

March 2003 Revised March 2003

FIN1049

LVDS Dual Line Driver with Dual Line Receiver

General Description

This dual Driver-Receiver is designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The Driver accepts LVTTL inputs and translates them to LVDS outputs. The Receiver accepts LVDS inputs and translates them to LVTTL outputs. The LVDS levels have a typical differential output swing of 350mV which provide for low EMI at ultra low power dissipation even at high frequencies. The FIN1049 can accept LVPECL inputs for translating from LVPECL to LVDS. The En and Enb inputs are ANDed together to enable/disable the outputs. The enables are common to all four outputs. A single line driver and single line receiver function is also available in the FIN1019.

Features

- Greater than 400 Mbps data rate
- 3.3V power supply operation
- Low power dissipation
- Fail safe protection for open-circuit conditions
- Meets or exceeds the TIA/EIA-644-A LVDS standard
- 16-pin TSSOP package saves space
- Flow-through pinout simplifies PCB layout
- Enable/Disable for all outputs
- Industrial operating temperature range:
 - -40°C to +85°C

Ordering Code:

	Order Number	Package Number	ge Number Package Description	
ľ	FIN1049MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Pin Descriptions

Pin Name	Description
R_{IN1+}, R_{IN2+}	Non-Inverting LVDS Inputs
R _{IN1-} , R _{IN2-}	Inverting LVDS Inputs
D _{OUT1+} , D _{OUT2+}	Non-Inverting Driver Outputs
D _{OUT1-} , D _{OUT2-}	Inverting Driver Outputs
EN, ENb	Driver Enable Pins for All Outputs
R _{OUT1} , R _{OUT2}	LVTTL Output Pins for R_{OUT1} and R_{OUT2}
D _{IN2} , D _{IN2}	LVTTL Input Pins for D _{IN1} and D _{IN2}
V _{CC}	Power Supply (3.3V)
GND	Ground

Connection Diagram

Function Table

Inputs		Outputs (LVTTL)		Inputs (LVDS) (Note 1)		Outputs (LVDS)	
EN	ENb	R _{OUT1}	R _{OUT2}	R _{IN#+}	R _{IN#}	D _{OUT#+}	D _{OUT#}
Н	L	ON	ON			ON	ON
Н	Н	Z	Z			Z	Z
L	Н	Z	Z			Z	Z
L	L	Z	Z			Z	Z
Н	L	Н	Н	Open Current Fail Safe Condition			

H = HIGH Logic Level
L = LOW Logic Level or OPEN
X = Don't Care
Z = High Impedance

Note 1: Any unused Receiver Inputs should be left Open.

Functional Diagram

Absolute Maximum Ratings(Note 2)

Recommended Operating Conditions

-0.5V to +4.6V Supply Voltage (V_{CC}) -0.5V to +4.6V

LVDS DC Input Voltage (V_{IN})

LVDS DC Output Voltage (V_{OUT}) -0.5V to +4.6VDriver Short Circuit Current (I_{OSD}) Continuous 10mA

Storage Temperature Range (T_{STG}) Max Junction Temperature (T_J) 150°C

Lead Temperature (T_L)

260°C (Soldering, 10 seconds) ESD (Human Body Model) >7000V ESD (Machine Model) >250V

Supply Voltage (V_{CC}) 3.0V to 3.6V

Magnitude of Differential Voltage

100mV to V_{CC} -65°C to $+150^{\circ}\text{C}$ Operating Temperature (T_A) -40°C to +85°C

> Note 2: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

VCM = 1,2V, 0,05V, 2,35V	Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Units		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LVDS Input DC Specifications (R _{IN1+} , R _{IN1+} , R _{IN2+} , R _{IN2+}) See Figure 1 and Table 1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{TH}	Differential Input Threshold HIGH	VOM 4 0V 0 05V 0 05V		0.0	35.0	mV		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{TL}	Differential Input Threshold LOW	VCM = 1.2V, 0.05V, 2.35V	-100	0.0		mV		
No.	V _{IC}	Common Mode Voltage Range	$V_{ID} = 100 \text{mV}, V_{CC} = 3.3 \text{V}$	V _{ID} /2		$V_{CC} - (V_{ID}/2)$	V		
Vih	I _{IN}	Input Current	V _{CC} = 0V or 3.6V, V _{IN} = 0V or 2.8V			±20.0	mA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{IH}	Input High Voltage (LVTTL)		2.0		V _{CC}	V		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{IL}	Input Low Voltage (LVTTL)		GND		0.8	V		
N _{IK} Input Clamp Voltage V _{IK} = -18mA -1.5 -0.7 V _{IK} Input Clamp Voltage V _{IK} = -18mA -1.5 -0.7 V _{IK} Input Clamp Voltage V _{IK} = -18mA -1.5 -0.7 V _{IK} V _{IK} = -18mA -1.5 -0.7 V _{IK} V	I _{IN}	Input Current							
VoD Output Differential Voltage AVOD Output Differential Voltage AVOD VoD Magnitude Change from Differential LOW-to-HIGH Driver Enabled, Driver Enabled, Driver Enabled AVOD Output Output Current Out			$V_{IN} = 0V$ or V_{CC}			±20.0	μΑ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{IK}	Input Clamp Voltage	$V_{IK} = -18mA$	-1.5	-0.7		V		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		LVDS Out	put DC Specifications (D _{OUT1+} , D _{OUT1-} , D _{OU}	_{T2+} , D _{OUT2-})	1	•			
Differential LOW-to-HIGH Driver Enabled, See Figure 2 1.125 1.25 1.375 V	V _{OD}	Output Differential Voltage		250	350	450	mV		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ΔV_{OD}	V _{OD} Magnitude Change from	$R_L = 100\Omega$,			25.0	mV		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Differential LOW-to-HIGH	Driver Enabled,			35.0	IIIV		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vos	Offset Voltage	See Figure 2	1.125	1.25	1.375	V		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Offset Magnitude Change from				25.0	mV		
$ \begin{array}{ c c c c c c c c c } \hline l_{OSD} & Short Circuit Output Current & V_{OD} = 0V, Driver Enabled & -9.0 & m \\ \hline l_{OFF} & Power-Off Input or Output Current & V_{CC} = 0V, V_{OUT} = 0V \text{ or } V_{CC} & \pm 20.0 & \mu \\ \hline l_{OZD} & Disabled Output Leakage Current & Driver Disabled, D_{OUT+} = 0V \text{ or } V_{CC} & \pm 10.0 & \mu \\ \hline \hline & & & & & & & & & & & & & & & & &$		Differential LOW-to-HIGH				25.0	IIIV		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ios	Short Circuit Output Current	D _{OUT+} = 0V & D _{OUT-} = 0V, Driver Enabled			-9.0	mA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{OSD}	Short Circuit Output Current	V _{OD} = 0V, Driver Enabled			-9.0	mA		
	I _{OFF}	Power-Off Input or Output Current	$V_{CC} = 0V$, $V_{OUT} = 0V$ or V_{CC}			±20.0	μΑ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{OZD}	Disabled Output Leakage Current	Driver Disabled, D _{OUT+} = 0V or V _{CC}			+10.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			or $D_{OUT-} = 0V$ or V_{CC}			±10.0	μΛ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		СМО	OS/LVTTL Output DC Specifications (R _{OUT1} ,	R _{OUT2})	•	•	•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{OH}	Output High Voltage	$I_{OH} = -2mA$, $V_{ID} = 200mV$	2.7			V		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V _{OL}	Output Low Voltage	02 1.5			0.250	V		
I _{CCZ} Power Supply Current Drivers Disabled 10.0 m C _{IND} Input Capacitance LVDS Input 3.0 p C _{OUT} Output Capacitance LVDS Output 4.0 p	I _{OZ}	Disabled Output Leakage Current	Driver Disabled, R _{OUTn} = 0V or V _{CC}			±10.0	μΑ		
CIND Input Capacitance LVDS Input 3.0 p COUT Output Capacitance LVDS Output 4.0 p	I _{CC}	Power Supply Current (Note 4)	Drivers Enabled, Any Valid Input Condition			25.0	mA		
C _{OUT} Output Capacitance LVDS Output 4.0 p	I _{CCZ}	Power Supply Current	Drivers Disabled			10.0	mA		
	C _{IND}	Input Capacitance	LVDS Input		3.0		pF		
	C _{OUT}	Output Capacitance	LVDS Output		4.0		pF		
	C _{INT}	Input Capacitance	LVTTL Input		3.5		pF		

Note 3: All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

Note 4: Both driver and receiver inputs are static. All LVDS outputs have 100Ω load. None of the outputs have any lumped capacitive load.

AC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ (Note 5)	Max	Units
	Switching	Characteristics - LVDS Outputs				
t _{PLHD}	Differential Propagation Delay LOW-to-HIGH				2.0	ns
t _{PHLD}	Differential Propagation Delay HIGH-to-LOW				2.0	ns
t _{TLHD}	Differential Output Rise Time (20% to 80%)		0.2		1.0	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)	See Figures 3, 4	0.2		1.0	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}	See Figures 3, 4			0.35	ns
t _{SK(LH)} ,	Channel-to-Channel Skew (Note 6)				0.35	no
t _{SK(HL)}					0.35	ns
t _{SK(PP)}	Part-to-Part Skew (Note 7)				1.0	ns
t _{PZHD}	Differential Output Enable Time from Z-to-HIGH				6.0	ns
t _{PZLD}	Differential Output Enable Time from A-to-LOW	See Figures 5, 6			6.0	ns
t _{PHZD}	Differential Output Disable Time from HIGH-to-Z	See Figures 5, 6			3.0	ns
t _{PLZD}	Differential Output Disable Time from LOW-to-Z				3.0	ns
f _{MAXD}	Maximum Frequency (Note 8)	See Figure 3	200			MHz
	Switching	Characteristics - LVTTL Outputs	•			
t _{PHL}	Propagation Delay HIGH-to-LOW	Measured from 20% to 80% signal	0.5	1.0	3.5	ns
t _{PLH}	Propagation Delay LOW-to-HIGH	V _{ID} = 200mV;	0.5	1.0	3.5	ns
t _{SK1}	Pulse Skew	Distributed Load	0.0	35.0	400	ps
t _{SK2}	Channel-to-Channel Skew	$C_L = 15pF$ and 50Ω ;	0.0	50.0	500	ps
t _{SK3}	Part-to-Part Skew	$R_L = 1K\Omega;$	0.0		1.0	ns
t _{LHR}	Transition Time LOW-to-HIGH	V _{OS} = 1.2V;	0.1	0.25	1.4	ns
t _{HLR}	Transition Time HIGH-to-LOW	See Figures 7, 8	0.1	0.18	1.4	ns
t _{PHZ}	Disable Time HIGH-to-Z		2.2	4.5	8.0	ns
t _{PLZ}	Disable Time LOW-to-Z	See Figures 9, 10	1.3	3.5	8.0	ns
t _{PZH}	Enable Time Z-to-HIGH	See Figures 9, 10	1.8	3.0	7.0	ns
t _{PZL}	Enable Time Z-to-LOW		0.9	1.4	7.0	ns
f _{MAXT}	Maximum Frequency (Note 9)	See Figure 7	200			MHz

Note 5: All typical values are at $T_A = 25$ °C and with $V_{CC} = 3.3$ V.

Note 6: $t_{SK(LH)}$, $t_{SK(HL)}$ is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.

Note 7: $t_{SK(PP)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

Note 8: f_{MAX} generator input conditions: $t_r = t_f < 1$ ns (10% to 90%), 50% duty cycle, 0V to 3V. Output criteria: duty cycle = 45% / 55%, $V_{OD} > 250$ mV, all channels switch.

Note 9: f_{MAXT} generator input conditions: $t_r = t_f < 1$ ns (10% to 90%), 50% duty cycle, $V_{ID} = 200$ mV, $V_{CM} = 1.2$ V. Output criteria: duty cycle = 45% / 55%, $V_{OH} > 2.7$ V. $V_{OL} < 0.25$ V, all channels switching.

Required Specifications

- Human Body Model ESD and Machine Model ESD should be measured using MIL-STD-883C method 3015.7 standard.
- Latch-up immunity should be tested to the EIA/JEDEC Standard Number 78 (EIA/JESD78).

Note: $C_L = 15 pF$, includes all probe and jig capacitances

FIGURE 1. Differential Receiver Voltage Definitions Test Circuit

TABLE 1. Receiver Minimum and Maximum Input Threshold Test Voltages

Applied Voltages (V)		Resulting Differential Input Voltage (mV)	Resulting Common Mode Input Voltage (V)		
V _{IA}	V _{IB}	V _{ID}	V _{IC}		
1.25	1.15	100	1.2		
1.15	1.25	-100	1.2		
V _{CC}	V _{CC} - 0.1	100	V _{CC} - 0.05		
V _{CC} - 0.1	V _{CC}	-100	V _{CC} - 0.05		
0.1	0.0	100	0.05		
0.0	0.1	-100	0.05		
1.75	0.65	1100	1.2		
0.65	1.75	-1100	1.2		
V _{CC}	V _{CC} - 1.1	1100	V _{CC} - 0.55		
V _{CC} - 1.1	V _{CC}	-1100	V _{CC} - 0.55		
1.1	0.0	1100	0.55		
0.0	1.1	-1100	0.55		

Note: $R_L = 100\Omega$

FIGURE 2. LVDS Output Circuit for DC Test

Required Specifications (Continued)

Note A: $R_L = 100\Omega$

Note B: $Z_O = 50\Omega$ and $C_T = 15$ pF Distributed

FIGURE 3. LVDS Output Propagation Delay and Transition Time Test Circuit

FIGURE 4. LVTTL Input to LVDS Output AC Waveform

Required Specifications (Continued) Transmission Line Signal Generator $50\,\Omega$ V_{CC} ○ Oscillo R1 scope OUT+ Transmission Line Vcc R_L/2 ≲ 50 Ω ≶ 业 (Note A) R_L12§ 50Ω≷ GND ENb Transmission Line R1 GND 🔿 V_{TST}

Note A: $R_L = 100\Omega$

Note B: $Z_{O}=50\Omega$ and $C_{T}=15\ pF$ Distributed

Note: R1 = 1000Ω , R_S = 950Ω

Note: V_{TST} = 2.4V

FIGURE 5. LVDS Output Enable / Disable Delay Test Circuit

FIGURE 6. LVDS Output Enable / Disable Timing Waveforms

Required Specifications (Continued)

Note A: Z_{O} = 50Ω and C_{T} = 15 pF Distributed Note: R_{L} = 100Ω and R_{S} = 950Ω

FIGURE 7. LVTTL Output Propagation Delay and Transition Time Test Circuit

FIGURE 8. LVDS Input to LVTTL Output Propagation Delay and Transition Time Waveforms

Required Specifications (Continued)

Note A: $Z_O=50\Omega$ and $C_T=15$ pF Distributed Note: $R_L=100\Omega$, $R_S=1000\Omega$, and $R_S=950\Omega$

FIGURE 9. LVTTL Output Enable / Disable Test Circuit

FIGURE 10. LVTTL Output Enable / Disable Timing Waveforms

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

MTC16 (REV C)