

# **Current Transducer LA 205-T/SP16**

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).







0622

| E                         | lectrical data                                    |                        |                            |                                          |    |
|---------------------------|---------------------------------------------------|------------------------|----------------------------|------------------------------------------|----|
| I <sub>PN</sub>           | Primary nominal r.m.s. current                    |                        | 200                        |                                          | Α  |
| I <sub>P</sub>            | Primary current, measuring range                  |                        | 0 ± 400                    |                                          | Α  |
| $\dot{R}_{_{\mathrm{M}}}$ | Measuring resistance @ $T_A = 70$ °C              |                        | $\mathbf{R}_{Mmin}$        | $\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$ |    |
|                           | avec ± 15 V @                                     | ± 200 A <sub>max</sub> | 0                          | 120                                      | Ω  |
|                           | @                                                 | ± 400 A <sub>max</sub> | 0                          | 25                                       | Ω  |
|                           | avec ± 24 V @                                     | ± 200 A <sub>max</sub> | 50                         | 240                                      | Ω  |
|                           | @                                                 | ± 400 A <sub>max</sub> | 50                         | 80                                       | Ω  |
| $I_{\rm SN}$              | Secondary nominal r.m.s. current                  |                        | 66.6                       |                                          | mΑ |
| K <sub>N</sub>            | Conversion ratio                                  |                        | 1:3000                     | )                                        |    |
| <b>V</b> <sub>c</sub>     | Supply voltage (±10 %)                            |                        | ± 15 24                    |                                          | V  |
| I <sub>c</sub>            | Current consumption                               |                        | 20 + <b>I</b> <sub>s</sub> |                                          | mΑ |
| $\mathbf{V}_{_{d}}$       | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn |                        | 6 <sup>1)</sup>            |                                          | kV |
| J                         |                                                   |                        | 1 <sup>2)</sup>            |                                          | kV |

| Accuracy - Dynamic performance data |                                                                    |       |        |      |  |  |  |
|-------------------------------------|--------------------------------------------------------------------|-------|--------|------|--|--|--|
| X <sub>G</sub>                      | Overall accuracy @ $I_{PN}$ , $T_A = 25^{\circ}C$                  | ± 0.8 |        | %    |  |  |  |
| $\mathbf{e}_{\scriptscriptstyle L}$ | Linearity                                                          | < 0.1 |        | %    |  |  |  |
|                                     |                                                                    | Тур   | Max    |      |  |  |  |
| $I_{\circ}$                         | Offset current @ $I_P = 0$ , $T_A = 25^{\circ}C$                   |       | ± 0.10 | mΑ   |  |  |  |
| I <sub>OM</sub>                     | Residual current 3 @ $I_p = 0$ , after an overload of 3 x $I_{pN}$ |       | ± 0.30 | mΑ   |  |  |  |
| I <sub>OT</sub>                     | Thermal drift of $I_0$ - 25°C + 75°C                               | ± 0.1 | ± 0.25 | mΑ   |  |  |  |
| t <sub>ra</sub>                     | Reaction time @ 10 % of I <sub>P max</sub>                         | < 500 |        | ns   |  |  |  |
| t,                                  | Response time 4 @ 90 % of I <sub>PN</sub>                          | < 1   |        | μs   |  |  |  |
| di/dt                               | di/dt accurately followed                                          | > 100 |        | A/µs |  |  |  |
| f                                   | Frequency bandwidth (- 3 dB)                                       | DC    | 100    | kHz  |  |  |  |
| General data                        |                                                                    |       |        |      |  |  |  |

| G                         | General data                                      |           |    |  |  |  |
|---------------------------|---------------------------------------------------|-----------|----|--|--|--|
| T <sub>A</sub>            | Ambient operating temperature                     | - 25 + 75 | °C |  |  |  |
| T <sub>s</sub>            | Ambient storage temperature                       | - 40 + 85 | °C |  |  |  |
| $\mathbf{R}_{\mathrm{s}}$ | Secondary coil resistance @ T <sub>A</sub> = 75°C | 70        | Ω  |  |  |  |
| m                         | Mass                                              | 270       | g  |  |  |  |
|                           | Standards                                         | EN 50155  |    |  |  |  |
|                           |                                                   |           |    |  |  |  |

 $\underline{\text{Notes}}$  :  $^{\text{1)}}$  Between primary and secondary + shield

- 2) Between secondary and shield
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs.

## $I_{PN} = 200 A$



#### **Features**

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

### Special features

- $I_{p} = 0 .. \pm 400 A$
- $K_N = 1:3000$
- **V**<sub>C</sub> = ± 15 .. 24 (± 10 %) V
- $T_{\Delta} = -25^{\circ}C ... + 75^{\circ}C$
- Shield between primary and secondary
- Connection to secondary circuit on M4 threaded studs
- Potted
- VRT Burn-in
- Railway equipment.

#### **Advantages**

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

#### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060914/3



## **Dimensions** LA 205-T/SP16 (in mm. 1 mm = 0.0394 inch)



### **Mechanical characteristics**

• General tolerance ± 0.5 mm

Fastening

by transducer 2 holes  $\varnothing$  5.5 mm

2 M5 steel screws

Fastening torque, max. 4 Nm or 2.95 Lb. - Ft.

or

by the primary 2 holes Ø 8.5 mm

• Connection of secondary
Fastening torque 2 holes Ø 8.5 mm

M4 threaded studs
1.2 Nm or .88 Lb.-Ft.

### Remarks

- ullet I<sub>s</sub> is positive when I<sub>p</sub> flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.