

DP83TD510E Ultra Low Power 802.3cg 10Base-T1L 10M Single Pair Ethernet PHY

1 Features

- Long cable reach
 - 2000 meters+ with 1-V p2p
 - 2000 meters+ with 2.4-V p2p
- Ultra-low power
 - 38 mW for 1-V p2p mode
 - 82 mW for 2.4-V p2p mode
- Compliant to IEEE 802.3cg 10Base-T1L
- IEC 61000-4-4 EFT ±4 KV at 5 KHz, 100 KHz
- IEC61000-4-5 surge ±2KV at 1,2/50us, 8/20us
- IEC 61000-4-2 contact discharge ±4 KV, ±8 KV air discharge
- CISPR22 radiated emission class B
- · External MDI terminations for intrinsic safety
- MAC interface:
 - MII mode
 - RMII master/slave mode
 - RGMII mode
 - RMII master low-power 5-MHz mode
 - RMII back-2-back mode for range extender
- Power supply

٠

- single supply operations from 3.3 V
- dual supply operations for lowest power dissipation
- I/O voltages: 1.8 V, 2.5 V or 3.3 V
- Diagnostics tool kit
 - Cable open and short detection
 - Signal quality indicator (SQI) for cable degradation
 - Active link cable diagnostics (ALCD)
- Clock output: 25 MHz, 50 MHz (RMII master)
- ±6-kV HBM ESD protection on MDI pins
- Operating temperature range: –40°C to 105°C
- Package: 5 mm x 5 mm, 32 pin with 0.5 mm pitch

2 Applications

- · Process automation
 - Field transmitters and switches
 - Building automation
 - HVAC controllers
 - Elevators and escalators
 - Fire safety
- Factory automation and control

3 Description

The DP83TD510E is an ultra-low power Ethernet physical layer transceiver compliant with the IEEE 802.3cg 10Base-T1L specification. The PHY has very low noise coupled receiver architecture enabling long cable reach and very low power dissipation. The DP83TD510E has external MDI termination to support intrinsic safety requirements. It interfaces with MAC layer through MII, Reduced MII (RMII), RGMII, and RMII low power 5-MHz master mode. It also supports RMII back-to-back mode for applications that require cable reach extension beyond 2000 meters. It supports a 25MHz reference clock output to clock other modules on the system. The DP83TD510E offers integrated cable diagnostic tools; built-in selftest, and loopback capabilities for ease of design or debug.

Device Information

PART NUMBER	PACKAGE (1)	BODY SIZE (NOM)		
DP83TD510E	QFN (32)	5.00 mm × 5.00 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

DP83TD510E Application Diagram

Table of Contents

1	Features	.1
2	Applications	.1
	Description	
4	Pin Configuration and Functions	.3
	Pin Functions	. 4
5	Specifications	
	5.1 Absolute Maximum Ratings	.7
	5.2 ESD Ratings	
	5.3 Recommended Operating Conditions	.7
	5.4 Thermal Information	.8
	5.5 Electrical Characteristics	
	5.6 Timing Requirements	13
	5.7 Timing Diagrams	16
6	Detailed Description	
	6.1 Overview	19
	6.2 Functional Block Diagram	20
	6.3 Feature Description	20
	6.4 Device Functional Modes	33

6.5 Programming	
6.6 MMD Register Address Map	
6.7 DP83TD510E Registers	
7 Application and Implementation	
7.1 Application Information	
7.2 Typical Applications	
7.3 Power Supply Recommendations	
7.4 Layout	
8 Device and Documentation Support	
8.1 Device Support	
8.2 Support Resources	
8.3 Trademarks	
8.4 Electrostatic Discharge Caution	
8.5 Glossary	82
9 Revision History	
10 Mechanical, Packaging, and Orderable	
Information	

4 Pin Configuration and Functions

Copyright © 2020, Texas Instruments Incorporated

Figure 4-1. RMQ Package 32-Pin VQFN Top View

Pin Functions

PIN		TYPE	DESCRIPTION			
NAME	NO					
DVDD	1	A	 Digital supply 1.0 V For single-supply operation: Short this pin with CEXT (Pin 2) Optional (dual-supply operation): Connect external 1.0 V to achieve lowest power 			
			Refer to Power Connection Diagram in Application section			
CEXT	2	A	 External capacitor for internal LDO For single-supply operation: Connect 0.01- µF capacitor and short it with pin 1 For dual-supply operation, leave unconnected Refer to Power Connection Diagram in Application section 			
VDDA	3	A	Supply 3.3 V to support both 2.4-V p2p and 1-V p2p mode. Supply 1.8 V to support only 1-V p2p mode. Supplied voltage will be reflected in bit 13 of auto negotiation base page as capability to support 2.4-V p2p or 1-V p2p. 0x20E, bit 13 = 1 when 3.3 V is selected. 0x20E, bit 13 = 0 when 1.8 V is selected. Ensure the Strap7 "Reach Selection" strap is selected appropriately to request the output voltage level in the auto negotiation page.			
TX+	4	A	TX+, TX- : Differential Transmit Output (PMD): These differential outputs are configured to 2.4-V p2p or 1-V p2p mode based on configuration chosen for PHY and auto negotiation with Link Partner.			
RX+	5	A	RX+, RX- : These differential inputs are automatically configured to accept 2.4-V p2p or 1-V			
RX-	6	A	p2p mode based on configuration chosen for PHY.			
TX-	7	A	TX+, TX- : Differential Transmit Output (PMD): These differential outputs are configured to 2.4-V p2p or 1-V p2p mode based on configuration chosen for PHY and auto negotiation Link Partner.			
GPIO2	8	Strap	GPIO: This pin can be configured for multiple configuration thru register configuration. It has mandatory PU or PD strap. Refer to Straps sections for details.			
ХО	9	A	Crystal Output: Reference Clock output. XO pin is used for crystal only. This pin should be left floating when a CMOS-level oscillator is connected to XI.			
XI/50MHzIn	10	A	Crystal / Oscillator Input Clock MII, RMII master mode: 25-MHz ±50 ppm-tolerance crystal or oscillator clock RMII slave mode: 50-MHz ±50 ppm-tolerance CMOS-level oscillator clock			
MDIO	11		Management Data I/O: Bi-directional management data signal that may be source by the management station or the PHY. This pin requires an external pull of $2.2k\Omega - 4.0 k\Omega$.			
MDC	12		Management Data Clock: Synchronous clock to the MDIO serial management input/output data. This clock may be asynchronous to the MAC transmit and receive clocks. The maximum clock rate is 1.75 MHz.			
RX_D3	13	Strap	Receive Data: Symbols received on the cable are decoded and presented on these pins			
RX_D2	14	Strap	synchronous to the rising edge of RX_CLK. They contain valid data when RX_DV is asserted. A nibble RX D[3:0] is received in MII modes. 2-bits RX D[1:0] is received in RMII mode.			
RX_D1	15	Strap				
RX_D0	16	Strap				
VDDIO	17	Power	I/O Supply : 3.3 V/2.5 V/1.8 V. For decoupling capacitor requirements, refer to Power Connection Diagram in Application section.			
RX_DV/ CRS_DV	18	Strap	Receive Data Valid: This pin indicates valid data is present on the RX_D[3:0] for MII mode and on RX_D[1:0] for RMII mode. In RMII mode, this pin acts as CRS_DV and combines the RMII arrier and Receive Data Valid indications. This pin can be configured to RX_DV to enable RMII repeater mode using strap or register configuration. RGMII mode: RGMII Receive Control: RX_CTRL combines receive data valid and receive error signals. RX_DV is presented on the rising edge of RX_CLK and RX_ER on the falling edge of RX_CLK.			

PIN		ТҮРЕ	DESCRIPTION			
NAME	NO	-				
RX_CLK/ 50MHz_RMII _M	19		MII Receive Clock: MII Receive Clock provides a 2.5-MHz reference clock for 10-Mbps speed, which is derived from the received data stream. In RMII master mode, this provides 50-MHz reference clock. In RMII slave mode, this pin is not used and remains Input/PD. RGMII Receive Clock: RGMII Receive Clock provides a 2.5-MHz reference clock for 10-Mbps speed, which is derived from the receive data stream.			
RX_ER	20	Strap	Receive Error: This pin indicates that an error symbol has been detected within a received packet in both MII and RMII mode. In MII mode, RX_ER is asserted high synchronously to the rising edge of RX_CLK. In RMII mode, RX_ER is asserted high synchronously to the rising edge of the reference clock. RX_ERR is asserted high for every reception error, including errors during Idle. Unused in RGMII mode.			
PWDN/INT	21		Power Down(Default)/Interrupt: The default function of this pin is power down. Register access is required to configure this pin as an interrupt. In power down function, an active low signal on this pin places the device in power down mode. When this pin is configured as an interrupt pin, this pin is asserted low when an interrupt condition occurs. The pin has an open-drain output with a weak internal pullup (9.5 k Ω). Some applications may require an external PU resistor.			
TX_CLK	22		MII Transmit Clock: MII Transmit Clock provides a 2.5-MHz reference clock for 10-Mbps speed. Unused in RMII mode. RGMII Transmit Clock: The clock is sourced from the MAC layer to the PHY. When operating at 10-Mbps speed, this clock must be 2.5-MHz.			
TX_EN	23		Transmit Enable: TX_EN is presented on the rising edge of the TX_CLK. TX_EN indicates the presence of valid data inputs on TX_D[3:0] in MII mode and on TX_D[1:0] in RMII mode. TX_EN is an active high signal. RGMII Transmit Control: TX_CTRL combines transmit enable and transmit error signals. TX_EN is presented on the rising edge of TX_CLK and TX_ER on the falling edge of TX_CLK.			
TX_D0	24		Transmit Data: In MII mode, the transmit data nibble received from the MAC is synchronous			
TX_D1	25		to the rising edge of TX_CLK. In RMII Master mode,TX_D[0,1] are synchronous to CLKOUT50M output of the device			
TX_D2	26		In RMII Slave mode, TX_D[0,1] are synchronous to rising edge of Ref clock			
TX_D3	27					
LED_2/ TX_ER	28	Strap	This pin acts as LED_2 by default. It can be configured as GPIO or TX_ER as well. The LED is ON when link is negotiated for 10M (short reach). LED remains OFF otherwise.			
LED_0	29	Strap	LED : Activity Indication LED indicates transmit and receive activity in addition to the status of the link. The LED is ON when link is good. The LED blinks when the transmitter or receiver is active. This pin can also act as GPIO using register configuration.			
CLKOUT/ LED_1	30		This pin provides Reference CLKOUT of 25 MHz as default to clock other module on the board. The pin can be configured to act as LED_1 using strap or register configuration. The LED is ON when link is negotiated for 10M (long reach). The LED remains OFF otherwise. When configured for CLK_OUT, reference clock is not affected by reset.			
RST_N	31		RST_N: This pin is an active low reset input. Asserting this pin low for at least 25µs will force a reset process to occur. Initiation of reset causes strap pins to be re-scanned and resets all the internal registers of the PHY to default value.			
GPIO1	32	Strap	General Purpose Input or Output.			

Table 4-1. Internal PU/PD in various states

Pin #	Pin Name	Reset State	Active State (MII Mode)	Active State (RMII Master Mode)	Active State (RMII Slave Mode)	Active State (RGMII Mode)
1	DVDD	А	А	А	А	A
2	CEXT	А	А	А	А	A
3	VDDA	А	A	A	A	A

Copyright © 2023 Texas Instruments Incorporated

Table 4-1. Internal PU/PD in various states (continued)							
Pin #	Pin Name	Reset State	Active State (MII Mode)	Active State (RMII Master Mode)	Active State (RMII Slave Mode)	Active State (RGMII Mode)	
4	TX+	А	А	A	A	A	
5	RX+	А	А	A	А	A	
6	RX-	А	А	A	А	A	
7	TX-	А	А	А	А	A	
8	GPIO2	I,PD	I,PD	I,PD	I,PD	I,PD	
9	хо	А	A	А	А	A	
10	XI/50MHzIn	А	А	А	А	A	
11	MDIO	IO	Ю	IO	Ю	10	
12	MDC	I	L	I	I	Ι	
13	RX_D3	I,PD	O,Hi-Z	I,PD	I,PD	O,Hi-Z	
14	RX_D2	I,PD	O,Hi-Z	I,PD	I,PD	O,Hi-Z	
15	RX_D1	I,PD	O,Hi-Z	O,Hi-Z	O,Hi-Z	O,Hi-Z	
16	RX_D0	I,PD	O,Hi-Z	O,Hi-Z	O,Hi-Z	O,Hi-Z	
17	VDDIO	А	A	А	А	A	
18	RX_DV/ CRS_DV	I,PD	O,Hi-Z	O,Hi-Z	O,Hi-Z	O,Hi-Z	
19	RX_CLK/ 50MHz)RMI I_M	I,PD	O,Hi-Z	O,Hi-Z	O,Hi-Z	O,Hi-Z	
20	RX_ER	I,PD	O,Hi-Z	O,Hi-Z	O,Hi-Z	I,PD	
21	PWDN/INT	I,PU-9.5K Ω/OPEN DRAIN	I,PU-9.5KΩ/ OPEN DRAIN	I,PU-9.5KΩ/OPEN DRAIN	I,PU-9.5KΩ/OPEN DRAIN	I,PU-9.5KΩ/OPEN DRAIN	
22	TX_CLK	I,PD	O,Hi-Z	I,PD	I,PD	I,PD	
23	TX_EN	I,PD	I,PD	I,PD	I,PD	I,PD	
24	TX_D0	I,PD	I,PD	I,PD	I,PD	I,PD	
25	TX_D1	I,PD	I,PD	I,PD	I,PD	I,PD	
26	TX_D2	I,PD	I,PD	I,PD	I,PD	I,PD	
27	TX_D3	I,PD	I,PD	I,PD	I,PD	I,PD	
28	LED_2/ TX_ER	I,PD	O,Hi-Z	O,Hi-Z	O,Hi-Z	O,Hi-Z	
29	LED_0	I,PD	O,Hi-Z	O,Hi-Z	O,Hi-Z	O,Hi-Z	
30	CLKOUT/ LED_1	I,PD(Only at POR)	O,Hi-Z	O,Hi-Z	O,Hi-Z	O,Hi-Z	
31	RST_N	I,PU	I,PU	I,PU	I,PU	I,PU	
32	GPIO1	I,PD	O,Hi-Z	O,Hi-Z	O,Hi-Z	O,Hi-Z	

The definitions below define the functionality of the I/O cells for each pin. (a) Type: I - Input (b) Type: O - Output (c) Type: I/O - Input/Output (d) Type OD - Open Drain (e) Type: PD, PU - Internal Pulldown/Pullup (g) Type HI-Z : floating (h) Type:A - Analog

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	MIN	MAX	UNIT
	DVDD 1.0	-0.3	1.4	V
	VDDA 1.8	-0.3	4	V
Supply voltage	VDDA 3.3	-0.3	4	V
Supply voltage	VDDIO (3.3)	-0.3	4	V
	VDDIO (2.5)	-0.3	3	V
	VDDIO (1.8)	-0.3	2.1	V
Pins	MDI (Tx+, Tx-, Rx+, Rx-)	-0.3	4	V
Pins	TX_D[0:3],RX_D[0:3], TX_CLK, RX_CLK, TX_EN, RX_DV, RX_ER, MDIO, MDC, LED0, LED1, LED2	-0.3	VDDIO + 0.3	V
Pins	INT/PWDN, RESET	-0.3	VDDIO + 0.3	V
Pins	XI Oscillator Input	-0.3	VDDIO+0.3	V

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

	Parameter				
V _(ESD)	V(ESD) Electrostatic discharge	Human-body model (HBM), perANSI/ESDA/JEDEC JS-001 ⁽¹⁾	All pins except MDI	+/-2000	V
V _(ESD)	V(ESD) Electrostatic discharge	Human-body model (HBM), perANSI/ESDA/JEDEC JS-001 ⁽¹⁾	MDI pins	+/-6000	V
V _(ESD)	V(ESD) Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22- C101 ⁽²⁾	All Pins	+/-1000	V

(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process. Manufacturing withless than 500 V HBM is possible with the necessary precautions.

(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. Manufacturing withless than 250 V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	Parameter	MIN	NOM	MAX	UNIT
DVDD 1.0	Digital Supply	0.90	1.0	1.1	V
VDDA 1.8	Analog Supply	1.62	1.8	1.98	V
VDDA 3.3	Analog Supply	3.0	3.3	3.6	V
	Digital Supply Voltage, 1.8V operation	1.62	1.8	1.98	
VDDIO	Digital Supply Voltage, 2.5V operation	2.25	2.5	2.75	V
	Digital Supply Voltage, 3.3V operation	3.0	3.3	3.6	
T _A	Operating Ambient Temperature	-40		105	°C

5.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	32PIN QFN	UNIT
R _{θJA}	Junction-to-ambient thermal resistance	52	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	42	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance		°C/W
R _{θJB}	Junction-to-board thermal resistance	30	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	30	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IEEE Tx C	CONFORMANCE (10BaseT1L External Te	rminations)				
1V p2p	Vod : Output Differential Voltage		0.85	1.0	1.05	V
2.4V p2p	Vod : Output Differential Voltage		2.04	2.4	2.56	V

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	CONSUMPTION (Dual Analog Supply,	1V p2p mode)				
	DVDD1.0	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		3.5	7.5	mA
	AVDD1.8	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		16	21.5	mA
	DVDD1.0	Reset			6	mA
	AVDD1.8	Reset			5	mA
	DVDD1.0	IEEE Power Down			5	mA
	AVDD1.8	IEEE Power Down			5	mA
POWER	CONSUMPTION (Dual Analog Supply,	2.4V p2p mode)			N	
	DVDD1.0	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		3.5	7	mA
	AVDD3.3	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		22	32	mA
	AVDD3.3	Reset			5	mA
POWER	CONSUMPTION Single Analog Supply,	1v p2p, 200 meters)				
Temp: -40 to 105C	AVDD3.3	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		19	26	mA
Temp: -40 to 105C	AVDD1.8	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		19	26.5	mA
POWER	CONSUMPTION Single Analog Supply,	2.4 Vp2p, 1000 meters)				
Temp: -40 to 105C	AVDD3.3	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		26	38	mA
Power (Consumption VDDIO (MII Interface)	I				
	VDDIO1.8	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		2.75	4	mA
	VDDIO2.5	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		4	5	mA

over operating f	free-air temperat	ture range (unless	otherwise noted) ⁽¹⁾
	iee-all tempera	uie lange (uniess	

PARAMETER	TEST CONDITIONS	MIN TY	P MAX	UNIT
VDDIO3.3	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		57	mA
ower Consumption VDDIO (RMII Master Inter	face)			
VDDIO1.8	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range	9.	5 12	mA
VDDIO2.5	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range	12.	5 17	mA
VDDIO3.3	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range	16.	5 22	mA
ower Consumption VDDIO (RMII Slave Interfa	ice)			
VDDIO1.8	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		3 4	mA
VDDIO2.5	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		4 5	mA
VDDIO3.3	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range	5.	5 7	mA
ower Consumption VDDIO (RMII Master 5 MI	lz)			
VDDIO1.8	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range	3.	5 4.5	mA
VDDIO2.5	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range	4.	5 5	mA
VDDIO3.3	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		6 8	mA
ower Consumption VDDIO (RGMII Interface)				
VDDIO1.8	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		3 4	mA

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	VDDIO2.5	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		4	5.5	mA
	VDDIO3.3	Typ : 100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Temp: 25C Max :100% Traffic, Random Size : 64 to 1512 Bytes, Random Content, Across Process, Voltage and Temperature range		5.5	7.5	mA
POWER	CONSUMPTION Low power modes				·	
Temp: -40 to 105C	VDDIO1.8	Reset			3	mA
	VDDIO2.5	Reset			5	mA
	VDDIO3.3	Reset			7	mA
Temp: -40 to 105C	VDDIO1.8	IEEE PowerDown			3	mA
	VDDIO2.5	IEEE PowerDown			4	mA
	VDDIO3.3	IEEE PowerDown			5	mA
BOOTS	TRAP DC CHARACTERISTICS (2 Level)				#	
V _{IH_3v3}	High Level Bootstrap Threshold : 3V3		1.3			V
– V _{IL_3v3}	Low Level Bootstrap Threshold : 3V3				0.6	V
V _{IH_2v5}	High Level Bootstrap Threshold: 2V5		1.3			V
V _{IL_2v5}	Low Level Bootstrap Threshold : 2V5				0.6	V
V _{IH_1v8}	High Level Bootstrap Threshold:1V8		1.3			V
V _{IL_1v8}	Low Level Bootstrap Threshold :1V8				0.6	V

DP83TD510E

SNLS656D - AUGUST 2020 - REVISED DECEMBER 2023

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IO CHAR	RACTERISTICS				I	
V _{IH}	High Level Input Voltage	VDDIO = 3.3V ±10%	2			V
V _{IL}	Low Level Input Voltage	VDDIO = 3.3V ±10%			0.8	V
V _{OH}	High Level Output Voltage	I _{OH} = -2mA, VDDIO = 3.3V ±10%	2.4			V
V _{OL}	Low Level Output Voltage	I _{OL} = 2mA, VDDIO = 3.3V ±10%			0.4	V
V _{IH}	High Level Input Voltage	VDDIO = 2.5V ±10%	1.7			V
V _{IL}	Low Level Input Voltage	VDDIO = 2.5V ±10%			0.7	V
V _{OH}	High Level Output Voltage	I _{OH} = -2mA, VDDIO = 2.5V ±10%	2			V
V _{OL}	Low Level Output Voltage	I _{OL} = 2mA, VDDIO = 2.5V ±10%			0.4	V
V _{IH}	High Level Input Voltage	VDDIO = 1.8V ±10%	0.65*VD DIO			V
V _{IL}	Low Level Input Voltage	VDDIO = 1.8V ±10%		().35*VD DIO	V
V _{OH}	High Level Output Voltage	I _{OH} = -2mA, VDDIO = 1.8V ±10%	VDDIO-0 .45			V
V _{OL}	Low Level Output Voltage	I _{OL} = 2mA, VDDIO = 1.8V ±10%			0.45	V
I _{IH}	Input High Current	T_A = -40°C to 105°C, VIN=VDDIO	-15		15	μA
IIL	Input Low Current	T_A = -40°C to 105°C, VIN=GND	-10		10	μA
R _{pulldn}	Internal Pull Down Resistor			9	11.5	kΩ
R _{pullup}	Internal Pull Up Resistor			9	11.5	kΩ
XI V _{IH}	High Level Input Voltage		1.2			V
XI V _{IL}	Low Level Input Voltage				0.6	V
C _{IN}	Input Capacitance XI			1		pF
C _{IN}	Input Capacitance INPUT PINS (TX_D[3:0], TX_EN, TX_CLK, MDC)			5		pF
C _{OUT}	Output Capacitance XO			1		pF
C _{OUT}	Output Capacitance OUTPUT PINS			5		pF
R _{series}	Integrated MAC Series Termination Resistor	RX_D[3:0], RX_ER, RX_DV, RX_CLK		50		Ω
	LED drive strength			8		mA
	GPIO Driver Strength			8		mA

(1) Ensured by production test, characterization or design

5.6 Timing Requirements

1	1	١	
(1	,	

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNI
POWER	-UP TIMING (Single and Dual supply mode)	I			I	
T1	Supply ramp delay offset: For all supplies (DVDD, VDDA, VDDIO)	First Supply ramp to last supply ramp			200	ms
T2	Last Supply powerup to RESET Complete and SMI ready: Post power-up stabilization time prior to MDC preamble for register access				60	ms
T4	Supply ramp rate: For all supplies (DVDD, VDDA, VDDIO)	(20% to 80%)	0.2		40	ms
	Powerup to Strap latchin: Hardware configuration pins transition to output drivers				60	ms
	Pedestal Voltage on DVDD, VDDA, VDDIO before Power Ramp				0.3	V
RESET	TIMING				·	
T1	RESET PULSE Width: Miminum Reset pulse width to be able to reset		10			us
T2	Reset to SMI ready: Post reset stabilization time prior to MDC preamble for register access				30	us
	Reset to Strap latchin: Hardware configuration pins transition to output drivers				1050	ns
	Reset to 10Base-T1L Auto Neg Signalling				9000	us
	Reset to RMII Master clock				35	us
MII 10M	Timings				·	
T1	TX_CLK High / Low Time		190	200	210	ns
T2	TX_D[3:0], TX_ER, TX_EN Setup to TX_CLK		25			ns
Т3	TX_D[3:0], TX_ER, TX_EN Hold from TX_CLK		0			ns
T1	RX_CLK High / Low Time		160	200	240	ns
T2	RX_D[3:0], RX_ER, RX_DV Delay from RX_CLK rising		100		300	ns
RGMII O	UTPUT TIMING (10M)					
T _{skewT}	Data to Clock Output Skew (Non-Delay Mode)	5 pF Load	-2		2	ns
T _{skewT} (delay)	Data to Clock Output Skew (Integrated Delay Mode)	5 pF Load	40			ns
T _{cyc}	Clock Cycle Duration		-360	400	440	ns
	Duty Cycle		45	50	55	%
	Rise / Fall Time (20% to 80%)				3	ns
RGMII IN	PUT TIMING (10M)					
T _{skewR}	TX data to clock input skew (Integrated Delay Mode)		-4		4	ns
T _{setupR}	TX data to clock input setup (Non-Delay Mode)		40			ns
T _{holdR}	TX clock to data input hold (Non-Delay Mode)		40			ns
RMII MA	STER TIMING	·				
T1	RMII Master Clock Period			20		ns
	RMII Master Clock Duty Cycle		35		65	%
T2	TX_D[1:0], TX_ER, TX_EN Setup to RMII Master Clock	25 pF Load	4			ns
Т3	TX_D[1:0], TX_ER, TX_EN Hold from RMII Master Clock	25 pF Load	2			ns
Τ4	RX_D[1:0], RX_ER, CRS_DV Delay from RMII Master Clock rising edge	25 pF Load	4	10	14	ns
RMII SL		ı I				
T1	Input Reference Clock Period			20		ns

DP83TD510E SNLS656D – AUGUST 2020 – REVISED DECEMBER 2023

(1)

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
	Reference Clock Duty Cycle		35		65	%
T2	TX_D[1:0], TX_ER, TX_EN Setup to XI Clock rising		4			ns
Т3	TX_D[1:0], TX_ER, TX_EN Hold from XI Clock rising		2			ns
T4	RX_D[1:0], RX_ER, CRS_DV Delay from XI Clock rising		4		14	ns
RMII Ma	ster Timing (5 MHz)					
	Frequency			5		MHz
	Duty Cycle		40		60	%
T2	TX_D[3:0], TX_ER, TX_EN setup to Master Clock		10			ns
Т3	TX_D[3:0], TX_ER, TX_EN hold from Master Clock		10			ns
T4	RX_D[3:0], RX_ER, RX_DV Delay from 5 MHz Clock		50	100	150	ns
SMI TIM	ING	-				
T1	MDC to MDIO (Output) Delay Time		0		10	ns
T2	MDIO (Input) to MDC Setup Time		10			ns
Т3	MDIO (Input) to MDC Hold Time		10			ns
T4	MDC Frequency			1	1.75	MHz

(1)

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
OUTPUT	CLOCK TIMING (25MHz clockout)					
	Frequency (PPM)		-100		100	-
	Duty Cycle		40		60	%
	Rise Time				5000	ps
	Fall Time				5000	ps
	Jitter (RMS - long term)				40	ps
	Frequency			25		MHz
	RefCLK to clock out delay				3000	ps
Output C	lock 50 MHz timing				I	
	Frequency (PPM)		-50		50	ppm
	Duty Cycle		35		65	%
	Rise time				5000	ps
	Fall Time				5000	ps
	Jitter (Long Term 10,000 Cyles)				650	ps
25MHz IN	IPUT CLOCK tolerance					
	Frequency Tolerance		-100		+100	ppm
	Jitter Tolerance (RMS)				40	ps
	Rise / Fall Time (10%-90%)				8	ns
	Jitter Tolerance (Accumulated)				500	ps
	Duty Cycle		40		60	%
50MHz In	put Clock Tolerance					
	Frequency Tolerance		-100		+100	ppm
	Jitter Tolerance (RMS)				40	ps
	Rise / Fall Time (10%-90%)				4	ns
	Jitter Tolerance (Accumulated)				250	ps
	Duty Cycle		40		60	%
TRANSM	IT LATENCY TIMING					
Copper	RGMII to Cu (10M) : Rising edge TX_CLK with assertion TX_CTRL to SSD symbol on MDI				3000	ns
Copper	MII to Cu (10M): Rising edge TX_CLK with assertion TX_EN to SSD symbol on MDI				750	ns
Tx_RMII	Slave RMII Rising edge XI clock with assertion TX_EN to SSD symbol on MDI (10M)				2800	ns
Tx_RMII	Master RMII Rising edge clock with assertion TX_EN to SSD symbol on MDI (10M)				2800	ns
RECEIVE	LATENCY TIMING					
Copper	Cu to RGMII (10M): SSD symbol on MDI to Rising edge of RX_CLK with assertion of RX_CTRL				5000	ns
Copper	Cu to MII (10M): SSD symbol on MDI to Rising edge of RX_CLK with assertion of RX_DV				5100	ns
Rx_RMII	SSD symbol on MDI to Slave RMII Rising edge of XI clock with assertion of CRS_DV (10M)				5700	ns
Rx_RMII	SSD symbol on MDI to Master RMII Rising edge of Master clock with assertion of CRS_DV (10M)				5800	ns

(1) Ensured by production test, characterization or design

5.7 Timing Diagrams

Figure 5-1. Power-Up Timing

Figure 5-3. Serial Management Timing

Figure 5-7. RMII Receive Timing

6 Detailed Description

6.1 Overview

The DP83TD510E is a physical-layer transceiver compliant to IEEE 802.3cg 10BaseT1L standards. The PHY use low noise coupled signal processing reciever architecture to offer longer cable reach along with ultra-low power consumption. The device supports both 2.4-V p2p and 1-V p2p voltage mode as defined by IEEE 802.3cg 10Base-T1L specifications. It supports multiple MAC interface (MII, Reduced Media Independent Interface (RMII), RGMII and low power Reduced MII) for direct connection to Media Access Controller (MAC). The device also supports back-to-back RMII mode and RGMII in unmanaged mode to provide range extension and repeater functionality.

The device is designed to operate from a single 3.3-V power supply and has integrated LDO to provide the voltage rails required for internal blocks. The device has an option to feed digital power externally to achieve lowest power consumption. The device allows I/O voltage interfaces for 3.3 V, 2.5 V or 1.8 V. Automatic supply configuration within the DP83TD510E allows for any combination of VDDIO supply without the need for additional configuration settings.

The DP83TD510E is designed for use in intrinsically safe Ethernet advanced physical layer (APL) systems. Ethernet-APL is an Ethernet specification based on the IEEE 802.3.cg 10BASE-T1L standard and was developed to streamline implementation of Ethernet networking in process automation systems with intrinsic safety requirements.

A key design consideration of intrinsically safe Ethernet-APL systems – especially systems designed for use in hazardous environments with explosive potential – is the ability to reduce Ethernet PHY power levels and temperature during system failure conditions. By supporting external termination resistors, the DP83TD510E can reduce inrush current and maintain lower operating temperatures when used in long-distance process automation applications, such as field transmitters. DP83TD510E offers support for both external termination Configuration as defined in Annex A of the IEEE 802.3cg specifications. PHY is designed with innovative hybrid reciever to adjust itself for external termination implementation. For non intrinsic safe applciations, DP83TD510E offers simplied external termination configuration with minimal external passives.

The DP83TD510E Diagonstic Tool includes TDR (Time Domain Reflectometry), ALCD (Active Link Cable Diagnostics), SQI (Signal Quality Indicator), mulitple Loopbacks and Integrated PRBS Packet Generator to ease debugging during development and detecting faulty conditions in field.

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Auto-Negotiation (Speed Selection)

Auto-Negotiation provides a mechanism for exchanging configuration information between the two ends of a link segment. The DP83TD510E supports auto-negotiation for Low Speed Modes (LSM) as defined in IEEE 802.3cg specification for 10BaseT1L. Auto-negotiation ensures that the highest common speed is selected based on the advertised abilities of the link partner and the local device. DP83TD510E (default) broadcast both 2.4V p2p and 1.V p2p capabilities. It offers HW strap or register based configuration to broadcast only 1V p2p capability. Refer to straps section for details.

6.3.2 Repeater Mode

The DP83TD510E provides an option to enable repeater mode functionality to extend the cable reach. Two DP83TD510E can be connected in back to back mode without any external configuration. A hardware strap is

provided to configure the CRS_DV pin of RMII interface to RX_DV pin for back to back operation. Refer to RMII Repeater Mode for the RMII pin connection to enable repeater mode on the DP83TD510E, and Table 7-9 for the RX_DV strap setting. DP83TD510E RGMII MAC mode can also be used for Repeater Mode. With RGMII MAC, the MAC interface clock runs at 2.5 MHz and will dissipiate less power and offer improved signal integrity.

Figure 6-1. RMII Repeater Mode

6.3.3 Media Converter

The DP83TD510E provides an option to enable media conversion (Single Pair Ethernet to Standard 10BASE-Te CAT5e) functionality using strap configurations (no external MCU programming is needed). The DP83TD510E can be connected to 10BASE-Te PHY (For example: DP83822, DP83826I) to convert the medium from Single Pair Ethernet to Standard Ethernet (CAT5e). RMII or RGMII MAC interface can be used to perform the media conversion. Refer to the connections shown in the figures below. With RGMII MAC, the MAC interface clock runs at 2.5MHz and will dissipiate less power and offer improved signal integrity. If RX_DV is needed for the chosen media conversion mode, refer to Table 6-11 for the corresponding strap settings.

Figure 6-2. Media Converter using RGMII MAC interface

6.3.4 Clock Output

The DP83TD510E has several clock output configuration options. An external crystal or CMOS-level oscillator provides the stimulus for the internal PHY reference clock. The local reference clock acts as the central source for all clocking within the device.

All clock configuration options are enabled using the IO MUX GPIO Control Register

Clock options supported by the DP83TD510E include:

- MAC IF clock
- XI clock
- Free-running clock
- Recovered clock

6.3.5 Media Independent Interface (MII)

The Media Independent Interface is a synchronous 4-bit wide nibble data interface that connects the PHY to the MAC. The MII is fully compliant with IEEE 802.3-2002 clause 22.

The MII signals are summarized in Table 6-1.

Table 6-1. Mll Signals

FUNCTION	PINS
Data Signals	TX_D[3:0]
Data Signals	RX_D[3:0]
Transmit and Receive Signals	TX_EN
	RX_DV

Figure 6-4. MII Signaling

Additionally, the MII interface includes the carrier sense signal (CRS), as well as a collision detect signal (COL). The CRS signal asserts to indicate the reception or transmission of data. The COL signal asserts as an indication of a collision which can occur during half-duplex mode when both transmit and receive operations occur simultaneously.

Copyright © 2023 Texas Instruments Incorporated

6.3.6 Reduced Media Independent Interface (RMII)

The DP83TD510E incorporates the Reduced Media Independent Interface (RMII) as specified in the RMII specification v1.2. The purpose of this interface is to provide a reduced pin count alternative to the IEEE 802.3 MII as specified in Clause 22. Architecturally, the RMII specification provides an additional reconciliation layer on either side of the MII, but can be implemented in the absence of an MII. The DP83TD510E offers two types of RMII operations: RMII Slave and RMII Master. In RMII Master operation, the DP83TD510E operates off of either a 25-MHz CMOS-level oscillator connected to XI pin or a 25-MHz crystal connected across XI and XO pins. A 50-MHz output clock referenced from DP83TD510E can be connected to the MAC. In RMII Slave operation, the DP83TD510E operates off of a 50-MHz CMOS-level oscillator connected to the XI pin and shares the same clock as the MAC. Alternatively, in RMII Slave mode, the PHY can run from a 50-MHz clock provided by the Host MAC.

The RMII specification has the following characteristics:

- · Single clock reference sourced from the PHY to MAC or from an external source fed both to MAC and PHY
- Independent 2-bit wide transmit and receive data paths
- Usage of CMOS signal levels, the same levels as the MII interface

In this mode, data transfers are two bits for every clock cycle using the internal 50-MHz reference clock for both transmit and receive paths.

The RMII signals are summarized in Table 6-2.

Table 6-2. RMII Signals

FUNCTION	PINS
Receive Data Lines	TX_D[1:0]
Transmit Data Lines	RX_D[1:0]
Receive Control Signal	TX_EN
Transmit Control Signal	CRS_DV

Figure 6-6. RMII Master Signaling

Data on TX_D[1:0] are latched at the PHY with reference to the clock edges on the XI pin. Data on RX_D[1:0] are latched at the MAC with reference to the same clock edges on the XI pin in RMII Slave Mode. For RMII Master mode, data is latched wrt the CLKOUT50M output from the PHY.

In addition, CRX_DV can be configured as RX_DV signal. It allows a simpler method of recovering receive data without the need to separate RX_DV from the CRS_DV indication.

6.3.7 RMII Low Power 5-MHz Mode

DP83TD510E supports a new MAC Mode called RMII Master Low Power Mode. The interface is similar to the RMII master mode but runs at 5 MHz resulting in power dissipation savings. DP83TD510E offers 5-MHz clock output and data is sampled to this clock. An application can use the same pin map as RMII for this mode. Refer to Timing Requirements - RMII Master Timing (5MHz) for the timing requirements of this mode. To enable this mode, write register 0x17[6] = '1'.

6.3.8 RGMII Interface

DP83TD510E offers RGMII MAC interface as defined by Reduced Gigabit Media Independent Interface (RGMII) as specified by RGMII version 2.0. RGMII is designed to reduce the number of pins required to connect the MAC and PHY. To accomplish this goal, the control signals are multiplexed. Both rising and falling edges of the clock are used to sample the control signal pin on the transmit and receive paths. For 10-Mbps operation, RX_CLK and TX_CLK operate at 2.5 MHz. The timing specifications are relaxed compared to RGMII 1000M interface specifications. Refer to timing sections on timing specifications for this mode.

Copyright © 2023 Texas Instruments Incorporated

Table 6-3. RGMII Signals		
Function	PINs	
Data Signals	TX_D[3:0]	
	RX_D[3:0]	
Transmit and Recieve Clocks	TX_CLK	
	RX_CLK	
Transmit and Recieve Signals	TX_CTRL	
	RX_CTRL	

Figure 6-7. RGMII Signalling

6.3.9 Serial Management Interface

The Serial Management Interface provides access to the DP83TD510E internal register space for status information and configuration. The SMI is compatible with IEEE 802.3 clause 22 and clause 45. The implemented register set consists of the registers required by IEEE 802.3 plus several others to provide additional visibility and controllability of the DP83TD510E.

The SMI includes the management clock (MDC) and the management input/output data pin (MDIO). MDC is sourced by the external management entity, also called Station (STA), and can run at a maximum clock rate of 1.75 MHz. MDC is not expected to be continuous and can be turned off by the external management entity when the bus is idle.

MDIO is sourced by the external management entity and by the PHY. The data on the MDIO pin is latched on the rising edge of the MDC. The MDIO pin requires a pullup resistor (2.2 k Ω) which pulls MDIO high during IDLE and turnaround.

Up to 16 PHYs can share a common SMI bus. To distinguish between the PHYs, during power up or hardware reset, the DP83TD510E latches the Phy_Address[3:0] configuration pins to determine its address.

The management entity must not start an SMI transaction in the first cycle after power up or hardware reset, it shall wait for powerup and reset to complete. Refer to timing section for power up and reset time. In normal MDIO transactions, the register address is taken directly from the management-frame reg_addr field, thus allowing direct access to 32 16-bit registers (including those defined in IEEE 802.3 and vendor specific). The data field is used for both reading and writing. The Start code is indicated by a <01> pattern. This pattern ensures that the MDIO line transitions from the default idle line state. Turnaround is defined as an idle bit time inserted between the Register Address field and the Data field. To avoid contention during a read transaction, no device may actively drive the MDIO signal during the first bit of turnaround. The addressed DP83TD510E drives the MDIO with a zero for the second bit of turnaround and follows this with the required data.

For write transactions, the station-management entity writes data to the addressed DP83TD510E, thus eliminating the requirement for MDIO Turnaround. The turnaround time is filled by the management entity by inserting <10>.

Clock shall be provided during the <idle> period to complete the transaction.

SMI PROTOCOL	<idle><start><op code=""><phy address=""><reg addr=""><turnaround><data><idle></idle></data></turnaround></reg></phy></op></start></idle>
Read Operation	<idle><01><10><aaaaa><rrrrr><z0><xxxx xxxx=""><idle></idle></xxxx></z0></rrrrr></aaaaa></idle>
Write Operation	<idle><01><01><aaaaa><rrrr><10><xxxx xxxx=""><idle></idle></xxxx></rrrr></aaaaa></idle>

Table 6-4. SMI Protocol

6.3.10 Extended Register Space Access

The **DP83TD510E**'s SMI function supports read or write access to the extended register set using registers REGCR (0x0D) and ADDAR (0x0E) and the MDIO Manageable Device (MMD) indirect method defined in IEEE 802.3ah Draft for clause 22 for accessing the clause 45 extended register set.

The standard register set, MDIO registers 0 to 31, is accessed using the normal direct-MDIO access or the indirect method, except for register REGCR (0x0D) and ADDAR (0x0E), which is accessed only using the normal MDIO transaction. The SMI function ignores indirect accesses to these registers.

Table 6-5. REGCR DEVAD Functions

REGCR[15:14]	Function
00	Accesses to register ADDAR modify the extended register 'set address' register. This address register must always be initialized to access any of the registers within the extended register set.
01	Accesses to register ADDAR access the register within the extended register set selected by the value in the address register.
10	Access to register ADDAR access the register within the extended register set selected by the value in the address register. After that access is complete, for both reads and writes, the value in the address register is incremented.
11	Access to register ADDAR access the register within the extended register set selected by the value in the address register. After that access is complete, for write accesses only, the value in the address register is incremented. For read accesses, the value of the address register remains unchanged.

The following sections describe how to perform operations on the extended register set using register REGCR and ADDAR. The descriptions use the device address for general MMD register accesses (DEVAD[4:0] = 11111).

6.3.10.1 Read (No Post Increment) Operation

To read a register in the extended register set:

Instruction	Example: Read 0x0170
1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.	Write register 0x0D to value 0x001F
2. Write the desired register address to register ADDAR.	Write register 0x0E to value 0x0170
3. Write the value 0x401F (data, no post increment function field = 01, DEVAD = 31) to register REGCR.	Write register 0x0D to value 0x401F
4. Read the content of the desired extended register set register to register ADDAR.	Read register 0x0E

Subsequent reads from register ADDAR (step 4) continue reading the register selected by the value in the address register.

Note Steps (1) and (2) can be skipped if the address register was previously configured.

6.3.10.2 Read (Post Increment) Operation

To read a register in the extended register set and automatically increment the address register to the next higher value following the read operation:

Instruction	Example: Read register 0x0170 & 0x0171
1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.	Write register 0x0D to value 0x001F
2. Write the desired register address to register ADDAR.	Write register 0x0E to value 0x0170
3. Write the value 0x801F (data, post increment on reads and writes function field = 10, DEVAD = 31) to register REGCR.	Write register 0x0D to value 0x801F

Instruction	Example: Read register 0x0170 & 0x0171
4. Read the content of the desired extended register set register to register ADDAR.	Read register 0x0E
5. Subsequent reads to register ADDAR (step 4) reads the next higher addressed data register selected by the value of the address register; the address register is incremented after each access.	Read register 0x0E

Step 4 Reads register 0x0170 and because post increment is enabled, Step 5 reads register 0x0171.

6.3.10.3 Write (No Post Increment) Operation

To write a register in the extened register set:

Instruction	Example: Set reg 0x0170 = 0C50
1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR (0x0D).	Write register 0x0D to value 0x001F
2. Write the desired register address to register ADDAR (0x0E).	Write register 0x0E to value 0x0170
3. Write the value 0x401F (data, no post increment function field = 01, DEVAD = 31) to register REGCR.	Write register 0x0D to value 0x401F
4. Write the content of the desired extended register set register to register ADDAR.	Write register 0x0E to value 0x0C50

Subsequent writes to register ADDAR (step 4) continue to rewrite the register selected by the value in the address register.

	Note
St	teps (1) and (2) can be skipped if the address register was previously configured.

6.3.10.4 Write (Post Increment) Operation

To write a register in the extended register set and automatically increment the address register to the next higher value following the write operation:

Instruction	Example: Set reg 0x0170 = 0C50 & reg 0x0171 = 0x0011
1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.	Write register 0x0D to value 0x001F
2. Write the register address from register ADDAR.	Write register 0x0E to value 0x0170
3. Write the value 0x801F (data, post increment on reads and writes function field = 10, DEVAD = 31) or the value 0xC01F (data, post increment on writes function field = 11. DEVAD = 31) to register REGCR.	Write register 0x0D to value 0x401F
4. Write the content of the desired extended register set register to register ADDAR.	Write register 0x0E to value 0x0C50
5. Subsequent writes to register ADDAR (step 4) writes the next higher addressed data register selected by the value of the address register; the address register is incremented after each access.	Write register 0x0E to value 0x0011

Step 4 Writes register 0x0170 to 0x0C50 and because post increment is enabled, Step 5 writes register 0x0171 to 0x0011.

6.3.11 Loopback Modes

There are several loopback options within the DP83TD510E that test and verify various functional blocks within the PHY. Enabling loopback modes allow for in-circuit testing of the digital and analog data paths. The DP83TD510E may be configured to any one of the Near-End Loopback modes or to the Far-End (reverse) Loopback mode. MII Loopback is configured using the Control Register (BMCR, address 0x0000). All other loopback modes are enabled using the BIST Control Register (BISCR, address 0x0016).

Figure 6-8. Loopback Test Modes

6.3.11.1 MII Loopback

MII Loopback is the shallowest loop through the PHY. It is a useful test mode to validate communications between the MAC and the PHY. When in MII Loopback, data transmitted from a connected MAC on the TX path is internally looped back in the DP83TD510E to the RX pins where it can be checked by the MAC.

6.3.11.2 PCS Loopback

PCS Loopback occurs in the PCS layer of the PHY. No signal processing is performed when using PCS Loopback.

6.3.11.3 Digital Loopback

Digital Loopback includes the entire digital transmit and receive paths. Data is looped back prior to the analog circuitry.

Digital Loopback is enabled by setting bit[2] in the BISCR and register configuration 0x0883[0] = 0x1.

6.3.11.4 Analog Loopback

Analog Signals can be looped back after the analog front-end.

6.3.11.5 Far-End (Reverse) Loopback

Far-End (Reverse) loopback is a special test mode to allow PHY testing with a link partner. In this mode, data that is received from the link partner passes through the PHY's receiver, is looped back at the MAC interface and then transmitted back to the link partner. While in Reverse Loopback mode, all data signals that come from the MAC are ignored.

Please refer to DP83TD510 Cable diagnostics App note SNLA364 for detailed procedure.

6.3.12 BIST Configurations

The DP83TD510E incorporates an internal PRBS Built-in Self-Test (BIST) circuit to accommodate in-circuit testing and diagnostics. The BIST circuit can be used to test the integrity of transmit and receive data paths. The BIST can be performed using both internal loopbacks (digital or analog). The BIST simulates pseudo-random data transfer scenarios in format of real packets and Inter-Packet Gap (IPG) on the lines. The BIST allows full control of the packet lengths and the IPG.

Please refer to DP83TD510 Cable diagnostics App note SNLA364 for detailed procedure.

6.3.13 Cable Diagnostics

With the vast deployment of Ethernet devices, the need for a reliable, comprehensive and user-friendly cable diagnostic tool is more important than ever. The wide variety of cables, topologies and connectors deployed results in the need to non-intrusively identify and report cable faults. The DP83TD510E offers TDR (Time Domain Reflectometry), SQI (Signal Quality Indicator) and ALCD (Active Link Cable Diagnostics) capabilities in its cable diagnostic tool kit.

6.3.13.1 TDR

The DP83TD510E uses Time Domain Reflectometry (TDR) to determine the quality of the cables, connectors and terminations in addition to estimating the cable length. Some of the possible problems that can be diagnosed include opens, shorts, cable impedance mismatch, bad connectors, termination mismatches, cross faults, cross shorts and any other discontinuities along the cable.

The DP83TD510E transmits a test pulse of known amplitude (1 V) down each of the two pairs of an attached cable. The transmitted signal continues down the cable and reflects from each cable imperfection, fault, connector and from the end of the cable itself. After the pulse transmission, the DP83TD510E measures the return time and amplitude of all these reflected pulses. This technique enables measuring the distance and magnitude (impedance) of non-terminated cables (open or short), discontinuities (bad connectors) and improperly terminated cables with ±1-m accuracy.

For all TDR measurements, the transformation between time of arrival and physical distance is done by the external host using minor computations (such as multiplication, addition and lookup tables). The host must know the expected propagation delay of the cable, which depends, among other things, on the cable category (for example, CAT5, CAT5e, or CAT6).

TDR measurement is allowed in the following scenarios:

- While the Link Partner is disconnected cable is unplugged at the other side
- Link Partner is connected but remains "quiet" (for example, in power down mode)
- TDR could be automatically activated when the link fails or is dropped

TDR control and result register bit functions relevant for TDR procedure are summarized in the table below:

Table 6.6	тпр	Dogiotor	Summany	
Table 6-6.	Ιυκ	Register	Summary	

Register Name	Register Address	Register Function	Description
TDR_CFG	0x1E	Manual TDR start [15] and TDR completion status [1:0]	Manually start and monitor TDR
TDR_CFG2	0x301	TDR sweep index configuration	Configure constant for internal measurement equation
FAULT_CFG1	0x303	TDR fault offset and tap index configuration	Configure constant for internal measurement equation
TDR_Fault_Status	0x30C	Bits [9:0] store fault location in meters, Bit [11] stores fault	Convert [9:0] to decimal for fault location in meters
		detection status, and [10] stores the sign of this fault	Fault detected [11] = '1' No fault detected [11] = '0'
			Open fault [10] = '1'Short fault [10] = '0'

Please refer to Cable Diagnostics Appnote SNLA364 for more details on utilizing these registers for TDR procedure.

Copyright © 2023 Texas Instruments Incorporated

ALCD (Active Link Cable Diagnostics)

While TDR offers a way to measure the cable length of a system prior to establishing link, Active Link Cable Diagnostics (ALCD) allows the PHY to determine the cable length during an active link with its link partner. It uses passive digital signal processing along with pre-defined cable parameters to achieve the highest accuracy in its cable length estimate. The estimated cable length can be cross-verified with the physical length of the cable to determine whether there is deviation in cable characteristics and understand how the PHY may perform as the cable ages.

It's important tot note that in Single-Pair Ethernet applications, cable characteristics differ more widely than in standard Ethernet applications (where CAT5, CAT5E, CAT6 cables are dominantly used). As such, the ALCD measurement information generated by DP83TD510E can be combined with the parameters of a specific cable model to generate the most accurate cable length estimate. Please refer to DP83TD510E Cable Diagnostics Appnote SNLA364.

SQI (Signal Quality Indicator)

While TDR can provide information about the existence and location of cable faults, a real-time monitor of the link quality can provide valuable information before a fault occurs. The DP83TD510E provides real-time signal-to-noise ratio monitoring for an application.

The cable quality, connector contact, and surrounding environment contribute to the overall channel quality. The Signal Quality Indicator (SQI) can provide insights to the physical connections in an application assembly before it ships, the link quality of a system in noisy environments and immunity testing, or the lifetime trend of a product's health as it ages.

The DP83TD510E monitors link quality by measuring the SNR at periodic intervals whenever an active link is established. The PHY measures the accumulated mean-square error (MSE) in the received signal at the PAM3 slicer from its sliced output level. The signal quality monitoring functions are run automatically in the background of the PHY. Please refer to DP83TD510E Cable Diagnostics Appnote SNLA364 for the detailed SQI measurement procedure.

6.3.13.2 Fast Link Down Functionality

The DP83TD510E includes advanced link-down capabilities that support various real-time applications. The link-down mechanism is configurable and includes enhanced modes that allow extremely fast link-drop reaction times.

The DP83TD510E supports an enhanced link drop mechanism, also called Fast Link Drop (FLD), which shortens the observation window for determining link. There are multiple ways of determining link status, which can be enabled or disabled based on user preference. Fast Link Drop can be enabled in software using register configuration. FLD can be configured using the Control Register #3 (CR3, address 0x000B). Bits[3:0] and bit[10] allow for various FLD conditions to be enabled. When link drop occurs, indication of a particular fault condition can be read from the Fast Link Down Status Register (FLDS, address 0x000F).

Figure 6-9. Fast Link Down

Fast Link Down criteria include:

- RX Error Count when a predefined number of 32 RX ERs occur in a 10µs window, the link will be dropped.
- MLT3 Error Count when a predefined number of 20 MLT3 errors occur in a 10µs window, the link will be dropped.
- Low SNR Threshold when a predefined number of 20 threshold crossings occur in a 10µs window, the link will be dropped.
- Signal/Energy Loss when the energy detector indicates energy loss, the link will be dropped.

The Fast Link Down functionality allows the use of each of these options separately or in any combination.

Note

Because this mode enables extremely quick reaction time, it is more exposed to temporary bad link-quality scenarios.

6.4 Device Functional Modes

DP83TD510E can be used in MII, RMII Master, RMII Slave and RGMII mode. Refer to RMII section for connection diagram.

6.4.1 Straps Configuration

The DP83TD510E uses many of the functional pins as strap options to place the device into specific modes of operation. The values of these pins are sampled at power up or hard reset. During software resets, the strap options are internally reloaded from the values sampled at power up or hard reset. The strap option pin assignments are defined below. Configuration of the device may be done through the strap pins or through the management register interface. A pullup resistor or a pulldown resistor of suggested values may be used to set the voltage ratio of the strap pin input and the supply to select one of the possible selected modes. The MAC interface pins must support I/O voltages of 3.3 V, 2.5 V, and 1.8 V. As the strap inputs are implemented on these pins, the straps must also support operation at 3.3-V, 2.5-V, and 1.8-V supplies depending on what voltage was selected for I/O. All strap pins have two levels.

Copyright © 2023 Texas Instruments Incorporated

PHY offers interal PU or PD resistor for the default strap configuration and eliminates need for external resistor. External resistor for strap is needed only when default configuration needs to be be changed.

Figure 6-10. Strap Circuit

Table 6-7. 2-Level Strap Resistor Ratio

MODE	IDEAL RE	SISTORS
MODE	Rhi (kΩ)	Rlo (kΩ)
0	OPEN	2.49
1	2.49	OPEN

6.4.1.1 Straps for PHY Address

Table 6-8. PHY Address Strap Table

		DEFAULT	PIN #	STRAP NAME	PIN NAME
PHY_ADD0					
0	MODE 0	0	32	Strap9	GPIO1
1	MODE 1				
PHY_ADD1					
0	MODE 0	0	20	Strap6	RX_ERR
1	MODE 1				
PHY_ADD2			16		
0	MODE 0	0		Strap4	RX_D0
1	MODE 1				
PHY_ADD3					
0	MODE 0	0	13	Strap1	RX_D3
1	MODE 1				

Table 6-9. Reach Selection Strap					
PIN NAME	STRAP NAME	PIN #	DEFAULT		
LED_2	Strap7	28	0	0	This Strap defines the voltage level requested by PHY during auto negotiation. It is reflected in bit 12 of 0x20E. While using Force mode for Linkup, the strap controls the output voltage and reflects in bit 12 of 0x18F6 0 : 2.4V & 1-V p2p
				1	1: 1-V p2p

Table 6-10. MAC Mode Strap Table

PIN NAME	STRAP NAME	PIN #	DEFAULT	Strap8	Strap 3	
RX_D1 Strap3	p3 15	0	0	0	MII (default)	
			0	1	RMII Master	
LED_0 Strap8	Stran8	strap8 29	0	1	0	RGMII
	Strapo			1	1	RMII Slave

Table 6-11. RMII MAC Mode Strap Table

PIN NAME	STRAP NAME	PIN #	DEFAULT		
RX_D2	Strap2	4.4	0	0	Pin 18 is configured as CRS_DV (Default, for Media Conversion Mode)
	Strapz	14	0	1	Pin 18 is configured as RX_DV (For RMII Repeater or Media Conversion Mode)

Table 6-12. Terminations Selection

PIN NAME	STRAP NAME	PIN #	DEFAULT		
GPIO2	Strap10	8	Mandatory PU/PD	0	Receiver with tapping at 50 Ω (Recommended)
				1Receiver tapping at < 40	Receiver tapping at < 40 Ω

Table 6-13. Clockout/LED_1

PIN NAME	STRAP NAME	PIN #	DEFAULT		
RX_DV/CRS_DV	Strap5	19	0	0	Clockout 25 M(default)
	Guapo	10		1 LED1	LED1

6.5 Programming

DP83TD510E provides an IEEE defined register set for programming and status. It also provides an additional register set to configure other features not supported thru IEEE registers.

6.6 MMD Register Address Map

Table 6-14. MMD Register Map Address Table

Register Address Range	MMD	Example Usage
0x1000 to 0x18F8	0x1	MMD=0x1, Address=0x08F8
0x3000 to 0x38E7	0x3	MMD=0x3, Address=0x08E7
0x200 to 0x20F	0x7	MMD=07, Address=0x20F
0x0000 to 0x0130, 0x0300-0x0E01	0x1F	MMD=0x1F, Address=0x0000

Table 6-15. Register Access Summary				
REGISTER FIELD	REGISTER ACCESS METHODS			
	Direct Access (0x0000 - 0x0130)			
MMD1 Field 0x0000 - 0x0130 0x0300 - 0x0E01	Indirect Access, MMD1F = '11111' Example: to read register 0x300 in MMD1F field with no post increment Step 1) write 0x1F to register 0xD Step 2) write 0x300 to register 0xE Step 3) write 0x401F to register 0xD Step 4) read register 0xE (0x0300 - 0x0E01)			
MMD1 Field 0x1000 - 0x18F8	Indirect Access, MMD1F = '00001' Example: to read register 0x18F6 in MMD1 field with no post increment Step 1) write 0x1 to register 0xD Step 2) write 0x18F6 to register 0xE Step 3) write 0x4001 to register 0xD Step 4) read register 0xE			
MMD3 Field 0x3000 - 0x38E7	Indirect Access, MMD3 = '00011' Example: to read register 0x3000 in MMD3 field with no post increment Step 1) write 0x3 to register 0xD Step 2) write 0x3000 to register 0xE Step 3) write 0x4003 to register 0xD Step 4) read register 0xE			
MMD7 Field 0x200 - 0x20F	Indirect Access, MMD7 = '00111' Example: to read register 0x200 in MMD7 field with no post increment Step 1) write 0x7 to register 0xD Step 2) write 0x200 to register 0xE Step 3) write 0x4007 to register 0xD Step 4) read register 0xE			

6.7 DP83TD510E Registers

Table 6-16 lists the DP83TD510E registers. All register offset addresses not listed in Table 6-16 should be considered as reserved locations and the register contents should not be modified.

DP83TD51010BaseT1L

Address	Acronym Register Name	Section
0x0	MILREG_0	Go
0x2	MILREG_2	Go
0x3	MILREG_3	Go
0x10	PHY_STS	Go
0x11	 GEN_CFG	Go
0x12	INTERRUPT_REG_1	Go
0x13	INTERRUPT_REG_2	Go
0x15	RX_ERR_CNT	Go
0x16	BISCR	Go
0x17	MAC_CFG_1	Go
0x18	MAC_CFG_2	Go
0x19	SOR_PHYAD	Go
0x1E	TDR_CFG	Go
0x119	PRBS_CFG_1	Go
0x11A	PRBS_CFG_2	Go
0x11B	PRBS_CFG_3	Go
0x11C	PRBS_STATUS_1	Go
0x11D	PRBS_STATUS_2	Go
0x11E	PRBS_STATUS_3	Go
0x11F	PRBS_STATUS_4	Go
0x120	PRBS_STATUS_5	Go
0x121	PRBS_STATUS_6	Go
0x122	PRBS_STATUS_7	Go
0x123	PRBS_CFG_4	Go
0x124	PRBS_CFG_5	Go
0x125	PRBS_CFG_6	Go
0x126	PRBS_CFG_7	Go
0x127	PRBS_CFG_8	Go
0x128	PRBS_CFG_9	Go
0x129	PRBS_CFG_10	Go
0x12A	CRC_STATUS	Go
0x12B	PKT_STAT_1	Go
0x12C	PKT_STAT_2	Go
0x12D	PKT_STAT_3	Go
0x12E	PKT_STAT_4	Go
0x12F	PKT_STAT_5	Go
0x130	PKT_STAT_6	Go
0x200	AN_CONTROL	Go
0x201	AN_STATUS	Go
0x202	AN_ADV_1	Go

Copyright © 2023 Texas Instruments Incorporated

Table 6-16. DP83TD510E Registers (continued)

Address	Acronym Register Name	Section
0x203	AN_ADV_2	Go
0x204	AN_ADV_3	Go
0x205	AN_LP_ADV_1	Go
0x206	AN_LP_ADV_2	Go
0x207	AN_LP_ADV_3	Go
0x208	AN_NP_ADV_1	Go
0x209	AN_NP_ADV_2	Go
0x20A	AN_NP_ADV_3	Go
0x20B	AN_LP_NP_ADV_1	Go
0x20C	AN_LP_NP_ADV_2	Go
0x20D	AN_LP_NP_ADV_3	Go
0x20E	AN_CTRL_10BT1	Go
0x20F	AN_STATUS_10BT1	Go
0x300	TDR_CFG1	Go
0x301	TDR_CFG2	Go
0x302	TDR_CFG3	Go
0x303	FAULT_CFG1	Go
0x304	FAULT_CFG2	Go
0x305	FAULT_STAT1	Go
0x306	FAULT_STAT2	Go
0x307	FAULT_STAT3	Go
0x308	FAULT_STAT4	Go
0x309	FAULT_STAT5	Go
0x30A	FAULT_STAT6	Go
0x420	CHIP_SOR_0	Go
0x460	LEDS_CFG_1	Go
0x461	IO_MUX_CFG	Go
0x462	IO_MUX_GPIO_CTRL_1	Go
0x463	IO_MUX_GPIO_CTRL_2	Go
0x467	CHIP_SOR_1	Go
0x468	CHIP_SOR_2	Go
0x469	LEDS_CFG_2	Go
0x60C	AN_STAT_1	Go
0x872	dsp_reg_72	Go
0x88D	dsp_reg_8d	Go
0x88E	dsp_reg_8e	Go
0x88F	dsp_reg_8f	Go
0x890	dsp_reg_90	Go
0x891	dsp_reg_91	Go
0x892	dsp_reg_92	Go
0x898	dsp_reg_98	Go
0x899	dsp_reg_99	Go
0x89A	dsp_reg_9a	Go
0x89B	dsp_reg_9b	Go
0x89C	dsp_reg_9c	Go

Table 6-16. DP83TD510E Registers (continued)

Address	Acronym Register Name	Section
0x89D	dsp_reg_9d	Go
0x8E9	dsp_reg_e9	Go
0x8EA	dsp_reg_ea	Go
0x8EB	dsp_reg_eb	Go
0x8EC	dsp_reg_ec	Go
0x8ED	dsp_reg_ed	Go
0x8EE	dsp_reg_ee	Go
0xA9D	alcd_metric	Go
0xA9F	alcd_status	Go
0xE01	SCAN_2	Go
0x1000	PAM_PMD_CTRL_1	Go
0x1007	PMA_PMD_CTRL_2	Go
0x100B	PMA_PMD_EXTENDED_ABILITY_2	Go
0x1012	PMA_PMD_EXTENDED_ABILITY	Go
0x1834	PMA_PMD_CTRL	Go
0x18F6	PMA_CTRL	Go
0x18F7	PMA_STATUS	Go
0x18F8	TEST_MODE_CTRL	Go
0x3000	PCS_CTRL	Go
0x38E6	PCS_CTRL_2	Go
0x38E7	PCS_STATUS	Go
,		

Complex bit access types are encoded to fit into small table cells. Table 6-17 shows the codes that are used for access types in this section.

Table 6-17. DP83TD510E Access Type Codes								
Access Type	Code	Description						
Read Type	Read Type							
R	R	Read						
Write Type								
W	W	Write						
W0C	W 0C	Write 0 to clear						
W0S	W 0S	Write 0 to set						
WMC	W	Write						
WSC	W	Write						
Reset or Default Value	Reset or Default Value							
- n		Value after reset or the default value						

6.7.1 MII_REG_0 Register (Address = 0x0) [Reset = 0x0]

MII_REG_0 is shown in Table 6-18.

Return to the Summary Table.

Bit	Field	Туре	Reset	Description
15	mii_reset	R/WSC	0x0	1b = Digital in reset and all MII regs (0x0 - 0xF) as well as interrupt status are reset to default 0b = No reset
14	loopback	R/WMC	0x0	1b = MII loopback 0b = No MII loopback
13	RESERVED	R	0x0	Reserved
12	RESERVED	R	0x0	Reserved
11	power_down	R/WMC	0x0	1b = Power down via register or pin 0b = Normal mode
10	isolate	R/WMC	0x0	1b = Isolate mode 0b = Normal mode
9	RESERVED	R	0x0	Reserved
8	RESERVED	R	0x0	Reserved
7	RESERVED	R	0x0	Reserved
6	RESERVED	R	0x0	Reserved
5	unidirectional_ability	R	0x0	Reserved
4-0	RESERVED	R	0x0	

Table 6-18. MII_REG_0 Register Field Descriptions

6.7.2 MII_REG_2 Register (Address = 0x2) [Reset = 0x2000]

MII_REG_2 is shown in Table 6-19.

Return to the Summary Table.

Table 6-19. MII_REG_2 Register Field Descriptions	
---	--

Bit	Field	Туре	Reset	Description
15-0	oui_21_16	R	0x2000	

6.7.3 MII_REG_3 Register (Address = 0x3) [Reset = 0x181]

MII_REG_3 is shown in Table 6-20.

Return to the Summary Table.

Bit	Field	Туре	Reset	Description
15-10	oui_5_0	R	0x0	
9-5	model_number	R	0xC	Model number
4-0	revision_number	R	0x1	Device revision number

6.7.4 PHY_STS Register (Address = 0x10) [Reset = 0x0]

PHY_STS is shown in Table 6-21.

Return to the Summary Table.

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R	0x0	
7	mii_interrupt	R/W0C		1b = Interrupt pin had been set 0b = Interrupts pin not set
6-1	RESERVED	R	0x0	

40 Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

Table 6-21. PHY_STS Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
0	link_status	R	0x0	1b = Link is up 0b = Link is down

6.7.5 GEN_CFG Register (Address = 0x11) [Reset = 0x2A]

GEN_CFG is shown in Table 6-22.

Return to the Summary Table.

Table 6-22. GEN_CFG Register Field Description	tions
--	-------

Bit	Field	Туре	Reset	Description
15	RESERVED	R	0x0	Reserved
14	RESERVED	R	0x0	Reserved
13-12	RESERVED	R	0x0	Reserved
11	channel_debug_mode	R/W	0x0	
10	debug_mode	R/W	0x0	To reduce simulation time
9-7	RESERVED	R	0x0	
6-5	tx_fifo_depth	R/W	0x1	Fifo depth for RMII Tx fifo 00b = 4 nibbles 01b = 5 nibbles 10b = 6 nibbles 11b = 8 nibbles
4	RESERVED	R	0x0	
3	int_polarity	R/W	0x1	1b = Interrupt pin is active low 0b = Interrupt pin active high
2	force_interrupt	R/W	0x0	Force interrupt pin to be active
1	int_en	R/W	0x1	1b = Enable interrupt 0b = Disable interrupt
0	int_oe	R/W	0x0	1b = MDINT_PWDN is interrupt pin 0b = MDINT_PWDN is power down pin

6.7.6 INTERRUPT_REG_1 Register (Address = 0x12) [Reset = 0x0]

INTERRUPT_REG_1 is shown in Table 6-23.

Return to the Summary Table.

Table 6-23. INTERRUPT_REG_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	rhf_int	R	0x0	Rx error cnt half full int status Note : Latch high until read
14	RESERVED	R	0x0	
13	link_int	R	0x0	Link status change interrupt status Note : Latch high until clear
12	RESERVED	R	0x0	Reserved
11	esd_int	R	0x0	ESD interrupt status Note : Latch high until clear
10-8	RESERVED	R	0x0	
7	rhf_int_en	R/W	0x0	1b = Enable rx_err_cnt half full interrupt 0b = Disable rx_err_cnt half full interrupt
6	RESERVED	R	0x0	

Table 6-23. INTERRUPT_REG_1 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
5	link_int_en	R/W	0x0	1b = Enable link status change interrupt 0b = Disable link status change interrupt
4	RESERVED	R	0x0	Reserved
3	esd_int_en	R/W	0x0	1b = Enable ESD interrupt 0b = Dsiable ESD interrupt
2-0	RESERVED	R	0x0	

6.7.7 INTERRUPT_REG_2 Register (Address = 0x13) [Reset = 0x0]

INTERRUPT_REG_2 is shown in Table 6-24.

Return to the Summary Table.

Table 6-24. INTERRUPT_REG_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-14	RESERVED	R	0x0	
13	page_int	R	0x0	Aneg page received interrupt status Note : Latch high until clear
12-10	RESERVED	R	0x0	
9	pol_int	R	0x0	Polarity change interrupt status Note : Latch high until clear
8	RESERVED	R	0x0	Reserved
7-6	RESERVED	R	0x0	
5	page_int_en	R/W	0x0	1b = Enable aneg page received interrupt 0b = Disable aneg page received interrupt
4-2	RESERVED	R	0x0	
1	pol_int_en	R/W	0x0	1b = Enable polarity change interrupt 0b = Disable polarity change interrupt
0	RESERVED	R/W	0x0	Reserved

6.7.8 RX_ERR_CNT Register (Address = 0x15) [Reset = 0x0]

RX_ERR_CNT is shown in Table 6-25.

Return to the Summary Table.

Table 6-25. RX_ERR_CNT Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	rx_err_cnt	R	0x0	Counts number of RX_ERR, saturates on max value Note : Clear on read

6.7.9 BISCR Register (Address = 0x16) [Reset = 0x100]

BISCR is shown in Table 6-26.

Return to the Summary Table.

Table 6-26. BISCR Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-9	RESERVED	R	0x0	
8	core_pwr_mode	R	0x1	1b = Core is in normal power mode 0b = Core is in power down/sleep mode

Table 6-26. BISCR Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
7	RESERVED	R	0x0	
6-0	loopback_mode	R/W	0x0	0000001b = Reserved 0000010b = PCS loopback (Tx PAM3 to Rx PAM3) 0000100b = Digital loopback 0001000b = Analog loopback 0010000b = Reverse loopback 0100000b = Transmit to MAC in reverse loopback 1000000b = Transmit to MDI in MAC loopback

6.7.10 MAC_CFG_1 Register (Address = 0x17) [Reset = 0x4001]

MAC_CFG_1 is shown in Table 6-27.

Return to the Summary Table.

Table 6-27. MAC_CFG_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	cfg_rmii_dis_delayed_txd_ en	R/W	0x0	Reserved
14	min_ipg_mode_en	R/W	0x1	
13	cfg_rmii_enh	R/W	0x0	
12	cfg_rgmii_rx_clk_shift_sel	R/W	0x0	1b = RGMII RX clock and data are shifted 0b = RGMII RX clock and data are aligned
11	cfg_rgmii_tx_clk_shift_sel	R/W	0x0	1b = RGMII TX clock and data are shifted 0b = RGMII TX clock and data are aligned
10	RESERVED	R	0x0	
9	cfg_rgmii_en	R/W	0x0	1b = RGMII enable 0b = RGMII disable
8	cfg_rmii_clk_shift_en	R/W	0x0	Reserved
7	cfg_xi_50	R/W	0x0	1b = XI is 50MHz 0b = XI is 25MHz
6	cfg_rmii_slow_mode	R/W	0x0	Setting this bit changes to RMII Master 5MHz mode from RMII Master 50MHz mode
5	cfg_rmii_mode	R/W	0x0	1b = RMII MAC 0b = MII MAC (0x17[9] should be disabled)
4	cfg_rmii_rev1_0	R/W	0x0	1b = RMII rev1.0 (CRS_DV will toggle at the end of a packet to indicate deassertion of CRS)0b = RMII rev1.2 (CRS_DV will remain asserted until final data is transferred. CRS_DV will not toggle at the end of a packet)
3	rmii_ovf_sts	R/W0C	0x0	RMII fifo overflow indication
2	rmii_unf_sts	R/W0C	0x0	RMII fifo underflow indication
1-0	cfg_rmii_elast_buf	R/W	0x1	RMII rx fifo 00b = 14 bit tolerance (upto 16800 byte packet) 01b = 2 bit tolerance (upto 2400 byte packet) 10b = 6 bit tolerance (upto 7200 byte packet) 11b = 10 bit tolerance (upto 12000 byte packet)

6.7.11 MAC_CFG_2 Register (Address = 0x18) [Reset = 0x3]

MAC_CFG_2 is shown in Table 6-28.

Return to the Summary Table.

Table 6-28. MAC_CFG_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11	cfg_inv_rx_clk	R/W	0x0	
10	cfg_rmii_crs_dv_sel	R/W	0x0	1b = CRS is sent out on CRS_DV/RXDV for RMII 0b = DV is sent out on CRS_DV/RXDV for RMII
9	rgmii_tx_af_empty_err	R	0x0	
8	rgmii_tx_af_full_err	R	0x0	
7-6	RESERVED	R	0x0	Reserved
5	inv_rgmii_rxd	R/W	0x0	Swap 3:0 to 0:3
4	inv_rgmii_txd	R/W	0x0	Swap 3:0 to 0:3
3	sup_tx_err_fd_rgmii	R/W	0x0	1b = Supress tx_err in full duplex when tx_en not active (CEXT) 0b = Normal
2-0	cfg_rgmii_half_full_th	R/W	0x3	RGMII TX sync FIFO half full threshold. Option to reduce latency for RGMII: If the MAC and PHY are fed by same clock source (no PPM) we can lower the threshold from 2 to 1.

6.7.12 SOR_PHYAD Register (Address = 0x19) [Reset = 0x0]

SOR_PHYAD is shown in Table 6-29.

Return to the Summary Table.

Table 6-29. SOR_PHYAD Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-5	RESERVED	R	0x0	
4-0	SOR_PHYADDR	R	0x0	

6.7.13 TDR_CFG Register (Address = 0x1E) [Reset = 0x0]

TDR_CFG is shown in Table 6-30.

Return to the Summary Table.

Bit	Field	Туре	Reset	Description
15	tdr_start	R/WMC	0x0	Start TDR procedure. Following additional register configuration are needed. 0x0301 = 0x2403 0x0303 = 0x043E 0x030E = 0x2520 Please refer to Cabl Diagnostics App Note for detailed procedure
14	RESERVED	R	0x0	Reserved
13-2	RESERVED	R	0x0	
1	tdr_done	R	0x0	TDR done indication (only valid once TDR is started)
0	tdr_fail	R	0x0	TDR fail indication

6.7.14 PRBS_CFG_1 Register (Address = 0x119) [Reset = 0x574]

PRBS_CFG_1 is shown in Table 6-31.

Return to the Summary Table.

Table 6-31. PRBS_CFG_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-13	RESERVED	R	0x0	

44 Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

Bit	Field	Type	Reset	Description
12	send_pkt	R/WMC	0x0	Enables generating MAC packet with fix/incremental data w CRC (pkt gen en has to be set and cfg pkt gen prbs has to be clear)
				Cleared automatically when pkt done is set
			00	
11	RESERVED	R	0x0	
10-8	cfg_prbs_chk_sel	R/W	0x5	000 : Checker receives from RGMII TX
				010 : Checker receives from RMII TX
				011 : Checker receives from MII TX
				101 : Checker receives from Cu RX
7	RESERVED	R	0x0	
6-4	cfg_prbs_gen_sel	R/W	0x7	000 : PRBS transmits to RGMII RX
				010 : PRBS transmits to RMII RX
				011 : PRBS transmits to MII RX
				101 : PRBS transmits to Cu TX
3	cfg_prbs_cnt_mode	R/W	0x0	1 = Continuous mode, when one of the PRBS counters reaches
				max value, pulse is generated and counter starts counting from zero
				again
				0 = Single mode, When one of the PRBS counters reaches max
				value, PRBS checker stops counting.
2	cfg_prbs_chk_enable	R/W	0x1	Enable PRBS checker xbar (to receive data)
				To be enabled for rx packet counters to work
1	cfg_pkt_gen_prbs	R/W	0x0	If set:
				(1) When pkt_gen_en is set, PRBS packets are generated
				continuously
				(3) When pkt_gen_en is cleared, PRBS RX checker is still enabled
				If cleared:
				(1) When pkt_gen_en is set, non - PRBS packet is generated
				(3) When pkt_gen_en is cleared, PRBS RX checker is disabled as well
0	pkt_gen_en	R/W	0x0	1 = Enable packet/PRBS generator
				0 = Disable packet/PRBS generato

Table 6-31. PRBS_CFG_1 Register Field Descriptions (continued)

6.7.15 PRBS_CFG_2 Register (Address = 0x11A) [Reset = 0x5DC]

PRBS_CFG_2 is shown in Table 6-32.

Return to the Summary Table.

Table 6-32. PRBS_CFG_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description		
15-0	cfg_pkt_len_prbs	R/W	0x5DC	Length (in bytes) of PRBS packets . This excludes CRC, Destination and Source address.		

6.7.16 PRBS_CFG_3 Register (Address = 0x11B) [Reset = 0x7D]

PRBS_CFG_3 is shown in Table 6-33.

Return to the Summary Table.

Table 6-33. PRBS_CFG_3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-13	RESERVED	R	0x0	
12	cfg_prbs_fix_patt_en	R/W	0x0	
11-8	cfg_prbs_fix_patt	R/W	0x0	
7-0	cfg_ipg_len	R/W	0x7D	Inter-packet gap (in bytes) between packets

6.7.17 PRBS_STATUS_1 Register (Address = 0x11C) [Reset = 0x0]

PRBS_STATUS_1 is shown in Table 6-34.

Return to the Summary Table.

Table 6-34. PRBS_STATUS_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	prbs_byte_cnt	R		Holds number of total bytes that received by the PRBS checker. Value in this register is locked when write is done to register 0x11F bit[0] or bit[1]. When PRBS Count Mode set to zero, count stops on 0xFFFF

6.7.18 PRBS_STATUS_2 Register (Address = 0x11D) [Reset = 0x0]

PRBS_STATUS_2 is shown in Table 6-35.

Return to the Summary Table.

Table 6-35. PRBS_STATUS_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	prbs_pkt_cnt_15_0	R		Bits [15:0] of number of total packets received by the PRBS checker Value in this register is locked when write is done to register 0x11F bit[0] or bit[1]. When PRBS Count Mode set to zero, count stops on 0xFFFFFFF

6.7.19 PRBS_STATUS_3 Register (Address = 0x11E) [Reset = 0x0]

PRBS_STATUS_3 is shown in Table 6-36.

Return to the Summary Table.

Table 6-36. PRBS_STATUS_3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	prbs_pkt_cnt_31_16	R		Bits [31:16] of number of total packets received by the PRBS checker Value in this register is locked when write is done to register 0x11F bit[0] or bit[1]. When PRBS Count Mode set to zero, count stops on 0xFFFFFFF

6.7.20 PRBS_STATUS_4 Register (Address = 0x11F) [Reset = 0x0]

PRBS_STATUS_4 is shown in Table 6-37.

Return to the Summary Table.

Table 6-37. PRBS_STATUS_4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-14	RESERVED	R	0x0	
13	prbs_sync_loss	R/W0C	0x0	1b = PRBS has locked 0b = PRBS did not unlock
12	pkt_done	R	0x0	Set when all MAC packets w CRC are transmitted
11	pkt_gen_busy	R	0x0	1 = Packet generator is in process 0 = Packet generator is not in process
10	prbs_pkt_ov	R	0x0	If set, packet counter reached overflow Overflow is cleared when PRBS counters are cleared - done by setting bit #1 of 0x11f

Table 6-37. PRBS_STATUS_4 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
9	prbs_byte_ov	R	0x0	If set, bytes counter reached overflow Overflow is cleared when PRBS counters are cleared - done by setting bit #1 of 0x11f
8	prbs_lock	R	0x0	1 = PRBS checker is locked sync) on received byte stream 0 = PRBS checker is not locked
7-0	prbs_err_cnt	R	0x0	Holds number of errored bits received by the PRBS checker Value in this register is locked when write is done to bit[0] or bit[1] When PRBS Count Mode set to zero, count stops on 0xFF Notes: Writing bit 0 generates a lock signal for the PRBS counters. Writing bit 1 generates a lock and clear signal for the PRBS counters

6.7.21 PRBS_STATUS_5 Register (Address = 0x120) [Reset = 0x0]

PRBS_STATUS_5 is shown in Table 6-38.

Return to the Summary Table.

Table 6-38. PRBS_STATUS_5 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R	0x0	
7-0	prbs_err_ov_cnt	R	0x0	Holds number of error counter overflow that received by the PRBS checker. Value in this register is locked when write is done to register 0x11f bit[0] or bit[1]. Counter stops on 0xFF. Note: when PRBS counters work in single mode, overflow counter is not active

6.7.22 PRBS_STATUS_6 Register (Address = 0x121) [Reset = 0x0]

PRBS_STATUS_6 is shown in Table 6-39.

Return to the Summary Table.

Table 6-39. PRBS_STATUS_6 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	pkt_err_cnt_15_0	R		Bits [15:0] of number of total packets with error received by the PRBS checker Value in this register is locked when write is done to register 0x11f bit[0] or bit[1]. When PRBS Count Mode set to zero, count stops on 0xFFFFFFF

6.7.23 PRBS_STATUS_7 Register (Address = 0x122) [Reset = 0x0]

PRBS_STATUS_7 is shown in Table 6-40.

Return to the Summary Table.

Table 6-40. PRBS_STATUS_7 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	pkt_err_cnt_31_16	R	0x0	Bits [31:16] of number of total packets with error received by the PRBS checker Value in this register is locked when write is done to register 0x11f bit[0] or bit[1]. When PRBS Count Mode set to zero, count stops on 0xFFFFFFF

6.7.24 PRBS_CFG_4 Register (Address = 0x123) [Reset = 0x0]

PRBS_CFG_4 is shown in Table 6-41.

Return to the Summary Table.

Table 6-41. PRBS_CFG_4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	cfg_pkt_data	R/W	0x0	Fixed data to be sent in Fix data mode
7-6	cfg_pkt_mode	R/W	0x0	2'b00 - Incremental 2'b01 - Fixed 2'b1x - PRBS
5-3	cfg_pattern_vld_bytes	R/W	0x0	Number of bytes of valid pattern in packet (Max - 6)
2-0	cfg_pkt_cnt	R/W	0x0	000b = 1 packet 001b = 10 packets 010b = 100 packets 011b = 1000 packets 100b = 10000 packets 101b = 100000 packets 110b = 1000000 packets 111b = Continuous packets

6.7.25 PRBS_CFG_5 Register (Address = 0x124) [Reset = 0x0]

PRBS_CFG_5 is shown in Table 6-42.

Return to the Summary Table.

Table 6-42. PRBS_CFG_5 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	pattern_15_0	R/W	0x0	Bits 15:0 of pattern

6.7.26 PRBS_CFG_6 Register (Address = 0x125) [Reset = 0x0]

PRBS_CFG_6 is shown in Table 6-43.

Return to the Summary Table.

```
Table 6-43. PRBS_CFG_6 Register Field Descriptions
```

Bit	Field	Туре	Reset	Description
15-0	pattern_31_16	R/W	0x0	Bits 31:16 of pattern

6.7.27 PRBS_CFG_7 Register (Address = 0x126) [Reset = 0x0]

PRBS_CFG_7 is shown in Table 6-44.

Return to the Summary Table.

Table 6-44. PRBS CFG 7 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	pattern_47_32	R/W	0x0	Bits 47:32 of pattern

6.7.28 PRBS_CFG_8 Register (Address = 0x127) [Reset = 0x0]

PRBS_CFG_8 is shown in Table 6-45.

Return to the Summary Table.

Table 6-45. PRBS_CFG_8 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	pmatch_data_15_0	R/W	0x0	Bits 15:0 of Perfect Match Data - used for DA (destination address) match

6.7.29 PRBS_CFG_9 Register (Address = 0x128) [Reset = 0x0]

PRBS_CFG_9 is shown in Table 6-46.

Return to the Summary Table.

Table 6-46. PRBS CFG 9 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	pmatch_data_31_16	R/W	0x0	Bits 31:16 of Perfect Match Data - used for DA (destination address) match

6.7.30 PRBS_CFG_10 Register (Address = 0x129) [Reset = 0x0]

PRBS_CFG_10 is shown in Table 6-47.

Return to the Summary Table.

Table 6-47. PRBS_CFG_10 Register Field Descriptions

-					<u> </u>
	Bit	Field	Туре	Reset	Description
	15-0	pmatch_data_47_32	R/W	0x0	Bits 47:32 of Perfect Match Data - used for DA (destination address) match

6.7.31 CRC_STATUS Register (Address = 0x12A) [Reset = 0x0]

CRC_STATUS is shown in Table 6-48.

Return to the Summary Table.

Table 6-48. CRC_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-2	RESERVED	R	0x0	
1	rx_bad_crc	R	0x0	CRC error indication in packet received on Cu RX
0	tx_bad_crc	R	0x0	CRC error indication in packet transmitted on Cu TX

6.7.32 PKT_STAT_1 Register (Address = 0x12B) [Reset = 0x0]

PKT_STAT_1 is shown in Table 6-49.

Return to the Summary Table.

Table 6-49. PKT_STAT_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	tx_pkt_cnt_15_0		0x0	Lower 16 bits of Tx packet counter Note : Register is cleared when 0x12B, 0x12C, 0x12D are read in sequence

6.7.33 PKT_STAT_2 Register (Address = 0x12C) [Reset = 0x0]

PKT_STAT_2 is shown in Table 6-50.

Return to the Summary Table.

Table 6-50. PKT_STAT_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	tx_pkt_cnt_31_16		0x0	Upper 16 bits of Tx packet counter Note : Register is cleared when 0x12B, 0x12C, 0x12D are read in sequence

6.7.34 PKT_STAT_3 Register (Address = 0x12D) [Reset = 0x0]

PKT_STAT_3 is shown in Table 6-51.

Return to the Summary Table.

Table 6-51. PKT STAT 3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	tx_err_pkt_cnt		0x0	Tx packet w error (CRC error) counter Note : Register is cleared when 0x12B, 0x12C, 0x12D are read in sequence

6.7.35 PKT_STAT_4 Register (Address = 0x12E) [Reset = 0x0]

PKT_STAT_4 is shown in Table 6-52.

Return to the Summary Table.

Table 6-52. PKT_STAT_4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	rx_pkt_cnt_15_0		0x0	Lower 16 bits of Rx packet counter Note : Register is cleared when 0x12E, 0x12F, 0x130 are read in sequence

6.7.36 PKT_STAT_5 Register (Address = 0x12F) [Reset = 0x0]

PKT_STAT_5 is shown in Table 6-53.

Return to the Summary Table.

Table 6-53. PKT_STAT_5 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	rx_pkt_cnt_31_16		0x0	Upper 16 bits of Rx packet counter Note : Register is cleared when 0x12E, 0x12F, 0x130 are read in sequence

6.7.37 PKT_STAT_6 Register (Address = 0x130) [Reset = 0x0]

PKT_STAT_6 is shown in Table 6-54.

Return to the Summary Table.

Table 6-54. PKT_STAT_6 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	rx_err_pkt_cnt			Rx packet w error (CRC error) counter Note : Register is cleared when 0x12E, 0x12F, 0x130 are read in sequence

6.7.38 AN_CONTROL Register (Address = 0x200) [Reset = 0x1000]

AN_CONTROL is shown in Table 6-55.

Return to the Summary Table.

Table 6-55. AN_CONTROL Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	mr_main_reset	R	0x0	1 = AN reset 0 = AN normal operation Note : Bit is self clearing
14-13	RESERVED	R	0x0	
12	mr_an_enable	R/W	0x1	1 = enable Auto-Negotiation process 0 = disable Auto-Negotiation process
11-10	RESERVED	R	0x0	
9	mr_restart_an	R/WSC	0x0	1 = Restart Auto-Negotiation process 0 = Auto-Negotiation in process, disabled, or not supported
8-0	RESERVED	R	0x0	

6.7.39 AN_STATUS Register (Address = 0x201) [Reset = 0x8]

AN_STATUS is shown in Table 6-56.

Return to the Summary Table.

Table 6-56. AN_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-7	RESERVED	R	0x0	
6	mr_page_received	R/W0C	0x0	1 = A page has been received 0 = A page has not been received
5	mr_an_complete	R	0x0	1 = Auto-Negotiation process completed 0 = Auto-Negotiation process not completed
4	remote_fault	R/W0C	0x0	1 = remote fault condition detected 0 = no remote fault condition detected
3	mr_an_ability	R	0x1	1 = PHY is able to perform Auto-Negotiation 0 = PHY is not able to perform Auto- Negotiation
2	link_status	R/W0S	0x0	1 = Link is up 0 = Link is down
1-0	RESERVED	R	0x0	

6.7.40 AN_ADV_1 Register (Address = 0x202) [Reset = 0x1]

AN_ADV_1 is shown in Table 6-57.

Return to the Summary Table.

Bit	Field	Туре	Reset	Description				
15	mr_bp_np_ability	R/W	0x0					
14	mr_bp_ack	R	0x0	Always 0				
13	mr_bp_remote_fault	R/W	0x0					
12-5	mr_bp_12_5	R/W	0x0	Bit 12 - Force Master/Slave Bit 11:10 - Pause Bit 9:5 - Echoes nonce				

Copyright © 2023 Texas Instruments Incorporated

Table 6-57. AN_ADV_1 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
4-0	selector_field	R/W	0x1	00001b = IEEE802.3

6.7.41 AN_ADV_2 Register (Address = 0x203) [Reset = 0x0]

AN_ADV_2 is shown in Table 6-58.

Return to the Summary Table.

Table 6-58. AN_ADV_2 Register Field Descriptions

Bit	Fie	eld	Туре	Reset	Description
15-0	mr_	bp_31_16	R/W		Bit 20:16 - Transmitted nonce Bit 31:21 - A10 to A0

6.7.42 AN_ADV_3 Register (Address = 0x204) [Reset = 0x0]

AN_ADV_3 is shown in Table 6-59.

Return to the Summary Table.

Table 6-59. AN_ADV_3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	mr_bp_47_32	R/W	0x0	A26 to A11

6.7.43 AN_LP_ADV_1 Register (Address = 0x205) [Reset = 0x0]

AN_LP_ADV_1 is shown in Table 6-60.

Return to the Summary Table.

Table 6-60. AN_LP_ADV_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	mr_lp_bp_15_0	R	0x0	LP' base page 15:0

6.7.44 AN_LP_ADV_2 Register (Address = 0x206) [Reset = 0x0]

AN_LP_ADV_2 is shown in Table 6-61.

Return to the Summary Table.

Table 6-61. AN_LP_ADV_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	mr_lp_bp_31_16	R	0x0	LP's base page 31:16

6.7.45 AN_LP_ADV_3 Register (Address = 0x207) [Reset = 0x0]

AN_LP_ADV_3 is shown in Table 6-62.

Return to the Summary Table.

Table 6-62. AN_LP_ADV_3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	mr_lp_bp_47_32	R	0x0	LP's base page 47:32

6.7.46 AN_NP_ADV_1 Register (Address = 0x208) [Reset = 0x0]

AN_NP_ADV_1 is shown in Table 6-63.

Return to the Summary Table.

Table 6-63. AN_NP_ADV_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	mr_np_np_ability	R/W	0x0	
14	RESERVED	R	0x0	
13	mr_np_message_page	R/W	0x0	
12	mr_np_ack2	R/W	0x0	
11	mr_np_toggle	R	0x0	
10-0	mr_np_msg_unform_code _field	R/W	0x0	Predefined message codes

6.7.47 AN_NP_ADV_2 Register (Address = 0x209) [Reset = 0x0]

AN_NP_ADV_2 is shown in Table 6-64.

Return to the Summary Table.

Table 6-64. AN_NP_ADV_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	mr_np_unform_code_field _1	R/W	0x0	

6.7.48 AN_NP_ADV_3 Register (Address = 0x20A) [Reset = 0x0]

AN_NP_ADV_3 is shown in Table 6-65.

Return to the Summary Table.

Table 6-65. AN_NP_ADV_3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	mr_np_unform_code_field _2	R/W	0x0	

6.7.49 AN_LP_NP_ADV_1 Register (Address = 0x20B) [Reset = 0x0]

AN_LP_NP_ADV_1 is shown in Table 6-66.

Return to the Summary Table.

Table 6-66. AN_LP_NP_ADV_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	mr_lp_np_np_ability	R	0x0	
14	mr_lp_np_ack	R	0x0	
13	mr_lp_np_message_page	R	0x0	
12	mr_lp_np_ack2	R	0x0	
11	mr_lp_np_toggle	R	0x0	
10-0	mr_lp_np_msg_unform_co de_field	R	0x0	Predefined message codes

6.7.50 AN_LP_NP_ADV_2 Register (Address = 0x20C) [Reset = 0x0]

AN_LP_NP_ADV_2 is shown in Table 6-67.

Return to the Summary Table.

Table 6-67. AN_LP_NP_ADV_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	mr_lp_np_unform_code_fi eld 1	R	0x0	

6.7.51 AN_LP_NP_ADV_3 Register (Address = 0x20D) [Reset = 0x0]

AN_LP_NP_ADV_3 is shown in Table 6-68.

Return to the Summary Table.

Table 6-68. AN_LP_NP_ADV_3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	mr_lp_np_unform_code_fi eld_2	R	0x0	

6.7.52 AN_CTRL_10BT1 Register (Address = 0x20E) [Reset = 0xA000]

AN_CTRL_10BT1 is shown in Table 6-69.

Return to the Summary Table.

Table 6-69. AN_CTRL_10BT1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	mr_10bt1_L_capability	R/W	0x1	1 = Advertise PHY as 10BASE-T1L capable 0 = Do not advertise PHY as 10BASE-T1L capable
14	mr_ability_10bt1_L_eee	R/W	0x0	1 = Advertise that the 10BASE-T1L PHY has EEE ability 0 = Do not advertise that the 10BASE-T1L PHY has EEE ability (default)
13	mr_ability_10bt1_L_incr_t x_rx_lvl	R/W	0x1	 1 = Advertise that the 10BASE-T1L PHY has increased transmit/ receive level ability 0 = Do not advertise that the 10BASE-T1L PHY has increased transmit/receive level ability (default)
12	mr_10bt1_L_incr_tx_rx_lvl _rqst	R/W	0x0	1 = Request 10BASE-T1L increased transmit level 0 = Do not request 10BASE-T1L increased transmit level (default)
11-8	RESERVED	R	0x0	
7	RESERVED	R	0x0	Reserved
6	RESERVED	R	0x0	Reserved
5-0	RESERVED	R	0x0	

6.7.53 AN_STATUS_10BT1 Register (Address = 0x20F) [Reset = 0x0]

AN_STATUS_10BT1 is shown in Table 6-70.

Return to the Summary Table.

Table 6-70. AN_STATUS_10BT1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	mr_lp_10bt1_L_capability	R		1 = Link partner is advertising PHY as 10BASE-T1L capable 0 = Link partner is not advertising PHY as 10BASE-T1L capable

Table 6-70. AN_STATUS_10BT1 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
14	mr_lp_ability_10bt1_L_ee e	R	0x0	1 = Link partner is advertising that the 10BASE-T1L PHY has EEE ability 0 = Link partner is not advertising that the 10BASE-T1L PHY has EEE ability
13	mr_lp_ability_10bt1_L_inc r_tx_rx_lvl	R	0x0	1 = Link partner is advertising that the 10BASE-T1L PHY has increased transmit/ receive level ability 0 = Link partner is not advertising that the 10BASE-T1L PHY has increased transmit/ receive level ability
12	mr_lp_10bt1_L_incr_tx_rx _lvl_rqst	R	0x0	1 = Link partner is requesting 10BASE-T1L link partner increased transmit level 0 = Link partner is not requesting 10BASET1L link partner increased transmit level
11-8	RESERVED	R	0x0	
7	RESERVED	R	0x0	Reserved
6	RESERVED	R	0x0	Reserved
5-0	RESERVED	R	0x0	

6.7.54 TDR_CFG1 Register (Address = 0x300) [Reset = 0x545]

TDR_CFG1 is shown in Table 6-71.

Return to the Summary Table.

Table 6-71. TDR_CFG1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-13	RESERVED	R	0x0	
12	cfg_tdr_tx_type	R/W	0x0	Transmit voltage level for TDR 0 = 1V 1 = 2.4V
11-8	cfg_forward_shadow_2	R/W	0x5	Forward shadow for segment 2
7-4	cfg_forward_shadow_1	R/W	0x4	Forward shadow for segment 1
3-2	cfg_post_silence_time	R/W	0x1	post TDR silence time
1-0	cfg_pre_silence_time	R/W	0x1	pre TDR silence time

6.7.55 TDR_CFG2 Register (Address = 0x301) [Reset = 0x2404]

TDR_CFG2 is shown in Table 6-72.

Return to the Summary Table.

Table 6-72. TDR_CFG2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R	0x0	
14-8	cfg_end_tap_index_1	R/W	0x24	End tap index for echo coeff sweep for segment 1
7	RESERVED	R	0x0	
6-0	cfg_start_tap_index_1	R/W	0x4	Start tap index for echo coeff sweep for segment 1

6.7.56 TDR_CFG3 Register (Address = 0x302) [Reset = 0x3E80]

TDR_CFG3 is shown in Table 6-73.

Return to the Summary Table.

Table 6-73. TDR_CFG3 Register Field Descriptions

				- <u>-</u>
Bit	Field	Туре	Reset	Description
15-0	cfg_tdr_tx_duration	R/W	0x3E80	TDR transmit duration in usec

6.7.57 FAULT_CFG1 Register (Address = 0x303) [Reset = 0x53E]

FAULT_CFG1 is shown in Table 6-74.

Return to the Summary Table.

Table 6-74. FAULT_CFG1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R	0x0	
14-8	cfg_tdr_flt_loc_offset_1	R/W	0x5	Tap index offset of dyamic peak equation for segment 1
7-0	cfg_tdr_flt_init_1	R/W	0x3E	Offset of dynamic peak equation for segment 1

6.7.58 FAULT_CFG2 Register (Address = 0x304) [Reset = 0xA]

FAULT_CFG2 is shown in Table 6-75.

Return to the Summary Table.

Table 6-75. FAULT_CFG2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R	0x0	
7-0	cfg_tdr_flt_slope_1	R/W	0xA	Slope of dynamic peak equation (*16 value) for segment 1

6.7.59 FAULT_STAT1 Register (Address = 0x305) [Reset = 0x0]

FAULT_STAT1 is shown in Table 6-76.

Return to the Summary Table.

Table 6-76. FAULT_STAT1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R	0x0	
14-8	peaks_loc_1	R	0x0	Location of 1st peak
7	RESERVED	R	0x0	
6-0	peaks_loc_0	R	0x0	Location of 1st peak

6.7.60 FAULT_STAT2 Register (Address = 0x306) [Reset = 0x0]

FAULT_STAT2 is shown in Table 6-77.

Return to the Summary Table.

Table 6-77. FAULT_STAT2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R	0x0	
14-8	peaks_loc_3	R	0x0	Location of 1st peak
7	RESERVED	R	0x0	
6-0	peaks_loc_2	R	0x0	Location of 1st peak

6.7.61 FAULT_STAT3 Register (Address = 0x307) [Reset = 0x0]

FAULT_STAT3 is shown in Table 6-78.

Return to the Summary Table.

Table 6-78. FAULT_STAT3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	peaks_amp_0	R	0x0	Amplitude of 1st peak
7	RESERVED	R	0x0	
6-0	peaks_loc_4	R	0x0	Location of 1st peak

6.7.62 FAULT_STAT4 Register (Address = 0x308) [Reset = 0x0]

FAULT_STAT4 is shown in Table 6-79.

Return to the Summary Table.

Table 6-79. FAULT_STAT4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	peaks_amp_2	R	0x0	Amplitude of 1st peak
7-0	peaks_amp_1	R	0x0	Amplitude of 1st peak

6.7.63 FAULT_STAT5 Register (Address = 0x309) [Reset = 0x0]

FAULT_STAT5 is shown in Table 6-80.

Return to the Summary Table.

Table 6-80. FAULT_STAT5 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	peaks_amp_4	R	0x0	Amplitude of 1st peak
7-0	peaks_amp_3	R	0x0	Amplitude of 1st peak

6.7.64 FAULT_STAT6 Register (Address = 0x30A) [Reset = 0x0]

FAULT_STAT6 is shown in Table 6-81.

Return to the Summary Table.

Table 6-81. FAULT_STAT6 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-5	RESERVED	R	0x0	
4	peaks_sign_4	R	0x0	Sign of 1st peak
3	peaks_sign_3	R	0x0	Sign of 1st peak
2	peaks_sign_2	R	0x0	Sign of 1st peak
1	peaks_sign_1	R	0x0	Sign of 1st peak
0	peaks_sign_0	R	0x0	Sign of 1st peak

6.7.65 CHIP_SOR_0 Register (Address = 0x420) [Reset = 0x0]

CHIP_SOR_0 is shown in Table 6-82.

Return to the Summary Table.

Copyright © 2023 Texas Instruments Incorporated

Table 6-82. CHIP_SOR_0 Register Field Descriptions

Bit	Field	Туре	Reset	Description
6	read_strap_term_sl	R	0x0	Strap Value for for strap on Pin #8
5-0	RESERVED	R	0x0	

6.7.66 LEDS_CFG_1 Register (Address = 0x460) [Reset = 0x548]

LEDS_CFG_1 is shown in Table 6-83.

Return to the Summary Table.

Table 6-83. LEDS_CFG_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R	0x0	Reserved
14	leds_bypass_stretching	R/W	0x0	0 - Noraml Operation 1 - Bypass LEDs stretching
13-12	leds_blink_rate	R/W	0x0	00 = 20Hz (50mSec) 01 = 10Hz (100mSec) 10 = 5Hz (200mSec) 11 = 2Hz (500mSec)
11-8	led_2_option	R/W	0x5	Controlls LED_2 sources (same as bits 3:0)
7-4	led_1_option	R/W	0x4	Controlls LED_1 sources (same as bits 3:0)
3-0	led_0_option	R/W	0x8	Controlls LED_0 source: 0x0 - link OK 0x1 - TX/RX activity 0x2 - TX activity 0x3 - RX activity 0x4 - LR 0x5 - SR 0x6 - LED SPEED : High for 10Base-T 0x7 - Duplex mode 0x8 - link + blink on activity w stretch option 0x9 - blink on activity w stretch option 0xA - blink on tx activity w stretch option 0xA - blink on tx activity w stretch option 0xB - blink on rx activity w stretch option 0xC - link_lost 0xD - PRBS error (toggles on error) 0xE - XMII TX/RX Error with stretch option

6.7.67 IO_MUX_CFG Register (Address = 0x461) [Reset = 0x5]

IO_MUX_CFG is shown in Table 6-84.

Return to the Summary Table.

Table 6-84. IO_MUX_CFG Register Field Descriptio
--

Bit	Field	Туре	Reset	Description
15	io_oe_n_value	R/W	0x0	when io_oe_n_force_ctrl='1' the direction of all IOs except MDC, MDIO and RESET_N is controlled via this bit: 0 - output 1 - Input
14	io_oe_n_force_ctrl	R/W	0x0	Debug option - enables forcing the direction of all IOs, except MDC, MDIO and RESET_N. If set, IOs direction is controlled via bit #15
13-12	pupd_value	R/W	0x0	when pupd_force_cntl='1' the value of the pull up/down is control via this register

Table 6-84. IO_MUX_CFG Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
11	pupd_force_cntl	R/W	0x0	when '1' : all the PADs pull up/down is forced via registers
10-6	RESERVED	R	0x0	Reserved
5-4	impedance_ctrl	R/W	0x0	MAC interface PAD impedance control bit #0 of this field is the slew control bit. If set to '1', slew rates will be faster (default is 0)
3-2	mac_rx_impedance_ctrl	R/W	0x1	MAC interface PAD impedance control bit #0 of this field is the slew control bit. If set to '1', slew rates will be faster (default is 0)
1-0	mac_tx_impedance_ctrl	R/W	0x1	MAC interface PAD impedance control bit #0 of this field is the slew control bit. If set to '1', slew rates will be faster (default is 0)

6.7.68 IO_MUX_GPIO_CTRL_1 Register (Address = 0x462) [Reset = 0x0]

IO_MUX_GPIO_CTRL_1 is shown in Table 6-85.

Return to the Summary Table.

Table 6-85. IO_MUX_GPIO_CTRL_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	led_2_clk_div_2_en	R/W	0x0	If led_2_gpio is configured to led_2_clk_source, Selects divide by 2 of clock at led_2_clk_source
14-12	led_2_clk_source	R/W	0x0	In case clk_out is MUXed to LED_2 IO, this field controls clk_out source: 0 - XI clock 1 - LD 30MHz clock (Free/recovered based Master/Slave) 2 - 30 MHz ADC clock (recovered) 3 - Free 60MHz clock 4 - 7.5MHz clock (Free/recovered based Master/Slave) 5 - 25MHz clock to PLL (XI or XI/2) 6 - 2.5MHz clock (Free/recovered based Master/Slave)
11	led_2_clk_inv_en	R/W	0x0	If led_2_gpio is configured to led_2_clk_source, Selects inversion of clock at led_2_clk_source
10-8	led_2_gpio_ctrl	R/W	0x0	controls the output of LED_2 IO: 0 - LED_2 1 - Clock out 2 - Interrupt 3 - 1'b0 4 - Reserved 5 -Reserved 6 - constant '0' 7 - constant '1'
7	led_0_clk_div_2_en	R/W	0x0	If led_0_gpio is configured to led_0_clk_source, Selects divide by 2 of clock at led_0_clk_source
6-4	led_0_clk_source	R/W	0x0	In case clk_out is MUXed to LED_0 IO, this field controls clk_out source: 0 - XI clock 1 - LD 30MHz clock (Free/recovered based Master/Slave) 2 - 30 MHz ADC clock (recovered) 3 - Free 60MHz clock 4 - 7.5MHz clock (Free/recovered based Master/Slave) 5 - 25MHz clock to PLL (XI or XI/2) 6 - 2.5MHz clock (Free/recovered based Master/Slave)
3	led_0_clk_inv_en	R/W	0x0	If led_0_gpio is configured to led_0_clk_source, Selects inversion of clock at led_0_clk_source

Table 6-85. IO_MUX_GPIO_CTRL_1 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
2-0	led_0_gpio_ctrl	R/W	0x0	controls the output of LED_0 IO: 0 - LED_0 1 - Clock out 2 - Interrupt 3 - 1'b0 4 -Reserved
				5 - Reserve 6 - constant '0' 7 - constant '1'

6.7.69 IO_MUX_GPIO_CTRL_2 Register (Address = 0x463) [Reset = 0x0]

IO_MUX_GPIO_CTRL_2 is shown in Table 6-86.

Return to the Summary Table.

Table 6-86. IO_MUX_GPIO_CTRL_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-13	gpio_clk_source	R/W	0x0	In case clk_out is MUXed to GPIO IO, this field controls clk_out source: 0 - XI clock 1 - LD 30MHz clock (Free/recovered based Master/Slave) 2 - 30 MHz ADC clock (recovered) 3 - Free 60MHz clock 4 - 7.5MHz clock (Free/recovered based Master/Slave) 5 - 25MHz clock to PLL (XI or XI/2) 6 - 2.5MHz clock (Free/recovered based Master/Slave)
12-10	gpio_ctrl	R/W	0x0	controls the output of GPIO IO: 0 - LED_1 1 - Clock out 2 - Interrupt 3 - 1'b0 4 - Reserved 5 - Reserved 6 - constant '0' 7 - constant '1'
9	cfg_tx_er_on_led2	R/W	0x0	1b = LED_2 is used as TX_ER pin for MII
8	clk_o_clk_div_2_en	R/W	0x0	If clk_out is configured to output clk_o_clk_source, Selects divide by 2 of clock at clk_o_clk_source
7-4	clk_o_clk_source	R/W	0x0	In case clk_out is MUXed to CLK_O IO, this field controls clk_out source: 0 - XI clock 1 - LD 30MHz clock (Free/recovered based Master/Slave) 2 - 30 MHz ADC clock (recovered) 3 - Free 60MHz clock 4 - 7.5MHz clock (Free/recovered based Master/Slave) 5 - 25MHz clock to PLL (XI or XI/2) 6 - 2.5MHz clock (Free/recovered based Master/Slave) 8 - CLK25_50 (50 MHz in RMII, 25 MHz in others) 9 - RMII RX 50MHz clock 10 - RMII TX 50MHz clock 11 - MII RX clock 12 - RGMII RX align clock 13 - RGMII RX shift clock
3	clk_o_clk_inv_en	R/W	0x0	If clk_out is configured to output clk_o_clk_source, Selects inversion of clock at clk_o_clk_source

Table 6-86. IO_MUX_GPIO_CTRL_2 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
2-0	clk_o_gpio_ctrl	R/W		controls the output of CLK_O IO: 0 - LED_1 1 - Clock out 2 - Interrupt 3 - 1'b0 4 - Reserved 5 - Reserved 6 - constant '0'
				7 - constant '1'

6.7.70 CHIP_SOR_1 Register (Address = 0x467) [Reset = 0x0]

CHIP_SOR_1 is shown in Table 6-87.

Return to the Summary Table.

Table 6-87. CHIP_SOR_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	sor_15_0	R	0x0	SOR vector, bits [15:0] : SOR[0] - RX_D3 SOR[1] - RX_D2 SOR[2] - RX_D1 SOR[3] - RX_D0 SOR[4] - CLK_OUT/LED_1 SOR[5] - RX_CTRL SOR[6] - RX_ER SOR[6] - RX_ER SOR[7] - LED_2 SOR[8] - LED_0 SOR[9] - GPIO

6.7.71 CHIP_SOR_2 Register (Address = 0x468) [Reset = 0x0]

CHIP_SOR_2 is shown in Table 6-88.

Return to the Summary Table.

Table 6-88. CHIP_SOR_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-4	RESERVED	R	0x0	Reserved
3-0	sor_19_16	R	0x0	Reserved

6.7.72 LEDS_CFG_2 Register (Address = 0x469) [Reset = 0x0]

LEDS_CFG_2 is shown in Table 6-89.

Return to the Summary Table.

Table 6-89. LEDS_CFG_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-11	RESERVED	R	0x0	Reserved
10	led_2_polarity	R/W	0x0	LED_2 polarity: 0 - Active low 1 - Active high
9	led_2_drv_val	R/W	0x0	If bit #8 is set, this is the value of LED_2
8	led_2_drv_en	R/W	0x0	0 - LED_2 is in normal operation mode 1 - Drive the value of LED_2 (driven value is bit 9)

Copyright © 2023 Texas Instruments Incorporated

61

Table 6-89. LEDS_CFG_2 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
7	RESERVED	R	0x0	Reserved
6	led_1_polarity	R/W	0x0	LED_1 polarity: 0 - Active low 1 - Active high
5	led_1_drv_val	R/W	0x0	If bit #4 is set, this is the value of LED_1
4	led_1_drv_en	R/W	0x0	0 - LED_1 is in normal operation mode 1 - Drive the value of LED_1 (driven value is bit #5)
3	RESERVED	R	0x0	Reserved
2	led_0_polarity	R/W	0x0	LED_0 polarity: 0 - Active low 1 - Active high
1	led_0_drv_val	R/W	0x0	If bit #1 is set, this is the value of LED_1
0	led_0_drv_en	R/W	0x0	0 - LED_0 is in normal operation mode 1 - Drive the value of LED_0 (driven value is bit #1)

6.7.73 AN_STAT_1 Register (Address = 0x60C) [Reset = 0x0]

AN_STAT_1 is shown in Table 6-90.

Return to the Summary Table.

Table 6-90. AN_STAT_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	master_slave_resol_fail	R	0x0	1b = Master SLave resolution failed 0b = Master Slave resolution successful
14-12	an_state	R	0x0	
11	RESERVED	R	0x0	
10-8	hd_state	R	0x0	
7	RESERVED	R	0x0	
6-4	rx_state	R	0x0	
3-0	an_tx_state	R	0x0	

6.7.74 dsp_reg_72 Register (Address = 0x872) [Reset = 0x0]

dsp_reg_72 is shown in Table 6-91.

Return to the Summary Table.

Table 6-91. dsp_reg_72 Register Field Descriptions

				•
Bit	Field	Туре	Reset	Description
15-10	RESERVED	R	0x0	
9-0	mse_sqi	R	0x0	SQI : Reciever Avg Mean Square Value

6.7.75 dsp_reg_8d Register (Address = 0x88D) [Reset = 0x14]

dsp_reg_8d is shown in Table 6-92.

Return to the Summary Table.

Table 6-92. dsp_reg_8d Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	

Table 6-92. dsp_reg_8d Register Field Descriptions (continued)

_						
	Bit	Field	Туре	Reset	Description	
	11-0	cfg_alcd_2p4_metric_step 1	R/W	0x14	ALCD reference metric for 0m for 2p4V mode	

6.7.76 dsp_reg_8e Register (Address = 0x88E) [Reset = 0x1D]

dsp_reg_8e is shown in Table 6-93.

Return to the Summary Table.

Table 6-93. dsp reg 8e Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11-0	cfg_alcd_2p4_metric_step 2	R/W	0x1D	ALCD reference metric for 200m for 2p4V mode

6.7.77 dsp_reg_8f Register (Address = 0x88F) [Reset = 0x24]

dsp_reg_8f is shown in Table 6-94.

Return to the Summary Table.

Table 6-94. dsp_reg_8f Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11-0	cfg_alcd_2p4_metric_step 3	R/W	0x24	ALCD reference metric for 400m for 2p4V mode

6.7.78 dsp_reg_90 Register (Address = 0x890) [Reset = 0x35]

dsp_reg_90 is shown in Table 6-95.

Return to the Summary Table.

Table 6-95. dsp_reg_90 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11-0	cfg_alcd_2p4_metric_step 4	R/W	0x35	ALCD reference metric for 600m for 2p4V mode

6.7.79 dsp_reg_91 Register (Address = 0x891) [Reset = 0x43]

dsp_reg_91 is shown in Table 6-96.

Return to the Summary Table.

Table 6-96. dsp_reg_91 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11-0	cfg_alcd_2p4_metric_step 5	R/W	0x43	ALCD reference metric for 800m for 2p4V mode

Copyright © 2023 Texas Instruments Incorporated

6.7.80 dsp_reg_92 Register (Address = 0x892) [Reset = 0x60]

dsp_reg_92 is shown in Table 6-97.

Return to the Summary Table.

Table 6-97. dsp_reg_92 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11-0	cfg_alcd_2p4_metric_step 6	R/W	0x60	ALCD reference metric for 1000m for 2p4V mode

6.7.81 dsp_reg_98 Register (Address = 0x898) [Reset = 0x2E]

dsp_reg_98 is shown in Table 6-98.

Return to the Summary Table.

Table 6-98. dsp_reg_98 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11-0	cfg_alcd_1p0_metric_step 1	R/W	0x2E	ALCD reference metric for 0m for 1p0V mode

6.7.82 dsp_reg_99 Register (Address = 0x899) [Reset = 0x41]

dsp_reg_99 is shown in Table 6-99.

Return to the Summary Table.

Table 6-99. dsp_reg_99 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11-0	cfg_alcd_1p0_metric_step 2	R/W	0x41	ALCD reference metric for 200m for 1p0V mode

6.7.83 dsp_reg_9a Register (Address = 0x89A) [Reset = 0x58]

dsp_reg_9a is shown in Table 6-100.

Return to the Summary Table.

Table 6-100. dsp_reg_9a Register Field Descriptions

	Bit	Field	Туре	Reset	Description
1	15-12	RESERVED	R	0x0	
	11-0	cfg_alcd_1p0_metric_step 3	R/W	0x58	ALCD reference metric for 400m for 1p0V mode

6.7.84 dsp_reg_9b Register (Address = 0x89B) [Reset = 0x89]

dsp_reg_9b is shown in Table 6-101.

Return to the Summary Table.

Table 6-101. dsp_reg_9b Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	

Copyright © 2023 Texas Instruments Incorporated

Table 6-101. dsp_reg_9b Register Field Descriptions (continued)

_						
	Bit	Field	Туре	Reset	Description	
	11-0	cfg_alcd_1p0_metric_step 4	R/W	0x89	ALCD reference metric for 600m for 1p0V mode	

6.7.85 dsp_reg_9c Register (Address = 0x89C) [Reset = 0xB2]

dsp_reg_9c is shown in Table 6-102.

Return to the Summary Table.

Table 6-102. dsp reg 9c Register Field Descriptions

			_ 0_	
Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11-0	cfg_alcd_1p0_metric_step 5	R/W	0xB2	ALCD reference metric for 800m for 1p0V mode

6.7.86 dsp_reg_9d Register (Address = 0x89D) [Reset = 0x107]

dsp_reg_9d is shown in Table 6-103.

Return to the Summary Table.

Table 6-103. dsp_reg_9d Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11-0	cfg_alcd_1p0_metric_step 6	R/W	0x107	ALCD reference metric for 1000m for 1p0V mode

6.7.87 dsp_reg_e9 Register (Address = 0x8E9) [Reset = 0x0]

dsp_reg_e9 is shown in Table 6-104.

Return to the Summary Table.

Table 6-104. dsp_reg_e9 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R	0x0	
7-0	cfg_alcd_cable_0	R/W	0x0	

6.7.88 dsp_reg_ea Register (Address = 0x8EA) [Reset = 0x19]

dsp_reg_ea is shown in Table 6-105.

Return to the Summary Table.

Table 6-105. dsp_reg_ea Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R	0x0	
7-0	cfg_alcd_cable_1	R/W	0x19	

6.7.89 dsp_reg_eb Register (Address = 0x8EB) [Reset = 0x2F]

dsp_reg_eb is shown in Table 6-106.

Return to the Summary Table.

Table 6-106. dsp_reg_eb Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R	0x0	
7-0	cfg_alcd_cable_2	R/W	0x2F	

6.7.90 dsp_reg_ec Register (Address = 0x8EC) [Reset = 0x51]

dsp_reg_ec is shown in Table 6-107.

Return to the Summary Table.

Table 6-107. dsp_reg_ec Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R	0x0	
7-0	cfg_alcd_cable_3	R/W	0x51	

6.7.91 dsp_reg_ed Register (Address = 0x8ED) [Reset = 0x64]

dsp_reg_ed is shown in Table 6-108.

Return to the Summary Table.

Table 6-108. dsp_reg_ed Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R	0x0	
7-0	cfg_alcd_cable_4	R/W	0x64	

6.7.92 dsp_reg_ee Register (Address = 0x8EE) [Reset = 0x7A]

dsp_reg_ee is shown in Table 6-109.

Return to the Summary Table.

Table 6-109. dsp_reg_ee Register Field Descriptions

Bit	Field		Reset	Description
15-8	RESERVED	R	0x0	
7-0	cfg_alcd_cable_5	R/W	0x7A	

6.7.93 alcd_metric Register (Address = 0xA9D) [Reset = 0x0]

alcd_metric is shown in Table 6-110.

Return to the Summary Table.

 Table 6-110. alcd_metric Register Field Descriptions

-					
	Bit	Field	Туре	Reset	Description
	15-4	ALCD_Metric_Value	R	0x0	
	3-0	RESERVED	R	0x0	Reserved

6.7.94 alcd_status Register (Address = 0xA9F) [Reset = 0x0]

alcd_status is shown in Table 6-111.

Return to the Summary Table.

Table 6-111. alcd_status Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	ALCD_Complete	R	0x0	0 : In progress 1 : Complete
14-11	RESERVED	R	0x0	Reserved
10-0	ALCD_Cable_Length	R	0x0	In meters

6.7.95 SCAN_2 Register (Address = 0xE01) [Reset = 0x10]

SCAN_2 is shown in Table 6-112.

Return to the Summary Table.

Table 6-112. SCAN_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-9	RESERVED	R	0x0	
8-4	scan_state_saf	R	0x1	
3	cfg_en_efuse_burn	R	0x0	Enable the switch in the power supply path for EFUSE module Note : This bit written by programming 0x0303 in 0x0E00
2-0	RESERVED	R	0x0	

6.7.96 PAM_PMD_CTRL_1 Register (Address = 0x1000) [Reset = 0x0]

PAM_PMD_CTRL_1 is shown in Table 6-113.

Return to the Summary Table.

Table 6-113. PAM_PMD_CTRL_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	PMA_Reset	R	0x0	1b = PMA/PMD reset0b = Normal operationNote : Read write bit, self clearingPrefixed 0x1 in [15:12] of address to differentiate. Please remove0x1 from [15:12] while using the address. Please remove 0x1 from[15:12] while using the address.
14-12	RESERVED	R	0x0	
11	cfg_low_power	R	0x0	1b = Low-power mode0b = Normal operationNote : Read write bitPrefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1from [15:12] while using the address.
10-1	RESERVED	R	0x0	
0	PMA_loopback	R	0x0	1 = Enable loopback mode 0 = Disable loopback mode Note : Read write bit Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address. Please remove 0x1 from [15:12] while using the address.

6.7.97 PMA_PMD_CTRL_2 Register (Address = 0x1007) [Reset = 0x3D]

PMA_PMD_CTRL_2 is shown in Table 6-114.

Return to the Summary Table.

Table 6-114. PMA_PMD_CTRL_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-6	RESERVED	R	0x0	
5-0	cfg_pma_type_selection	R	0x3D	111101b = BASE-T1 type selection for device Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address. Please remove 0x1 from [15:12] while using the address.

6.7.98 PMA_PMD_EXTENDED_ABILITY_2 Register (Address = 0x100B) [Reset = 0x800]

PMA_PMD_EXTENDED_ABILITY_2 is shown in Table 6-115.

Return to the Summary Table.

Table 6-115. PMA_PMD_EXTENDED_ABILITY_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11	base_t1_extended_abilitie s	R	0x1	1b = PMA/PMD has BASE-T1 extended abilities listed in register 1.18 0b = PMA/PMD does not have BASE-T1 extended abilities Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.
10-0	RESERVED	R	0x0	

6.7.99 PMA_PMD_EXTENDED_ABILITY Register (Address = 0x1012) [Reset = 0x4]

PMA_PMD_EXTENDED_ABILITY is shown in Table 6-116.

Return to the Summary Table.

Table 6-116. PMA_PMD_EXTENDED_ABILITY Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-4	RESERVED	R	0x0	
3	RESERVED	R	0x0	Reserved
2	mr_10_base_t1I_ability	R	0x1	1b = PMA/PMD is able to perform 10BASE-T1L 0b = PMA/PMD is not able to perform 10BASE-T1L Prefixed 0x1 in [15:12] of address to differentiate.Please remove 0x1 from [15:12] while using the address.
1	RESERVED	R	0x0	Reserved
0	RESERVED	R	0x0	Reserved

6.7.100 PMA_PMD_CTRL Register (Address = 0x1834) [Reset = 0x4002]

PMA_PMD_CTRL is shown in Table 6-117.

Return to the Summary Table.

Table 6-117. PMA_PMD_CTRL Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R	0x0	
14	cfg_master_slave_val	R/W	0x1	1b = Configure PHY as MASTER 0b = Configure PHY as SLAVE Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.

Table 6-117. PMA_PMD_CTRL Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
13-4	RESERVED	R	0x0	
3-0	cfg_type_selection	R	0x2	0000b = Reserved 0001b = Reserved 0010b = 10BASE-T1L 0011b = Reserved 01xxb = Reserved 1xxxb = Reserved Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.

6.7.101 PMA_CTRL Register (Address = 0x18F6) [Reset = 0x0]

PMA_CTRL is shown in Table 6-118.

Return to the Summary Table.

Table 6-118. PMA_CTRL Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	PMA_Reset	R	0x0	1 = PMA reset 0 = Normal operation Note : Read write bit, self clearing Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.
14	cfg_transmit_disable	R	0x0	1 = Transmit disable 0 = Normal operation Note : Read write bit Prefixed 0x1 in [15:12] of address to differentiate.Please remove 0x1 from [15:12] while using the address.
13	RESERVED	R	0x0	
12	cfg_incr_tx_lvl	R/W	0x0	1 = Enable 2.4 Vpp operating mode 0 = Enable 1.0 Vpp operating mode Prefixed 0x1 in [15:12] of address to differentiate.Please remove 0x1 from [15:12] while using the address.
11	cfg_low_power	R	0x0	1 = Low-power mode 0 = Normal operation Note : Read write bit Prefixed 0x1 in [15:12] of address to differentiate.Please remove 0x1 from [15:12] while using the address.
10	cfg_eee_enable	R/W	0x0	1 = Enable EEE mode 0 = Disable EEE mode Prefixed 0x1 in [15:12] of address to differentiate.Please remove 0x1 from [15:12] while using the address.
9-1	RESERVED	R	0x0	
0	PMA_loopback	R	0x0	1 = Enable loopback mode 0 = Disable loopback mode Note : Read write bit Prefixed 0x1 in [15:12] of address to differentiate.Please remove 0x1 from [15:12] while using the address.

6.7.102 PMA_STATUS Register (Address = 0x18F7) [Reset = 0x3000]

PMA_STATUS is shown in Table 6-119.

Return to the Summary Table.

Bit	Field	Туре	Reset	Description
15-14	RESERVED	R	0x0	
13	loopback_ability	R	0x1	1 = PHY has loopback ability 0 = PHY has no loopback ability Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.
12	tx_lvl_incr_ability	R	0x1	 1 = PHY has 2.4 Vpp operating mode ability 0 = PHY does not have 2.4 Vpp operating mode ability Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x7 from [15:12] while using the address.
11	low_power_ability	R	0x0	1 = PMA has low-power ability 0 = PMA does not have low-power ability Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.
10	eee_ability	R	0x0	1 = PHY has EEE ability 0 = PHY does not have EEE ability Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.
9	receive_fault_ability	R	0x0	 1 = PMA has the ability to detect a fault condition on the receive path 0 = PMA does not have the ability to detect a fault condition on the receive path Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.
8-3	RESERVED	R	0x0	
2	receive_polarity	R	0x0	 1 = Receive polarity is reversed 0 = Receive polarity is not reversed Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.
1	receive_fault	R/W0C	0x0	 1 = Fault condition detected 0 = Fault condition not detected Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x' from [15:12] while using the address.
0	receive_link_status	R/W0S	0x0	 1 = PMA receive link up 0 = PMA receive link down Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.

Table 6-119. PMA_STATUS Register Field Descriptions

6.7.103 TEST_MODE_CTRL Register (Address = 0x18F8) [Reset = 0x0]

TEST_MODE_CTRL is shown in Table 6-120.

Return to the Summary Table.

Table 6-120. TEST_MODE_CTRL Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-13	cfg_test_mode	R/W	0x0	1xxb = Reserved 011b = Test mode 3 010b = Test mode 2 001b = Test mode 1 000b = Normal (non-test) operation Prefixed 0x1 in [15:12] of address to differentiate. Please remove 0x1 from [15:12] while using the address.
12-0	RESERVED	R	0x0	

6.7.104 PCS_CTRL Register (Address = 0x3000) [Reset = 0x0]

PCS_CTRL is shown in Table 6-121.

Return to the Summary Table.

Bit	Field	Туре	Reset	Description		
15	PCS_Reset	R	0x0	1 = PCS reset 0 = Normal operation Note - RW bit, self clear bit Prefixed 0x3 in [15:12] of address to differentiate. Please remove 0x3 from [15:12] while using the address.		
14	mmd3_loopback	R	0x0	1 = Enable loopback mode 0 = Disable loopback mode Note - RW bit Prefixed 0x3 in [15:12] of address to differentiate. Please remove 0x3 from [15:12] while using the address.		
13-0	RESERVED	R	0x0			

Table 6-121. PCS_CTRL Register Field Descriptions

6.7.105 PCS_CTRL_2 Register (Address = 0x38E6) [Reset = 0x0]

PCS_CTRL_2 is shown in Table 6-122.

Return to the Summary Table.

Table 6-122. PCS_CTRL_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	PCS_Reset	R	0x0	1 = PCS reset 0 = Normal operation Note - RW bit, self clear bit Prefixed 0x3 in [15:12] of address to differentiate. Please remove 0x3 from [15:12] while using the address.
14	mmd3_loopback	R	0x0	1 = Enable loopback mode 0 = Disable loopback mode Note - RW bit Prefixed 0x3 in [15:12] of address to differentiate. Please remove 0x3 from [15:12] while using the address.
13-0	RESERVED	R	0x0	

6.7.106 PCS_STATUS Register (Address = 0x38E7) [Reset = 0x0]

PCS_STATUS is shown in Table 6-123.

Return to the Summary Table.

Table 6-123. PCS_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R	0x0	
11	tx_lpi_received	R/W0C	0x0	1 = Tx PCS has received LPI 0 = LPI not received Prefixed 0x3 in [15:12] of address to differentiate. Please remove 0x3 from [15:12] while using the address.
10	rx_lpi_received	R/W0C	0x0	1 = Rx PCS has received LPI 0 = LPI not received Prefixed 0x3 in [15:12] of address to differentiate. Please remove 0x3 from [15:12] while using the address.
9	tx_lpi_indication	R	0x0	1 = Tx PCS is currently receiving LPI 0 = PCS is not currently receiving LPI Prefixed 0x3 in [15:12] of address to differentiate. Please remove 0x3 from [15:12] while using the address.

DP83TD510E SNLS656D – AUGUST 2020 – REVISED DECEMBER 2023

Table 6-123. PCS_STATUS Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
8	rx_lpi_indication	R	0x0	1 = Rx PCS is currently receiving LPI 0 = PCS is not currently receiving LPI Prefixed 0x3 in [15:12] of address to differentiate. Please remove 0x3 from [15:12] while using the address.
7	fault	R/W0C	0x0	1 = Fault condition detected 0 = No fault condition detected Prefixed 0x3 in [15:12] of address to differentiate. Please remove 0x3 from [15:12] while using the address.
6-3	RESERVED	R	0x0	
2	receive_link_status	R/W0S	0x0	1 = PCS receive link up 0 = PCS receive link down Prefixed 0x3 in [15:12] of address to differentiate. Please remove 0x3 from [15:12] while using the address.
1-0	RESERVED	R	0x0	

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

When using the device for Ethernet applications, it is necessary to meet certain requirements for normal operation. The following subsections are intended to assist in appropriate component selection and required circuit connections.

7.2 Typical Applications

Figure 7-1 shows a typical application for the DP83TD510E.

Figure 7-1. Typical DP83TD510E Application

7.2.1 Termination Circuit

DP83TD510E is expected to be used in Intrinsic Safe and non Intrinsic Safe Applications. Please refer to appropriate termination circuit based on the application needs. Termination circuit and passive values may need to be adapted according to application needs. Please refer to "Extend network reach with IEEE 802.3cg 10BASET1L Ethernet PHYs" for details.

7.2.1.1 Termination Circuit for Intrinsic Safe Applications

Figure 7-2. Termination Circuit for Intrinsic Safe Applications

Table 7-1. Termination Circuit Component Value for Intrinsic Safe Applications									
1v p2p Intrinsic Safe Config 2	1v p2p Intrinsic Safe Config 1	Applications							
50	26.5	RTX1, RTX3	1						
0	23.5	RTX2, RTX4 (Ω)	2						
2K	2К	RRX1, RRX2 (Ω)	3						
0	NC	Rt1(Ω)	4						
0	NC	Rt2(Ω)	5						
1K	1К	Rd1(Ω)	6						
1K	1К	Rd2(Ω)	7						
160K	160K	Rd3(Ω)	8						
230 nF	230 nF	C1	9						
230 nF	230 nF	C2	10						
NC	5 nF	C3	11						
NC	5 nF	C4	12						
100 pF < C < 400 pF (default: 100 pF	100 pF < C < 400 pF (default: 100 pF	C5	13						
100 pF < C < 400 pF (default: 100 pF	100 pF < C < 400 pF (default: 100 pF	C6	14						
0.01 uF	0.01 uF	Cd	15						

Table 7-1. Termination Circuit Component Value for Intrinsic Safe Applications

Please ensure over all impedance on the Transmitter shall be 50Ω . If additional components on path adding the impedance, it shall be compensated by reducing Rtx1/Rtx3.

Incase Applications requires Rtx2/Rtx4 as non zero and Rt1/Rt2 0 ohms are used, this will cause reciever to recieve attenuated signal. Please check the need for enabling strap10 on GPIO2.

7.2.1.2 Components Range for Power Coupling/Decoupling

Below table provides recommended component ranges for Power/Data decoupling network

Table 7-2. Recommended Components Range for Power Coupling/Decoupling

	Components	Range
1	Cap of ESD diode between MDI lines (Surge protection)	< 100 pF (Differential Cap)
2	Cap of TVS Diode (MDI line to ground)*	< 75 pF
3	Cap of Clamping Diodes (parallel to power coupling inductor)	< 50 pF
4	Power coupling inductor	 Inductance 500 uH < L <1.5 mH, DC Resistance < 200 mΩ
5	Cap of Rectifier Diodes	<50 pF

7.2.1.3 Termination Circuit for Non-Intrinsic Safe Applications

Following termination circuit is recommended for application in non intrinsic safe application like in Building Automation, Factory Automation etc

Copyright © 2020, Texas Instruments Incorporated

Figure 7-3. Termination Circuit for Non-Intrinsic Safe Applications

7.2.1.4 CMC Specifications

Table	7-3.	СМС	Specifications

Parameters	Range
Inductance	450 uH - 2.2 mH
Leakage Inductance	< 500 nH
DC Resistance	< 200 mΩ

7.2.2 Design Requirements

The design requirements for the DP83TD510E are:

- 1. AVD Supply = 3.3 V
- 2. VDDIO Supply = 3.3 V or 1.8 V
- 3. Reference Clock Input = 25 MHz or 50 MHz (RMII Slave)

7.2.2.1 Clock Requirements

The DP83TD510E supports an external CMOS-level oscillator source or an internal oscillator with an external crystal.

7.2.2.1.1 Oscillator

If an external clock source is used, XI should be tied to the clock source and XO should be left floating. The amplitude of the oscillator should be a nominal voltage of VDDIO.

7.2.2.1.2 Crystal

The use of a 25-MHz, parallel resonant, 20-pF load crystal is recommended if operating with a crystal. A typical connection diagram is shown below for a crystal resonator circuit. The load capacitor values will vary with the crystal vendors; check with the vendor for the recommended loads.

Figure 7-4. Crystal Oscillator Circuit

Table 7-4. 25-MHz Cry	stal Specification
-----------------------	--------------------

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Frequency			25		MHz
Frequency Tolerance	Including all parameters (Temperature, aging etc)	-50		50	ppm
Load Capacitance			15	30	pF
ESR			50	150	Ohm

7.3 Power Supply Recommendations

The DP83TD510E is capable of operating from Single Supply 3V3. It supports single supply operations from 1V8 for Short Reach (1v p2p) mode. It also supports Dual Supply Operations for Lowest Power Dissipation. It also supports VDDIO to work at 3.3-V, 2.5-V or 1.8-V supply voltages PHY has capability to detect the power supply levels automatically for both AVDD and VDDIO.

Single Power Supply Operations : Analog supply shall be powered by 3.3 V or 1.8 V. AVDD of 3V3 can support both Long Reach (2.4-v p2p) and Short Reach(1-v p2p).

Please note with AVDD 1.8 V, only Short Cable mode of 1-V p2p will be supported.

Appropriate straps shall be configured to ensure Auto Negotiation transmits the correct capabilities of the PHY.

The recommended power supply de-coupling network is shown below:

Figure 7-5. DP83TD510E Single Power Supply Decoupling Recommendation

For Dual Supply Operations, digital voltage rail of 1.0 V externally shall be supplied seperately. This help reduce the power consumption further of the DP83TD510E. See below connections for Dual Power Supply.

Figure 7-6. DP83TD510E Dual Supply Power Supply Decoupling Recommendation

7.4 Layout

7.4.1 Layout Guidelines

7.4.1.1 Signal Traces

PCB traces are lossy and long traces can degrade signal quality. Keep traces as short as possible. Unless mentioned otherwise, all signal traces must be $50-\Omega$ single-ended impedance. Differential traces must $100-\Omega$ differential. Take care to ensure impedance is controlled throughout. Impedance discontinuities cause reflections leading to emissions and signal integrity issues. Stubs should be avoided on all signal traces, especially differential signal pairs.

Figure 7-7. Differential Signal Traces

Within the differential pairs, trace lengths should be run parallel to each other and matched in length. Matched lengths minimize delay differences, avoiding an increase in common mode noise and emissions. Length matching is also important for MAC interface connections. All RMII transmit signal traces should be length matched to each other and all RMII receive signal traces should be length matched to each other.

Ideally, there should be no crossover or vias on signal path traces. Vias present impedance discontinuities and should be minimized when possible. Route trace pairs on the same layer. Signals on different layers should not cross each other without at least one return path plane between them. Differential pairs should always have a constant coupling distance between them. For convenience and efficiency, TI recommends routing critical signals first (that is, MDI differential pairs, reference clock, and MAC IF traces).

7.4.1.2 Return Path

A general best practice is to have a solid return path beneath all MDI signal traces. This return path can be a continuous ground or DC power plane. Reducing the width of the return path can potentially affect the impedance of the signal trace. This effect is more prominent when the width of the return path is comparable to the width of the signal trace. Breaks in return path between the signal traces should be avoided at all cost. A signal crossing a split plane may cause unpredictable return path currents and could impact signal quality and result in emissions issues.

Figure 7-8. Differential Signal Pair and Plane Crossing

7.4.1.3 Metal Pour

All metal pours that are not signals or power must be tied to ground. There must be no floating metal in the system, and there must be no metal between differential traces.

7.4.1.4 PCB Layer Stacking

To meet signal integrity and performance requirements, a minimum four-layer PCB is recommended. However, a six-layer PCB should be used when possible.

Figure 7-9. Recommended Layer Stack-Up

7.4.2 Layout Example

Please refer DP83TD510E EVM for information regarding layout.

8 Device and Documentation Support

Note

TI is transitioning to use more inclusive terminology. Some language may be different than what you would expect to see for certain technology areas.

8.1 Device Support

8.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision C (December 2020) to Revision D (December 2023)	Page
•	Clarified timing requirements and enable method for RMII Low Power / Slow Mode	20
•	Clarified strap settings for RMII repeater mode and media conversion mode	20
•	Added MMD access background and procedure	
	Clarified RX_D2 and LED_2 strap descriptions	
	Added register access summary for extended registers	
С	hanges from Revision B (October 2020) to Revision C (December 2020)	Page
•	Changed marketing status from Advance Information to initial release	1

PACKAGE OUTLINE

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

Figure 10-1. DP83TD510E Package Drawing

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

RHB0032M

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments Iterature number SLUA271 (www.tl.com/lt/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

Figure 10-2. DP83TD510E Package Drawing

EXAMPLE STENCIL DESIGN VQFN - 1 mm max height

RHB0032M

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

 Laser cutting apertures with trapezoidal wails and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

Figure 10-3. DP83TD510E Package Drawing

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DP83TD510ERHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	510E	Samples
DP83TD510ERHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	510E	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

10-Apr-2023

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DP83TD510ERHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
DP83TD510ERHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

www.ti.com

PACKAGE MATERIALS INFORMATION

29-Jun-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DP83TD510ERHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
DP83TD510ERHBT	VQFN	RHB	32	250	210.0	185.0	35.0

RHB 32

5 x 5, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RHB0032M

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing 1. per ASME Y14.5M.
- 2.
- This drawing is subject to change without notice. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance. 3.

RHB0032M

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

RHB0032M

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated