frequency of
FMC_REFCLKO, FMC_REFCLK1, FMCP_REFCLKO, FMCP_REFCLK1,

asic|] Apollo 10 SoM 15 www.terasic.com

www.terssie.com Demonstration October 14,

Manual 2020

FMCP_REFCLK2, DDR4B_REFCLK and LVDS_REFCLK according to your choice.

Demonstration File Location

Hardware project directory: NIOS_BASIC_DEMO

Bitstream used: S10_top.sof

Software project directory: NIOS_BASIC_DEMO\software

Demo batch file: NIOS_BASIC_DEMO\demo_batch\test.bat, test.sh

Demonstration Setup and Instructions

Make sure Quartus Prime is installed on the Host PC.

Power on the FPGA board.

Use the USB Cable to connect your PC and the FPGA board and install USB
Blaster Il driver if necessary.

w N~ h

4. Execute the demo batch file “test.bat” under the batch file folder:
NIOS_BASIC_DEMO\demo_batch.

5. After the Nios Il program is downloaded and executed successfully, a prompt
message will be displayed in nios2-terminal.

6. For the PLL Si5341A test, please input key ‘0’ and input the desired output
frequency for eight clock sources, as shown in Figure 2-10.

asic Apollo S10 SoM 16 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

ER Altera Nios I EDS 19.1 [geed] — O »

Figure 2-10 Si5341A Demo

7. Fortemperature, power monitor and fan test, please input key ‘1’ and press ‘Enter’

in the nios-terminal, as shown in Figure 2-11.

asic|] Apollo 10 SoM 17 www.terasic.com

www.terssie.com Demonstration October 14,

Manual 2020

B IMintelFPGA_pro\19 &\quartus\bin4nios2-terminal .exe — O =

Figure 2-11 Board Info Demo

2.3 DDRA4 SDRAM RTL Test

This demonstration performs a memory test function on the DDR4 memory (DDR4A
and DDR4B) on the Apollo S10 SoM board. The memory size of each DDR4 bank
used in this test is 32GB.

B Function Block Diagram

Figure 2-12 shows the function block diagram of this demonstration. There are two
DDR4 SDRAM controllers. All of the controllers (DDR4A and DDR4B) use 266.66 MHz
as a reference clock. It generates one 1066MHz clock as memory clock from the FPGA
to the memory and the controller itself runs at quarter-rate in the FPGA i.e. 266.66
MHz.

asic|] Apollo 10 SoM 18 www.terasic.com

www.terssie.com Demonstration October 14,

Manual 2020

FPGA

ocT Controller =
N P—
Logic

Ref CLK ﬁ Process
ocT DDR4 (B)
RW Test <>
e 0 €=

Figure 2-12 Block diagram of the DDR4 RTL demonstration

B Stratix 10 External Memory Interfaces
To use Stratix 10 External Memory Interfaces controller for DDR4 SDRAM, please

perform the two major steps below:

Create correct pin assignments for the DDR4 SDRAM.
2. Setup correct parameters in the dialog of the Stratix 10 External Memory

Interfaces.

B Design Tools
® Quartus Prime 19.4 Pro Edition or later

B Demonstration Source Code
® Project Directory: Demonstration\FPGA\RTL_DDR4_Test

® Bit Stream: S10_top.sof

® Demonstration Batch File : RTL_DDR4_ Test\demo_batch
The demo batch file includes following files:
€ Batch File: test.bat
€ FPGA Configuration File: S10_top.sof

B Demonstration Setup

. Make sure Quartus Prime Pro Edition is installed on the Host PC.
2. Connect the Apollo S10 SoM board to the Host PC via the USB cable. Install the
USB-Blaster Il driver if necessary.

asic Apollo S10 SoM 19 www.terasic.com

www.terssie.com Demonstration October 14,
Manual 2020

3. Power on the Apollo S10 SoM board.

4. Execute the demo batch file “test.bat” under the batch file folder
\RTL_DDR4 Test\demo_batch.

5. Press KEY1 (see Figure 2-13) to start DDR4 write & loopback verify process. It
will take about 2~3 second to perform the test. While testing, the LED will blink.
When LED stop blinking it means the test process is done. In this case, if the LED
light, it means the test result is passed. If the LED is no light, it means the test
result is failed. The LEDO represents the test result for the DDR4A, the LED1
represents the test result for the DDR4B.

6. Press KEY1 again to regenerate the test control signals for a repeat test.

) PELODOOMEOPON (OTIVIE)
i

{leat]
DALIGHINATZXST

oL cmens

@)

Figure 2-13 Location of the KEY and LED on the Apollo S10 SoM board

2.4 DDRA4 SDRAM Test by Nios Il

Many applications use a high performance RAM, such as a DDR4 SDRAM, to provide
temporary storage. In this demonstration hardware and software designs are provided
to illustrate how to perform DDR4 memory access in the Platform Designer (formerly
Qsys). We describe how the memory controller Stratix 10 External Memory Interfaces
is used to access the two DDR4 SDRAM banks on the FPGA board, and how the Nios

asic| Apolio S10SoM 20 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

Il processor is used to read and write the SDRAM for hardware verification. The DDR4
SDRAM controller handles the complex aspects of using the DDR4 SDRAM by
initializing the memory devices, managing the SDRAM banks, and keeping the devices
refreshed at the appropriate intervals.

B System Block Diagram

Figure 2-14 shows the system block diagram of this demonstration. In the Platform
Designer (formerly Qsys), one 50 MHz, dual frequency OSC and PLL clock
generator(Si5341A) are used. The Si5341A and dual frequency OSC will provide
266.67Mhz clock to the DDR4A and DDR4B bank as the reference clock. There are
two DDR4 Controllers which are used in the demonstrations. Each controller is
responsible for one DDR4 bank (DDR4A and DDR4B). Each DDR4 controllers are
configured as a 32GB DDR4-1066Mhz controller. The Nios |l processor is used to
perform the memory test. The Nios Il program is running in the On-Chip Memory. A PIO
Controller is used to monitor buttons status which is used to trigger starting memory
testing.

FPGA Platform Designer

<:) 50 MHz (formerly sts)/\

NIOS II “
- 266.667MHZ’

On-Chip
Memory

PIO PIO
Controller Controller
DDR4 DDR4
Controller Controller

IOPLL “
DDR4A i
Ref.CLK

me 4

System Interconection Fabric

1111

| 266.667 MH
DDR4B Si5341A
Ref.CLK Config DDR4 DDR4
Controller Timer “ Controller Controller

<

Figure 2-14 Block diagram of the DDR4 Basic Demonstration

The system flow is controlled by a Nios Il program. First, the Nios Il program writes test
patterns into the whole 32GB of SDRAM. Then, it calls Nios Il system function,

asic| Apolio S10SoM 21 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

alt_dache_flush_all(), to make sure all data has been written to SDRAM. Finally, it
reads data from SDRAM for data verification. Maybe the process takes a long time,
and there is a quick test. The Nios Il program writes a constant pattern into the address
line and data line and reads it back for verification. The program will show progress in
Nios Il terminal when writing/reading data to/from the SDRAM. When verification
process is completed, the result is displayed in the Nios Il terminal.

B Design Tools
® Quartus Prime 19.4 Pro Edition

B Demonstration Source Code
® Quartus Project directory: NIOS_DDR4_Test
® Nios Il Eclipse: NIOS_DDR4_Test \software

B Nios Il Project Compilation

Before you attempt to compile the reference design under Nios Il Eclipse, make sure
the project is cleaned first by clicking ‘Clean’ from the ‘Project’ menu of Nios Il Eclipse.

B Demonstration Batch File
Demo Batch File Folder: NIOS _DDR4 Test\demo_batch

The demo batch file includes following files:

® Baitch File for USB-Blaster Il: test.bat, test.sh
® FPGA Configure File: S10_top.sof
® Nios Il Program: MEM_TEST.elf

B Demonstration Setup

Please follow below procedures to set up the demonstrations.

Make sure Quartus Prime and Nios Il are installed on your PC.
Power on the FPGA board.
Use a USB Cable to connect the PC and the FPGA board and install USB Blaster
Il driver if necessary.
4. Execute the demo batch file “testbat” under the folder

asic Apollo S10 SoM 22 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

“‘NIOS_DDR4_Test\demo_batch”.

After the Nios Il program is downloaded and executed successfully, a prompt
message will be displayed in the nios2-terminal.

For DDR4 test, please input key ‘0’ and press ‘Enter’ in the nios2-terminal as
shown in Figure 2-15. The program will display progressing and result
information.

For DDR4 quick test, please input key ‘1’ and press ‘Enter’ in the nios2-terminal
as shown in Figure 2-16. The program will display progressing and result
information. Press ButtonO~Button1 of the FPGA board to start SDRAM verify
process, and press Button0 for continued test.

B DAintelFPGA_proh19.4\quartusibinb4\nios2-terminal.exe

Downloaded 117KB in 8.1s
ferified OK

laiting

T on cable
e 1, instance @

continued t

Figure 2-15 Progress option [0] DDR4x2 Test

asic|] Apollo 10 SoM 23 www.terasic.com

www.terssie.com Demonstration October 14,

Manual 2020

EE D:int=lFPGA_prot 19 4\quartusibinB4\nios2-terminal exe

instance B

the IDE stop bu

S DDR4x2 Program

A: 32GB, B: 32GB

continued te

Figure 2-16 Progress and Result Information for “DDR4 Quick Test”

2.5 Board Information IP

This section will introduce an IP which can be placed in the Stratix 10 FPGA and allows
users to obtain board status information such as power, temperature, and fan speed on
the Apollo S10 board.

The Apollo S10 board provides several sensors to monitor the status of the board,
such as FPGA temperature, board power monitor, and fan speed status. These
interfaces are connected to the system MAX FPGA on the board. The logic in the
system MAX FPGA will automatically read the status values of these sensors and store
them in the internal register. As shown in Figure 2-17, there is an SPI slave IP in the
system MAX FPGA will read the value of the board status from these registers and it
can be output to SPI master logic via SPI interface.

asic|] Apollo 10 SoM 24 www.terasic.com
www. terasic.com Demonstratlon OCtOber 14’

Manual 2020

FPGA MAX10 FPGA

Temperature (R i
b MAX6651 < FAN
Fan Speed |

User Power Monitor S
e SR

Board and

MAX Code
Version

Figure 2-17 the board information IP architecture

User can placing a board information IP (BOARD_INFO.v ; SPI master) provided by
Terasic in the Stratix 10 FPGA, the board status can be obtained via SPI interface from
the system MAX FPGA and output to user logic.

The board information IP can be obtained from the following path in the system CD:
System CD/Demonstration/FPGA/NIOS_BASIC_DEMO/SPI/BOARD_INFO.v

Figure 2-18 shows the input and output pins of the board information IP. Detailed pin
descriptions and functions can be obtained from Table 2-4 Board information IP input
and output ports. The user only needs to provide the IP 50Mhz clock and the reset
control signal. The IP will automatically communicate with the system MAX FPGA to
get the boar status value via the SPI interface. When the logic level of the Info_Valid
signal is from low to high, it means that the board status has been updated and can be
used.

Finally, Figure 2-19 shows the status of the IP during execution.

asic| Apolio S10SoM 25 www.terasic.com
wwwterssic.com - Demonstration October 14,

Manual 2020

Input Clock —*| CLK_50 MOSI ——»

AndReset | RESET N MISO [«—— To System MAX10
CS.n > SPI interface
SCLK

Info_Valid —— »
Board_Version[15:0] r———p
MaxCode_Version[15:0] F———»-
Temp_Board[15:0] —=p»- To
Fan_Speed[15:0] f——=p User Logic
Powerln_Current[15:0] f—»
Powerln_Voltage[15:0)] pe—-

Figure 2-18 Pin out of the board information IP

Table 2-4 Board information IP input and output ports

Port Name Direction| Width(Bit) Description

CLK_50 Input 1 Clock input for IP, please input 50Mhz clock.
RESET_N Input 1 Reset signal for IP, reset all logic.

Master output. Please connect this signal to
MOSI Output 1

the INFO_SPI_MOSI pin.

Master input. Please connect this signal to
MISO Input 1

the INFO_SPI_MISO pin.

Slave Select, Master output. Please connect
CS n Output 1

this signal to the INFO_SPI_CS_n pin.

Serial Clock, SPI master output to salve.
SCLK Output 1 Please connect this signal to the

INFO_SPI_SCLK pin.

Information valid, logic high indicates board
Info_Valid Output 1

status updated ready.

This information indicates the version of the
Board_Version Output 16 Apollo S10 board. It will be started at

0x0001.

This information indicates the version of the
MaxCode_Version Output 16 System MAX 10 FPGA code. It will be started

at Ox000A.
Temp_ Board Output 16 Ambient temperature of the development

asic| Apolio S10SoM 26 www.terasic.com

www. terasic.com Demonstration October 14,

Manual 2020

board. The unit of the output value is Celsius.
FPGA temperature of the development board.
Temp FPGA Output 16
The unit of the output value is Celsius.
Fan speed of the board. The unit of the output
Fan_Speed Output 16
value is RPM.
12V Voltage, the unit of the output value is
Powerln_Voltage Output 16 mV. If the Powerln_Voltage output value is
“12050” that means 12.05V for 12V power.
Current of the 12V power, the unit of the
output value is mA. If the Powerln_Current
Powerln_Current Output 16 _
output value is “1816” that means 1.816A for
12V power.
log: Trig (@ 2020/06/05 13:43:41 (0:0:0.2 elapsed)
| Type | Alias Name ;128 @ 138 256 354 512 540
cﬁ Hsm|Board Version[15..0] i gogBh
_ci“ El"smiMa:CodE Version[15..0] i 4
Ei_‘ H sm|Fan_Speed[15.0] i 310
_':i‘ " sm|Powerln_Current[15..0] i 1B16
!:i_‘ - sm|Powerin_Voltage[15..0] : 12050
_ci“ - sm|Temp_Board[15..0] | 24
ci - sm|Temp FPGA[15.0] | 33
L5 " sm|DEV_NUN[15..0] 3 | 0
I_*’ smjinfo_Valid |

asicC

www. terasic.com

Figure 2-19 Waveform of the board status output

Apollo S10 SoM
Demonstration

Manual

27

www.terasic.com
October 14,
2020

Chapter 3
Examples for HPS SoC

his chapter provides several C-code examples based on the Intel SoC Linux

built by Yocto project. These examples demonstrate major features connected

to HPS interface on Apollo S10 SoM board such as users LED/KEY, Network
Communication. All the associated files can be found in the directory
Demonstrations/SOC of the Apollo S10 System CD.

To install the demonstrations on the Host computer: Copy the directory Demonstrations
into a local directory of your choice. Intel SoC EDS Pro v19.4 is required for users to
compile the c-code project.

3.1 HPS 1x6 GPIO Header

This demonstration shows how to use the Linux BSP built-in GPIO driver to control the
GPIO port in the GPIO header (J12) to perform loopback test. Note, the Apollo S10
Module Linux BSP already build-in the GPIO driver.

B How to control GPIO

Here is an example procedure to control a GPIO N:

1. Export GPIO: Open device file “/sys/class/gpio/export”, write a gpio number N to
the file, and close the file.

2. Configure GPIO Direction: Open device file “/sys/class/gpio/gpioN/direction”, write
“out” or “in” to the file, and close the file.

3. Read/Write GPIO Value: Open device file “/sys/class/gpio/gpioN/value”, read/write
value to the file, and close the file.

4. Unexport GPIO: Open device file “/sys/class/gpio/unexport”, write number N to the
file, and close the file.

asic| Apollo $10 SoM 28 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

B Function Block Diagram

Figure 3-1 shows the function block diagram of the HPS TMD GPIO Header loopback
demonstration. The built-in GPIO driver offers interfaces, to which the application can
use system call such as open, read, write to access. We can export the gpio port that
we want to control, and when we export the gpio port, the linux system will create
attribute files of the gpio port in the location “/sys/class/gpio/gpioN/” (N is the gpio port’
number). There are two attribute files we need to know: value and direction. The value
file is used to read and write value to the gpio port (the value can only be “0” or “17); the
direction file is used to set the gpio port’s data direction.

SoC FPGA ARM Program

HPS Linux User Mode

User APP
u

HPS TMD GPIO1

GPIO Header Controller Linux kernel Mode
‘ GPIO Driver | { System call

Figure 3-1 Function block diagram of HPS TMD GPIO Header demonstration

B Function Implement

The c project include main.c and gpio_lib.c files. The main.c implements the loopack
test. The gpio_lib.c implement five GPIO functions, described as following:

int gpio_export(unsigned int gpio);

The gpio_export function is used to export the gpio port with the specified port number
as parameter.
int gpio_unexport(unsigned int gpio);

asic| Apolio S10SoM 29 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

The gpio_unexport function is used to disable the exported gpio port with the specified
port number as parameter.
int gpio_set_dir(unsigned int gpio, unsigned int out_flag);

The gpio_set_dir function is used to set the gpio port’s data direction, the parameter
“gpio” is the port number you want to configure and the parameter “out_flag” is value to

set. Number “1” for data out, and “0” for data in. when you use this api, it will wirte “in

or “out” to the gpio port’s direction file. The default value of direction file is “in”.
int gpio_set_value(unsigned int gpio, unsigned int value);

The gpio_set_value function is used to write data to the gpio port. The parameter “gpio”
is the port number you want to configure and then parameter “value” is the data you
want to write. The value can only be “0” or “1”. When you use the api, it will write data
to the gpio port’s value file.

int gpio_get_value(unsigned int gpio, unsigned int *value);

The gpio_get_value function is used to read the gpio port’s data, and the parameter
“value” is used to store the value that you read. The parameter “gpio” is the gpio port
that you want to read.

B Loopback Implement

There are four gpio ports used to loopback. They are HPS_GPIO0, HPS_GPIOf1,
HPS GPIO2 and HPS GPIO3. The Loopback includes two test patterns, the
differences between them are data direction and test data value. In test one, we set the
four GPIO port as “out” , “in”, “out”, “in” respectively, and the test data is a 32-bit value
“Ox1234f0f0”.

Described below are the loopback’s implementation procedure:

® Export gpios

® Set gpio’s data direction

® Data write and read back

® \erify the received data

asic Apollo S10 SoM 30 www.terasic.com
W Eerasic.com Demonstration October 14,

Manual 2020

B Demonstration Setup

1. Use two jumper caps to connect HPS_GPIOO0 to HPS_GPIO1 and HPS_GPIO2 to
HPS_GPIO3 in hps gpio header(J12) on the Apollo S10 Module. Figure 3-2 shows
the pin location below.

VCC3P3
J12 J
—
; R22 27 HFS GFIO0
w\/\/\" 22 HPS_GFIOT
R HPS RO
6
= =
1X6 HEADER
Figure 3-2 GPIO Header Pin location

2. Connect a USB cable to the Mini USB connector (J8) on the Apollo S10 Module
and the Host PC.

3. Copy the executable file "hps_gpo_loopback" into the microSD card under the
"Ihomelterasic" folder in Linux. (Apollo S10 Module Linux BSP has pre-installed
this code, so users can skip this copy action.)

Insert the Apollo S10 Module Linux BSP micro SD card into the board.

5. Power on the Apollo S10 Module.

6. Launch Putty to establish the connection between the UART port of Apollo S10
Module and the Host PC.

7. In the Putty UART terminal, type user name "terasic" and password “123” to login
Linux.

8. Type “sudo ./hps_gpio_loopback” in the UART terminal to start the program.
Input password “123” if system query password for terasic.

9. You will see the loopback test successfully in the Putty UART terminal as shown in
Figure 3-3.

asic Apollo S10 SoM 31 www.terasic.com
W Eerasic.com Demonstration October 14,

Manual 2020

COM11 - PuTTY - O X

Figure 3-3 Loopback test successfully

3.2 HPS LED/KEY

This demonstration shows how to use the system call with built-in LED and GPIO
driver to control the LED and KEY which are connected to HPS GPIO ports. The
built-in GPIO driver is included the Apollo S10 Module Linux BSP.

® How to control LED
Here is an example procedure to control the HPS LED:

. Open LED device: Open device file “/sys/class/leds/hps_led0/brightness”.
2. Turn on/off LED: Write data to the device file for LED control. Write “1” to turn on
LED, write “0” to turn off LED.

3. Close LED device: Close the device file.

B Function Block Diagram

Figure 3-4 shows the function block diagram of the HPS LED/KEY demonstration. The
built-in LED and GPIO driver offers interfaces, to which the application can use system
call such as open, read, write to access.

asic|] Apollo 10 SoM 32 www.terasic.com

www.terssie.com Demonstration October 14,

Manual 2020

FPGCA SOC ARM Program

HPS Linux User Mode

GPIO1

Controller \
GPIO Driver .4

Figure 3-4 Function block diagram of HPS LED/KEY demonstration

 Linux kernel Mode

System Call

[

B Function Implement

The c¢ project include main.c, gpio_lib.c and led_lib.c files. The main.c implements the
demo main flow. The gpio_lib.c is the same as the one used in HPS TMD GPIO
Loobpack Demo. The led_lib implement three LED functions, described as following:
int led_fd_open (unsigned int led);

The led_fd_open function is used to open the LED device file with the specified LED
number as parameter. The function return a file descriptor for the LED device.

int led_fd_write (int fd, const void *buf, size_t count);

The led_fd_write function is used to write data to the LED device file. It is used to turn
on/off the LED.

int led_fd_close(int fd);

The led_fd_close function is used to close a file descriptor.

int gpio_set_dir(unsigned int gpio, unsigned int out_flag);

With the file descriptor return by led_fd_open function, user can use led_fd_write to
trun on/off the LED. Call “led_fd_write(fd_led, “1”, 2) “ will turn on the LED, and Call
“led_fd_write(fd_led, “0”, 2) “ will turn off the LED

B Flow Control Implement

The flow control is implemented in main.c. When HPS KEY is pressed, the HPS LED
will be turn off. When HPS KEY is released, the HPS LED will be turn on. The GPIO
functions implemented in gpio_lib.c are used to monitor HPS KEY status. The LED
functions implemented in led_lib.c is used to turn on/off the HPS LED.

Figure 3-5 shows the procedure in main.c file, you can find it's very clear.

asic| Apolio S10SoM 33 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

[l export gpiod
gpio_export(io_key):4
gplo_set_dir{io_key, 004

i

fd_led = led_fd_openiio_led):s

b

while (1 == 03 (4
gpio_get_value(io_key, dvalue);l
if (value)y

led fd write(fd led, "1", 2):4
elsel

led fd write(fd led, "0", 2):4
printf("key: ®xhn", value);d
sleep(l)id

T

i
led_fd_close(fd_led):L
gpio_unexport{io_key):4

Figure 3-5 LED/KEY implemented in ¢ code

B Demonstration Source Code

e Build tool: WSL + GNU Compiler

e Project directory: \Demonstration\SoC\hps_led_key

e Binary file: hps_led_key

e Build command: make (‘'make clean' to remove all temporal files)
e Execute command: sudo ./hps_led_key

B Demonstration Setup

1. Connect a USB cable to the Mini USB connector (J8) on the Apollo S10 Module
and the Host PC.

2. Copy the executable file "hps_led_key" into the microSD card under the
"Ihomelterasic" folder in Linux. (Apollo S10 Module Linux BSP has pre-installed
this code, so users can skip this copy action.)

3. Insert the Apollo S10 Module Linux BSP micro SD card into the Apollo S10 Module.

4. Power on the Apollo S10 Module.

Launch Putty to establish the connection between the UART port of Apollo S10
Module and the Host PC.

6. In the Putty UART terminal, type user name "terasic" and password “123” to login
Linux.

7. Type “sudo ./hps_led_key”’ in the UART terminal to start the program. Input
password “123” if system query password for terasic.

8. You will see the loopback test successfully in the Putty UART terminal as shown in

asic Apollo S10 SoM 34 www.terasic.com

W Eerasic.com Demonstration October 14,

Manual 2020

Figure 3-6.

9. Press CTRL+C can terminate the program.

Figure 3-6 LED/KEY test

3.3 Network Socket

This demonstration shows how two remote application processes communication via
socket in client-server model. Based on this design example, developers can make
their Linux Application Software, run on SoC FPGA boards and easily communicate
with other Hosts via a network socket.

B Sockets

Sockets are the fundamental technology for programming software to communicate on
the transport layer of networks shown in Figure 3-7. A socket provides a bidirectional
communication endpoint for sending and receiving data with another socket. Socket
connections normally run between two different computers on a LAN, or across the

Internet, but they can also be used for interposes communication on a single computer.

asic|] Apollo 10 SoM 35 www.terasic.com

www.terssie.com Demonstration October 14,

Manual 2020

Figure 3-7 Communicate on a network via a socket

B Client Server Model
Most intercrosses’ communication uses the client server model. These terms refer to

the two processes which will be communicating with each other. One of the two
processes, the client, connects to the other process, the server typically to makes a
request for information. A good analogy is a person who makes a phone call to another

person.

Notice that the client needs to know of the existence of and the address of the server,
but the server does not need to know the address of (or even the existence of) the
client prior to the connection being established.

Notice also that once a connection is established, both sides can send and receive

information.

The system calls for establishing a connection which is somewhat different for the
client and the server, but both involve the basic construct of a socket. A socket is one
end of an intercross’s communication channel. The two processes each establish their
own socket. Figure 3-8 shows the communication diagram between the client and

server.
asic| Apolio S10SoM 36 www.terasic.com
wwwterssic.com - Demonstration October 14,

Manual 2020

Client Server

i
B
Connection ¢
request
------------ e
v

| Await Connection
1 Request from
E Next Client

Figure 3-8 Client and Server communication

The steps involved in establishing a socket on the client side are as follows:

Create a socket with the socket() system call

Connect the socket to the address of the server using the connect() system
call

Send and receive data. There are a number of ways to do this, but the
simplest is to use the read() and write() system calls.

The steps involved in establishing a socket on the server side are as follows:

Create a socket with the socket() system call

Bind the socket to an address using the bind() system call. For a server
socket on the Internet, an address consists of a port number on the Host
machine.

Listen for connections with the listen() system call

Accept a connection with the accept() system call. This call typically blocks
until a client connects with the server.

Send and receive data. There are a number of ways to do this, but the
simplest is to use the read() and write() system calls.

B Example Code Explanation
The example design contains two projects. One is socket server project, and one is
socket client project. The SOCK_STREAM socket type is used in the design. The

asic| Apolio S10SoM 37 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

Linux Socket Library is used to provide socket functions, so remember to include the
socket AP| header file — socket.h.

The major function of socket server program is to create a socket server based on the
given port number and waiting a client to request to establish a connection. When a
connection is established, the server is waiting for an incoming text message. When a
message is received, it will show the receiver message on the console terminal, then
send the message “l got your message” to the client socket, and then close the server
program. Figure 3-9 shows the socket relative code statement. In the program, socket
APl is used to create a SOCK_STREAM socket, bind APl is used to bind the socket to
any incoming address and a specified port number. For connection, listen APl is used
to make the socket as a passive socket that is, as a socket that will be used to accept
the incoming connection, and accept API is used to accept the incoming connection.
The accept blocks until a client connects with the server. Data receiving and sending is
implemented by the read and write API, and close is used to close the socket.

sockfd = socket (AF_INET, SOZK_STREAM, 0);.
if (sockfd < 0 4
grror("ERREOR opening sockeb"); .
bzero((char *) &serv_addr, sizeof(serv_addr));.
poTtno = atoilarev[1]y;)
serv_addr.sin_family = AF INET;L
serv_addr,sin addr.s_addr = INADDE_ANY ;.
serv_addr.sin port = htons(portnod;l
if (bind(sockfd, (struct sockaddr *) &serv_addr,.
sizeof(serv_addr)) < 0) 4
grror("ERECE oo binding");)
listen(sockfd,5y;4
clilen = sizeof(cli_addr);.
newsockfd = accept(sock{d, .
(struct sockaddr *) &cli_addr, |
gclilen)

if (newsockfd < 0) 4

grror("ERRECE on accept"); L
bzero(baffer,2568) ;)
n = read(newsockfd,baffer,255);.
if (n< 0) error("BEECE readine from socket");u
printf("Here is the messace; %sin" ,bafferd; .
n = write(newsockfd, "I zot your messase”,18) ;4
if (n< 0) error("ERRECE writing to sockeb");)
close(newsockfd); .
close(sockfd) ;)

Figure 3-9 Socket Server Code
The major function of the socket client program is to create a connection based on
given Hostname (or IP address) and Host port. When a connection is established, it will

asic| Apollo $10 SoM 38 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

show “Please enter the message:” message on console terminal to ask users to input a
message. After get user’s input message, the message is sent to a remote socket
server via the socket. If the remote server socket received the message, it will return a
message “I got the message”. The client program will show the received message on
the console terminal and exit the program. Figure 3-10 shows the socket relative code
statement. In the program, socket API is used to create a SOCK_STREAM socket,
connect APl is used to connect the remove socket sever based on the given
Hostname (or IP4v Address) and port number. Data receiving and sending is
implemented by read and write API, and close is used to close the socket.

sockfd = socket(AF_INET, SOCK_STEEAM, 0.
if (sockfd < D) 4
error("EERCOR opening socket");.)
seIvel = sethosthymame(arev[1]),;.)
if (server = MULL) {J
forintf(stderr, "ERRCOR, no soch hostin");l
exit (0L
T
bzero((char *) &serv_addr, sizeof(serv_addr)d;.
serv_addr.sin family = AF INET; .
beopy((char *iserver-=h_addr, o
[char *)&serv_addr.sin_addr.s_addr, .
servel-=h_lensthl;)
serv_addr.sin port = htons(portnod;
if (commect(sockfd, (stroct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0)
error("EREOR commecting");l
printf("Flease enter the messace: "))
bzero(buaffer, 2567 ;L
feets(baffer,255,stdin) ;.
n = write(sockfd, baffer, strlenibafferiy; .
if (n=0) 4
error"BRREOR writing to socket");)
bzero(baffer 256) ;L
n = read(sockfd, buffer, 2550,
if (m<0) 4
grror("EEROR reading from socket");.
print f{"%swn" boffer) ;.
close(sockfd); .

Figure 3-10 Socket Client Code

B Demonstration Source Code
The source code of the design example is located in the Demonstration folder as

shown in Figure 3-11. The Demonstration folder contains three platform subfolders:
arm, linux and windows. The project under the arm folder is designed for SoC FPGA
board. The project under linux folder is designed for Linux running on Linux PC. The
project under windows folder is designed for SoC EDS Shell running on Windows PC.
Each platform subfolder contains socket_client and socket_server project folders.

asic| Apollo $10 SoM 39 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

Demonstration
SoC
network_socket

arm
socket_client
socket _server

linux
socket_client
socket_server

windows
socket client

socket_server

Figure 3-11 Source Code Folder Tree

The socket_client project includes a Makefile and a source file main.c. For different

platforms, the Makefile content is different, but the main.c content is the same. The

socket_server project has the file project architecture.

B Demonstration Setup
Here we show the procedure to execute the socket client-server communication

demonstration. In this setup procedure, the server program is running to Intel SoC
FPGA board and the Socket Client is running on Windows PC.

1.

Connect the Apollo S10 Module to Network via Ethernet port (J3).

2. Connect a USB cable to the Mini USB connector (J8) on the Apollo S10 Module
and the Host Windows PC.

3. Copy the executable file “socket_server’ into the microSD card under the
"lhomelterasic" folder in Linux. (Apollo S10 Module Linux BSP has pre-installed
this code, so users can skip this copy action.)

4. Insert the Apollo S10 Module Linux BSP micro SD card into the Apollo S10 Module.

5. Power on the Apollo S10 Module.

6. In Windows, launch the Putty to connect Apollo S10 Module via the USB-to-UART
link.

7. In the Putty, type user name "terasic" and password “123” to login Linux.

Type “ifconfig” to query the IP address which will be used in socket_client.

9. Type " .Isocket_server 2020" to launch the server program with port number 2020
as shown in Figure 3-12. The port number can be any value between 2000 and
63500.

asic Apollo S10 SoM 40 www.terasic.com
www. Eerasic.com Demonstration October 14,

Manual 2020

COMT11 - PuTTY

Figure 3-12 Start Socket Server

Here is the procedure to start the socket client program and communicate with the

client server program:

1. Make sure the WSL is installed on your Windows and the Windows is connected to
a network.
Launch WSL.
Copy the client program (linux/socket_client/socket_client) in the example kit to the
WSL.

4. In the WSL, change the current directory to the directory where socket_client is
located.

5. Then, type “./socket_client <ip address> 2020” to launch the client program to
connect to the Host server with port number 2020 as shown in Figure 3-13.

i rooct@Richard: ~

oot@R ichard :~# Jzocket client/ 1921681, 193

Figure 3-13 Start Client Program
6. If connection is established successfully, a prompt message “Please enter the
message.” will appear. Type “hello”, then an echo message “l got your message”
will be sent from the client server and shown on terminal as shown in Figure 3-14.
At the same time, the socket server program will dump the received message at

which point it is terminated as shown in Figure 3-15.

client 192.168.1.193
hello

asic|] Apollo 10 SoM 41 www.terasic.com

www.terssie.com Demonstration October 14,

Manual 2020

Figure 3-14 Send Message in Client Program

EF COMIT - PuTTY

Figure 3-15 Server dumps received message

3.4 Setup USB Wi-Fi Dongle

This section describes how to setup the Wi-Fi USB dongle under Linux, so Linux user
can wirelessly connect to the Wi-Fi AP (Access Point) through the Wi-Fi USB Dongle
and finally connect to the internet. The Wi-Fi AP is assumed to have the DHCP server
capability and is connected to the internet. You should also make sure you know the
SSID and Password of the Wi-Fi AP.

B System Diagram

Figure 3-16 shows the block diagram of this demonstration. The Wi-Fi AP assumes
you have the DHCP server capability and is connected to the LAN (Local Area Network)
or the internet. The USB Wi-Fi Dongle connects to the Wi-Fi AP and gets an address IP
from the Wi-Fi AP. Through the Wi-Fi AP, the USB-Dongle will be able to communicate
with the devices connected to the LAN or the internet.

asic|] Apollo 10 SoM 42 www.terasic.com

www.terssie.com Demonstration October 14,

Manual 2020

4, Micro USB to USB OTG
Adapter Cable

Figure 3-16 System diagram of USB Wi-Fi dongle

B Wi-Fi Setup Procedure

1. Connect a USB cable to the Micro USB connector (J9) on the Apollo S10 and the
Host PC.

2. Connect the USB Wi-Fi Dongle into the Micro USB connector (J9) on the Apollo
S10 with USB Transfer Cable.
Power on the Apollo S10.

4. Launch Putty to establish the connection between the UART port of Apollo S10 and
the Host PC.

5. In the Putty UART terminal, type user name "terasic" and password “123” to login
Linux.

6. Type "sudo ifconfig wlan0 up" in the UART terminal of Putty to start wlanO
network interface. Input password "123" if system query password for terasic.

7. Type "sudo iwlist wlan0 scan | grep ESSID" in the UART terminal to search
nearby Wi-Fi AP. Make sure your Wi-Fi AP is found, as shown in Figure 3-17.

asic| Apolio S10SoM 43 www.terasic.com
www.teresic.cem - Demonstration October 14,

Manual 2020

terasic@localhost:~$ sudo ifconfig wlan@ up
[sudo] password for terasic:
terasic@localhost:~% sudo iwlist wlan@ scan | grep ESSID

:"Terasic_Guest"”

Figure 3-17 Wi-Fi AP information

8. Type "sudo vim /etc/wpa_supplicant/wpa_supplicant.conf" in the UART
terminal to edit Wi-Fi configuration file, as shown in Figure 3-18.

Gtrl interface=/var/run/wpa_supplicant

network={
ssid="Your_SSID"
psk="Your_WPA-Key_ ASCII"

Figure 3-18 Edit Wi-Fi configuration File

9. In the configuration file, replace "Your_SSID" and "Your WPA-Key ASCII" with the
SSID and password for your Wi-Fi AP, in respectively, as shown in Figure 3-19.

ctrl_interface=/var/run/wpa_supplicant

network={

ssid="Terasic_Guest"
psk="123456789f"

Figure 3-19 Replace ssid and psk

10. Type "sudo ifup wlan0" in the UART terminal to connect to the Wi-Fi AP, as shown
in Figure 3-20.
11. Type "ifconfig wlan0" in the UART terminal to confirm an IP Address is assigned

asic|] Apollo 10 SoM 44 www.terasic.com
wwwterssic.com - Demonstration October 14,

Manual 2020

to wlanO interface, as shown in Figure 3-21.

12. Make sure Wi-Fi AP is connected to the internet. Type "ping -c 4

www.terasic.com" in the UART terminal to check internet connection status. If 0%
packet loss is reported, it means the connection is good, as shown in Figure 3-22.

terasic@localhost:~% sudo ifup wlan@

Internet Systems Consortium DHCP Client 4.3.5

Copyright 20@4-2816 Internet Systems Consortium.

All rights reserved.

For info, please visit https://www.isc.org/software/dhcp/

Listening on LPF/wlan®/f@:b4:29:3c:eb:7a

LPF/wlan®/f@:b4:29:3c:eb:7a

Socket/fallback
DHCPDISCOVER on wlan® to 255.255.255 5 port 67 interval 3 (xid=@xab8e5542)
DHCPDISCOVER on wlan® to 255.255.255.255 port 67 interval 7 (xid=@xabg8e5542)
DHCPREQUEST of 192.168.1.118 on wlan® to 255.255.255.255 port 67 (xid=8x42558eab
)
DHCPOFFER of 192.168.1.110 from 192.168.1.1
DHCPACK of 192.168.1.110 from 192.168.1.1
cmp: EOF on /tmp/tmp.JmknJrlud8 which is empty
bound to 192.168.1.110 -- renewal in 1374 seconds.
terasic@localhost:~$ []

Figure 3-20 Type " sudo ifup wlan0"

terasic@localhost:~$ ifconfig wlane
wlan@: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1560
inet 192.168.1.118 netmask 255.255.255.8 broadcast 192.168.1.255
inet6 fe80::f2b4:29ff:fe3c:eb7a prefixlen 64 scopeid ©x2@<link>
ether f@:b4:29:3c:eb:7a txqueuelen 1800 (Ethernet)
RX packets 1951 bytes 499332 (499.3 KB)
RX errors @ dropped & overruns @ frame ©
TX packets 52 bytes 6187 (6.1 KB)
TX errors @ dropped © overruns @ carrier @ collisions ©

terasic@localhost:~$]

Figure 3-21 Type "ifconfig wlan0"

terasic@localhost:~$% ping -c 4 www.terasic.com

PING www.terasic.com (74.207.250.186) 56(84) bytes of data.

64 bytes from 1i92-186.members.linode.com (74.207.258.186): icmp_seqg=1
me=159 ms

64 bytes from 1i92-186.members.linode.com (74.207.250.186): icmp_seq=2
me=151 ms

64 bytes from 1i92-186.members.linode.com (74.207.258.186): icmp_seqg=3
me=152 ms

64 bytes from 1i92-186.members.linode.com (74.207.250.186): icmp_seq=4
me=156 ms

i.terasic.com ping statistics ---
4 packets transmitted, 4 received, ©% packet loss, time 3@02ms
rtt min/avg/max/mdev = 151.558/154.885/159.116/3.219 ms
terasic@localhost:~$ [J

Figure 3-22 Type "ping -c 4 www.terasic.com"

asic|] Apollo 10 SoM 45 www.terasic.com

www.terssie.com Demonstration October 14,

Manual 2020

3.5 HPS Control FPGA LED

This section introduces how to design an ARM C program to control the led_pio PIO
controller. SoC EDS is used to compile the C project. For ARM program to control the
led_pio PIO component, led_pio address is required. The Linux built-in driver
‘/dev/mem’ and mmap system-call are used to map the physical base address of
led_pio component to a virtual address which can be directly accessed by Linux
application software. This demonstration can be found in the path: System
CD\Demonstrations\SoC_FPGA\hps_fpga_led\

B LED PIO Address

The led_pio component information is required for ARM C program as the program will
attempt to control the component. This section describes how to get led_pio’s address.
You can get led_pio’s address from qsys’s Address Map dialog box. Figure 3-23
shows led_pio’s address in Address Map. You can define a macro for the address

when you use it.

gsys_top.gsys

Slave 510_hps.h2f_Iw_axi_master |fp

fpga_m2ocm_pb.s0
ocm.s1 0x
s10_hps.f2h_axi_slave

510_hps.f2sdram0_data
510_hps.f2sdram_data
510_hps.f2sdram2_data
sysid.control_slave 0x0000 0000 - 0x0000_0007

periph.pb_cpu_0_s0 x0000_1000 { 0x0000_11f

subsys_periph.gsys
Slave pb_cpu 0.m0
ILC.avalon_slave |0x0100 - 0x01ff
button_pio.s1 0x0060 - 0x006f
dipsw_pio.s1 0x0070 - 0x007f
led_pio.s1 x0080 | 0x008f
pb_cpu_0.s0

Figure 3-23 PIO led address in Qsys’s Address Map

asic| Apolio S10SoM 46 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

B Map LED_PIO Address
This section will describe how to map the led_pio physical address into a virtual
address which is accessible by an application software. Figure 3-24 shows the C
program to derive the virtual address of led_pio base address. First, open system-call
is used to open memory device driver “/dev/mem”, and then the mmap system-call is
used to map HPS physical address into a virtual address represented by the void
pointer variable virtual_base. The demo code maps the physical base address
(HW_REGS_BASE = 0xfc000000) of the peripheral region into a based virtual address
virtual_base. For any controller in the peripheral region, users can calculate their virtual
address by adding their offset relative to the peripheral region to the based virtual
address virtual_base. Based on the rule, the virtual address of led_pio can be
calculated by adding the below two offset addresses to virtual_base.
® Offset address of Lightweight HPS-to-FPGA AXI bus relative to HPS base
address
® Offset address of Pio_led relative to Lightweight HPS-to-FPGA AXI bus

The first offset address is Oxff200000 which is defined as a constant
ALT_FPGA_BRIDGE_LWH2F_OFST in the header hps.h. The hps.h is a header of
SoC EDS. It is located in the Quartus installation folder: <Path to SoC EDS
installation>\embedded\ip\altera\hps\ armv8\hwlib\include\soc_s10\socal.

The second offset address is 0x1000+0x80 which is led_pio’s address defined as
LED_PIO_BASE in the C code file.

The virtual address of led_pio is represented by a void pointer variable
h2p_Iw_led_addr. Application program can directly use the pointer variable to access
the registers in the controller of LED_PIO.

asic Apollo S10 SoM 47 www.terasic.com

wwe.teresiccom Demonstration October 14,

Manual 2020

#define HW_REGS_BASE (ALT_FR(_BRIDGE_LWHIF_OFST) // 0xf9000000
#define HW_REGE_SPAN (0x200000)
#define HW_REGS_MASK (HU_REGS_SPAN - 1)

#define LED_PIO_BASE (0x1000+0x80)
#define LED_PIO_DATA_WIDTH 2

Slint wainf) {
vold* wirtual_base;
int fd;
int loop_count;
int led_direction;
int led_mask;
void* hip_lw led_addr;

= /f map the address space for the LED registers Into user space so we cdy interact with them.
ffwe'll actually map in the entire CSR span of the HPS since we want to WCCEss various reglsters within that span

= if ((fd = open("/dev/mem", (O_RDWE | O_SYNZ))) == -1) {
printf("ERROR: could not open %/ dev/memt ... n");
returnil);

}
print f{ "HW_REGS_BASE=Oxfxin", HW_REGS_BASE):
2= mnap(ML, HW_REGH_SPAN, (PROT_READ | PROT_VRITE), WAP_SHARED, fd,

S if (virtual bade == MAP_FAILED) {
printf("ERROR: mmap() failed. ..'n");
printf("ermoy; ®s'n", strerror{ermmo));
close(fd);
returmll);

h2p_lw_led_addr = {({unsigned long){ALT FPGA_BRIDGE_LWHZF_OFST + LED_PIO_BASE) & (unsigned lomg)(HV_REGH_MASK));

Figure 3-24 LED PIO memory map code

B LED Control

C programmers need to understand the Register Map of the PIO core for LED_PIO
before they can control it. Figure 3-25 shows the Register Map for the PIO Core. Each
register is 32-bit width. For detail information, please refer to the datasheet of PIO Core.
For led control, we just need to write output value to the offset 0 register. Because the
led on Apollo S10 is low active, writing a value 0x00000003 to the offset 0 register will
turn off the two LEDs. Writing a value 0x00000000 to the offset O register will turn on
the two LEDs. In C program, writing a value 0x00000000 to the offset O register of
led_pio can be implemented as:

*(uint32_t *) h2p_Iw_led_addr= 0x00000000;

The state will assign the void pointer to a uint32_t pointer, so C compiler knows write a
32-bit value 0x00000000 to the virtual address h2p Iw_led_addr.

asic Apollo S10 SoM 48 www.terasic.com
wwwterssic.com - Demonstration October 14,
Manual

2020

Fields
Offset Register Name RW
(n-1) 2 1 0
0 P read access R Data value currently on P10 inputs.
e write access w New value to drive on PIO outputs.
1 di ion (1) W Individual direction control for each I/0 port. A value of 0 sets the
AReckion direction to input; 1 sets the direction to output.
i ; IRQ enable/disable for each input port. Setting a bit to 1 enables
2 intwirupteask. () RIW interrupts for the corresponding port.
3 edgecapture (7), (2) RW Edge detection for each input port.
4 outset w Specifies which bit of the output port to set.
5 outclear w Specifies which output bit to clear.

Figure 3-25 LED PIO memory map code

B Main Program

In the main program, the LED is controlled to perform LED light shifting operation as
shown in Figure 3-26. When finishing 60 times of shift cycle, the program will be
terminated.

loop_count = 0;

led_mask = 0x01;

led_dirvection = 0; fF 0: left to right direction
while {loop_count <= A0)

Hfocontrol led
¥inint3Z2_t*)h2p lw led_addr = ~led_mask;

A walt 100ms
ugleep(100 * 10007 ;

Froapdate led mask
if (led_direction == 0} {
led_mask === 1;
1f (led_mask == (0x01 <= (LED PIO_DATA WIDTH - 1300
led_direction = 1;

E

'
elze {
led mask === 1;
1f (led_mask == 0z01% §
led direction = 0;
loop_connt++;
1
'
AP while
asicC Apollo S10 SoM 49 www.terasic.com
. Eeresic.com Demonstration October 14,

Manual 2020

Figure 3-26 C Program for LED Shift Operation

B Makefile and compile

Figure 3-27 shows the content of Makefile for this C project. The program includes the
head files provided by SoC EDS. In the Makefile, ARM-linux cross-compile also be
specified.

#
TARGET = hp:_fpga_led

#

ALT DEVICE_FAMILY 7= soc_s10

SOCEDE ROOT 7= $(SOCEDE DEST ROOT)

HWLIBR_ROOT = 5 20CEDE_ROOT)/ ipfalteralhps/ammed/ hlib

CROBE_COMPILE = ~fgzoc-linara-7.2.1-2007. 10 - x84 _Ad_aarchéd-1imx-grfhinfaarchéd- 11y - gom -

CFLAGE = -g -Wall -DE(ALT DEVICE_FAMILY) -I${HWLIBS_ROOT)/ include/${ALT DEVICE_FAMILY) -IE(HWLIBS_ROOT)/ includef
LDFLAGE = -g -Wall

CC = ${CROSS CONPILEjgcc

build: ${TARGET)
$(TARGET): main.o

$000Y S(IDFLAGE) 3* -0 3G
fooo oz ®oC

$000Y $CFLAGSY -c $< -0 3G

JPHONY: clean
clean:
rm -f F(TARGET) *.a *.0 *~

Figure 3-27 Makefile content

To compile the project, type “make” in the command shell as shown in Figure 3-28.
Then, type “Is” to check the generated ARM execution file “hps_fpga_led”.

: $ make

~/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-1linux-gnu/bin/aarché4-linux-gnu-gcc -g -Wall
-Dsoc_s10 -I/mnt/i/intelFPGA_pro/19.1/embedded/ip/altera/hps/armv8/hwlib/include/soc_s1l

® -I/mnt/i/intelFPGA_pro/19.1/embedded/ip/altera/hps/armv8/hwlib/include/ -c main.c -o
main.o

~/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu/bin/aarché4-linux-gnu-gcc -g -Wall
main.o -o hps_fpga_led

$ 1s

$

Figure 3-28 ARM C Project Compilation

asic|] Apollo 10 SoM 50 www.terasic.com

www.Eeresic.com Demonstration October 14,

Manual 2020

B Execute the Demo

To execute the demo, please boot the Linux from the SD-card in Apollo S10 board.
Copy the execution file “hps_fpga_led” to the Linux directory, and type “chmod +x
hps_fpga_led” to add execution attribute to the execute file. Then, type “./hps_fpga_led”
to launch the ARM program. The LED[1:0] on Apollo S10 board will be expected to
perform 60 times of LED light shift operation, and then the program is terminated.

For details about booting the Linux from SD-card, please refer to the document:
Apollo_S10_SoM_Linux_Booting Started _Guide.pdf

3.6 Build C/C++ Project

This section describes how to recompile the above C/C++ project included in the
System CD.

First, user need to install tool chain:

Login Linux or WSL on Windows.

Type “cd ~”

Type “xz -d gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu.tar.xz”

oo DN~

Type “tar xf gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu.tar”

Here is the procedure to compile the example project:
Login Linux or WSL on Windows.
2. Execute the .shfile in the path:
<Path to SoC EDS installation>/embedded/embedded command_shell.sh
Copy the project into the Linux System and go to the project folder.
Type “make” to build project as shown in Figure 3-29.

Figure 3-29 Build C/C++ Project

asic|] Apollo 10 SoM 51 www.terasic.com
www. terasic.com Demonstratlon OCtOber 14’

Manual 2020

Chapter 4

Additional Information

4.1 Getting Help

Here are the addresses where you can get help if you encounter problems:

B Terasic Technologies

9F., No.176, Sec.2, Gongdao 5" Rd,
East Dist, HsinChu City, Taiwan, 30070
Email: support@terasic.com

Web: www.terasic.com
Apollo S10 Web: S10.terasic.com

B Revision History

Date Version Changes

2020.03 First publication

2020.04 V1.1 Modify review item

2020.06 V1.2 Add section 2.5

2020.10 V1.3 Add Section 3.5 HPS Control FPGA

LED
asic| Apollo $10 SoM 52 www.terasic.com

W Eerasic.com Demonstration October 14,

Manual

2020

