
Maxim > Design Support > Technical Documents > Application Notes > Interface Circuits > APP 3936
Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits > APP 3936

Keywords: MAX3421E,MAX3420E,ARM7,Keil,USB, Host, Peripheral

APPLICATION NOTE 3936

The Maxim USB Laboratory
Nov 02, 2006

Abstract: The Maxim USB laboratory is a MAX3421E-/MAX3420E-based system using an ARM7™ processor
and example software. This application note describes the system and the software that runs it. Both a USB
host and peripheral are implemented in the same ARM® C code. This approach allows development and
study of USB peripherals and embedded hosts with the advantage of having a reference device at the other
end of the USB cable, all in the same C code.

This application note is a companion to application note 3937, "Setting up the Maxim USB laboratory." The
Keil™ project containing the Maxim demo code is available for download.

Introduction
The Maxim USB laboratory is a combination of two circuit boards and a C program. With this system, you can:

Study, operate, test, and modify a functional USB device based on an ARM7 microcontroller (µC)
connected to a MAX3420E USB peripheral controller.
Study, operate, test, and modify a functional USB host that uses the same ARM7 µC connected to a
MAX3421E host controller. Figure 1 shows data retrieved by the host from a USB memory stick.
Connect the host to the peripheral with a USB cable and run both host and peripheral at the same time.
When developing either USB host or USB peripheral code, it is very useful to have a reference design at
the other end of the USB cable. By doing this, both sides of the USB cable, host and peripheral, are
controllable and customizable since they are both implemented by the same C code.

Page 1 of 17

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/14/c/Interface%20Circuits#c14
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/20/c/Power-Supply%20Circuits#c20
http://www.maximintegrated.com/an3937
http://www.maximintegrated.com/tools/evkit/index.cfm?EVKit=623

Figure 1. The MAX3421 host/ARM retrieves enumeration data from any USB peripheral device, and reports
results over a serial port connected to a PC running a terminal emulation program.

Other Reading
Programming guides, data sheets, and application notes for the MAX3420E and MAX3421E are available on
the Maxim website:

MAX3420E
MAX3421E
Application note 3937, "Setting up the Maxim USB laboratory"

Hardware
The application C code runs on a two-board set:

The Maxim MAX3421E evaluation (EV) kit, one board
A Keil MCB2130, the second board

Page 2 of 17

http://www.maximintegrated.com/max3420e
http://www.maximintegrated.com/max3421e
http://www.maximintegrated.com/an3937
http://www.maximintegrated.com/max3421evkit

Figure 2. The Maxim EV kit plugs into a Keil MCB2130 board.

Figure 2 shows the board setup. The blue board is a Keil MCB2130 which contains an ARM7 chip, the
Philips® LPC2138. This µC has two SPI™ hardware units which connect to the two Maxim USB controller
chips.

The vertical board is the MAX3421E EVKIT-1. A MAX3420E peripheral controller connects to one of the ARM
SPI ports, and is wired to the USB "B" connector (J5)labeled "3420 P" (P is for peripheral) in Figure 2. A
MAX3421E host/peripheral controller connects to the other ARM SPI port, and is wired to the "3421P" (J2) and
"3421H" (J1) connectors (H is for host). The code described in this application uses the MAX3421E as a host,
so the middle USB connector (J2) on the EV-kit board is not used.

The host software uses one of the two serial ports (P1 on the MCB2130 board) to send USB descriptive
information to a PC running a terminal emulation program. Terminal programs such as Tera Term Pro can
emulate terminals (VT100) that recognize special "escape code" sequences sent by the program to clear the
screen and home the cursor. The terminal program serial-port settings are 38400, N, 8, 1 with no flow control.

The beige box and ribbon cable in Figure 2 is a Keil ULINK JTAG loader-debugger. This unit is supported by
the Keil µVision®3 development environment. The MCB2130 board comes with an evaluation version of
µVision3, a fully functional version of the Keil toolset. The evaluation version is limited in code size to 16kB.

File attachments to this application note include the full Keil project with all source files, plus the load module
in .hex format. If you have the ULINK JTAG unit you can compile the code, load it, and debug it through the
JTAG port. This is an excellent way to get up to speed on USB—modify working host and/or peripheral code
to suit your purposes. If you do not have a ULINK box, you can still load and run the hex file using a free
utility called Flash Magic, available at www.esacademy.com. Consult Maxim's application note 3937 for
information about how to configure and use this utilty.

Page 3 of 17

http://www.esacademy.com/

Figure 3. Block diagram of the MAX3421EEVKIT-1 board. The shaded ovals are the major software modules.

What the Code Does
Figure 3 shows a block diagram of the MAX3421EEVKIT-1 board and the software modules described in this
application note. Both the MAX3420E and MAX3421E provide access to their register sets using the SPI bus.
The LPC2138 contains two hardware SPI units:

A dedicated SPI port (SPI)
A general-purpose serial interface (SSP, Synchronous Serial Port)

The SSP is programmed to implement a second SPI port. These ports are programmed differently. The SSP,
for example, has eight-deep transmit and receive FIFOs, while the SPI has only a one-deep read buffer. Both
SPI ports are programmed to operate in 8-bit data mode for MAX3420E and MAX3421E compatibility. The
software module SPI_FNs.C contains the register access functions used by both USB controllers.

The MAX3420E attaches to the SPI unit, so the functions to talk to this chip have a "P" prefix (e.g., Prreg and
Pwreg) to indicate peripheral operation. The MAX3421E attaches to the SSP unit, so its access functions have
an "H" prefix (e.g., Hwreg) to indicate host operations.

Peripheral Code
The C module 3420_HIDKB.C implements a USB peripheral device which connects to a PC using EV kit
connector J5. The MAX3420E INT output pin connects to the ARM7 EINT0 (External Interrupt Zero) pin. This
interrupt asserts anytime the USB peripheral implemented by the MAX3420E requires service.

The application enumerates and operates as a standard USB HID (Human Interface Device). An advantage to
conforming to a standard Windows® device class is that the device driver is built into Windows, so no special
driver needs to be installed. Windows recognizes the device implemented by this application as a standard
keyboard. Pressing any of the four pushbuttons attached to the MAX3420E GP-IN pins thus causes the
"keyboard" to type a text string into any open window that accepts text, for example Notepad or Wordpad.

Warning: This application types into any application that accepts text, such as email, compiler editors, or a
Word document. Be sure to have a safe application like Notepad open and active before pressing the button.
The author can confirm by experience that rogue text typed into an open C source file will not compile

Page 4 of 17

properly.

Host Code
The 3421_Host_EVK.C file contains host code that instructs the MAX3421E to perform enumeration steps
similar to what a PC would do when a USB device is plugged into connector J4. The main() function is in
this module, as is the interrupt handler for the HID keyboard code. The EINT0 interrupt handler is simple:

 // EINT0 Interrupt handler--MAX3420E INT pin
void INT3420 (void) __irq
{
service_irqs(); // Do the USB thing in 3420_HIDKB_INT_EVK.C module
EXTINT = 1; // Clear EINT0 interrupt flag (b0)
VICVectAddr = 0; // Dummy write to indicate end of interrupt service
}

The background program main() contains the following endless loop:

while(1)
 {
 detect_device();
 waitframes(200); // Some devices require this
 enumerate_device();
 wait_for_disconnect();
 }

The enumerate_device() function does most of the work, sending USB requests to the attached device and
reporting results over the serial port. Plug any USB device into EV kit J1, and this function sends enumeration
requests to the device and reports results over the serial port (Figure 1).

Simultaneous Host/Peripheral Ooperation
Because the MAX3421EEVKIT-1 board contains both a USB peripheral and a USB host, and because they
use separate SPI interfaces on the ARM7, the software can easily be structured so that both host and
peripheral applications run simultaneously. The host application runs main() to talk to the MAX3421E in the
background, while the HID peripheral code activates the service_irqs() function using a MAX3420E interrupt.

If you connect a USB cable from EV kit J5 to J1, the ARM processor can act as a USB host talking to a
peripheral device that is...itself! Figure 4 shows what the host code in 3421_Host.C reports when it
interrogates the peripheral implemented in 3420_HIDKB.C.

Page 5 of 17

Figure 4. The demo code interrogating itself over USB.

Developing Host Code
Reading through the enumerate_device() function can help you understand how a USB host operates, and
how to command the MAX3421E to do the various host operations as it enumerates a USB device. While
developing USB host code, it is sometimes difficult to diagnose a problem if it is not clear how the peripheral
plugged into the host is responding. Having a reference peripheral over which you have total control (the
3420_HIDKB.C module) makes it easy to know and vary device responses to test your host firmware.

Developing Peripheral Code
This host is an excellent interrogation tool for USB peripheral code development. The combination of the
MAX3421E and the 3421_Host.C module creates a simple and powerful USB packet generator and analyzer.
You control what your peripheral device sees by writing C host code; the MAX3421E shows you how the
peripheral responded.

Page 6 of 17

An Example
Suppose you are writing peripheral code to handle USB strings. You code the manufacturer string as XYZ
Widget Company in hidkb_enum_tables.h like this:

// STRING descriptor 1--Manufacturer ID
{
18, // bLength
0x03, // bDescriptorType = string
'X','Y','Z',' ','W','i','d','g','e','t',' ','C','o','m','p','a','n','y'
},

Compile this, load it into the ARM flash, and run it. The host program reports the following manufacturer string:

Figure 5. Not Good. Code example shows that the manufacturer's name is not want you intended to show.
There is clearly a problem with the code.

XZWde op? What went wrong? Well, the USB spec calls for text strings to be expressed in Unicode, with two
bytes per character. Go back to the source code for the peripheral, and change it to this:

// STRING descriptor 1--Manufacturer ID
 {
 35 // bLength
 0x03, // bDescriptorType = string
 'X',0,'Y',0,'Z',0,' ',0,'W',0,'i',0,'d',0,'g',0,'e',0,'t',0,
 ' ',0,'C',0,'o',0,'m',0,'p',0,'a',0,'n',0,'y' // Unicode!
 },

Compile, run, and you should see this:

Figure 6. Better. Using the Unicode format, you see this result.

That is much better, but still not perfect. Where is the 'y' in Company? We carefully counted the 35 characters
in the string and entered this as the first byte to indicate the string length. We missed something else: the
length byte needs to include the first two bytes as well as the string. Make one final modification to the code:

// STRING descriptor 1--Manufacturer ID
 {
 37 // bLength
 0x03, // bDescriptorType = string
 'X',0,'Y',0,'Z',0,' ',0,'W',0,'i',0,'d',0,'g',0,'e',0,'t',0,

Page 7 of 17

 ' ',0,'C',0,'o',0,'m',0,'p',0,'a',0,'n',0,'y' // Unicode!
 },

The result should now look like this:

Figure 7. Best. The code now does what you thought it should.

By tweaking the peripheral code and exercising/analyzing it with the host controller and code, we see exactly
what a PC would see since the reported results are for actual USB traffic sent from the MAX3420E to the
MAX3421E. Best of all, we can do this on a controlled basis, without worrying about how a PC will respond to
error-prone code in development.

Code Description

Page 8 of 17

Figure 8. Structure of the Keil Project.

Figure 8 shows the three main modules, expanded to show their file dependencies. The unexpanded modules
are housekeeping files required by the Keil environment.

SPI_FNs.C
This module contains utility functions called by the other two modules.

void init_PLL(void)
This function sets up the LPC2138 PLL and clock dividers. The crystal attached to the LPC2138 (FOSC) is
12.000MHz. The CPU frequency is set to 48MHz according to the formula CCLK = FOSC × M, where M = 4.
The LPC2138 uses an internal CCO (current-controlled oscillator) to multiply F to a higher internal

Page 9 of 17

OSC
frequency. FCCO = CCLK × 2 × P. FCCO must be between 156MHz and 320MHz. For P = 2, FCCO = 48MHz
× 2 × 2 = 192MHz.

Note: The Keil file startup.s also contains startup code to set the PLL parameters. The init_PLL() function
effectively overrides these settings.

Important Warning: Modify these settings at your own risk. Improper settings can force the LPC2138 outside
of its spec limits and cause the Keil debugger to stop functioning. If this happens, the remedy is to use the
Flash Magic utility to erase the LPC2138 flash memory (use the second serial port for this, connected to Keil
board P2), correct the PLL settings in your code, then try again.

init_IO
This function initializes the LPC2138 I/O pins and SPI units (SPI and SSP):

The SPI is clocked by CCLK/8, the maximum allowed. This SCLK is 48MHz/8 = 6MHz.
The SSP is clocked by CCLK/(2 × VBDIV). VBDIF is set to 1, making the MAX3421E SCK signal equal to
48MHz/2 = 24MHz. The MAX3421E SCLK input can run as high as 26MHz.

About the SPI Interface
The SPI interface uses the following signals:

MOSI Master Out, Slave In data
MISO Master In, Slave Out data
SCLK Serial Clock, supplied by the LPC2138
SS# Slave Select, driven by the LPC2138

The LPC2138 SPI hardware manages the first three signals, but the SS# is directly set and cleared using a
GP-OUT pin (P0.7).

About the SSP Interface
Although the SSP has a hardware SS# pin, it is more straightforward to use a GP-OUT pin for SS# (P0.20).

Hwreg
Hwritebytes
These functions write register and FIFO data to the MAX3421E using the LPC2138 SSP hardware. The H
prefix indicates host operation. Hwreg writes a single register value; Hwritebites writes multiple bytes into a
MAX3421E FIFO.

Hrreg
Hreadbytes
These functions read register and FIFO data from the MAX3421E using the LPC2138 SSP hardware.

More About the SSP Interface
The SSP hardware has a coding issue that results from having data FIFOs in the transmit and receive paths.
In an SPI operation every 8-bit transfer out is always accompanied by an 8-bit transfer in. The LPC2138
accesses the MAX3421E SPI port using the following steps:

1. Assert SS# (low)
2. Send a command byte consisting of a register number and a direction bit
3. Send/receive one or more data bytes
4. De-assert SS# (high)

SPI writes are straightforward—everything goes out, and the data in the in FIFO may be ignored. But reads

Page 10 of 17

are more complex, because the read FIFO contains at least one bad byte, the one that was automatically
clocked in during step 2. There also can be stale in data resulting from a previous operation that wrote
multiple bytes. The in FIFO cannot be inhibited or flushed by hardware. Consequently, the code that reads SPI
data must first manually flush the FIFO by reading bytes from the SSPDR until a flag indicating "read FIFO not
empty" de-asserts.

Pwreg
PwregAS
Pwritebytes
These functions write register and FIFO data to the MAX3420E using the LPC2138 SPI hardware. The second
function writes a register identical to the first function, but it also sets the ACKSTAT bit in the SPI command
byte. This is a shortcut for terminating a USB CONTROL transfer. Consult application note 3598, "MAX3420E
Programming Guide" for details.

Prreg
PrregAS
Preadbytes
These functions read register and FIFO data from the MAX3420E using the LPC2138 SPI hardware. The
second function reads a register identical to the first function, but it also sets the ACKSTAT bit in the SPI
command byte.

readout
This function updates the 7-segment readout connected to the MAX3421E general-purpose output pins
GPO[6:0]. It preserves the setting of GPO[7], which controls the VBUS switch to the USB "A" Connector (EV kit
J1).

3421_Host.C
This module implements the MAX3421E USB host that interrogates USB devices and reports enumeration
data over a MCB22310 serial port. For reference, Appendix A shows a LeCroy (CATC) bus trace for the host
enumerating the built-in device implemented in 3420_HIDKB.C.

There are three function types in this module:
1. Initialization
2. Utility functions
3. High-level functions called in main()

The following descriptions follow this order.

Reset_Host
The MAX3421E contains a power-on reset, so this operation is not strictly necessary. However as you
develop code, it is a good idea to reset the chip at the beginning of each debug session since power was
probably not cycled. This starts with a clean machine, with nothing carrying over from the previous debug
session.

Resetting the MAX3421E stops the on-chip oscillator. After de-asserting reset, the function waits for the
OSCOKIRQ bit (Oscillator OK Interrupt Request) to go valid before returning.

initialize_3420
This function is in the 3420_HIDKB.C module.

initialize_ARM_Interrupts

Page 11 of 17

http://www.maximintegrated.com/an3598
http://www.maximintegrated.com/an3598

This function sets up the ARM vectored interrupts as follows:
1. EINT0 is connected to the MAX3420E INT pin, using priority 0 (highest).
2. Timer0 is used to blink an activity light, using priority 1.
3. EINT2 is connected to the MAX3421E INT pin, and given priority 2. It is not used in this program; rather,

it is provided for convenience.
4. Timer1 is used to check the send/stop pushbutton (used in 3420_HIDKB.C), using priority 3.

service_irqs
This function is in the 3420_HIDKB.C module. It does the HID keyboard emulation. The code that initializes
the ARM interrupts only needs to install this address as an interrupt vector.

waitframes
A simple way for a USB host to measure time is to count 1ms frame markers. When the µC sets the register
bit SOFKAENAB = 1, the MAX3421E automatically generates these frame markers, which consist of SOF
packets in full-speed mode or "keep alive" pulses in low-speed mode. The FRAMIRQ bit then asserts every
millisecond.

The USB spec mandates certain long delay times, for example after resetting a device to give it a "reset
recovery time." Calling the waitframes function is an easy way to implement these relatively long delays.

detect_device
This function returns after it detects a USB device plugged into the USB-A connector J1.

wait_for_disconnect
This function returns after a device plugged into the USB-A connector disconnects.

Send_Packet
This function is called by all functions that send USB packets. Figure 9 shows the bus trace for an IN
transaction and the C statements that produce it.

Figure 9. C function calls to the MAX3421E cause this USB bus activity.

1. The µC sets the function address in the FNADDR register. This does not need to be repeated for every
packet, since the loaded value persists until the µC reloads the FNADDR register.

2. The µC launches the transfer by writing the HXFR register, specifying the USB token and endpoint. It

Page 12 of 17

then waits for the HXFRDNIRQ (Host Transfer Done) IRQ to assert, signaling completion of the transfer.
3. The µC reads the HRSL (Host Result) register to determine the outcome of the transaction. Sixteen

result codes indicate results such as:

A. Success (ACK)
B. Device busy (NAK)
C. Unusual handshake (STALL)
D. Device problem like timeout, babble, or bus error

4. The µC reads a byte count register, then unloads the RCVFIFO, and saves the data in a byte array.

This function handles NAK retries. It continues to relaunch the transfer until:
1. It gets the ACK handshake, or
2. It exceeds a preset limit set by the constant NAK_LIMIT.

If the device does not respond, the function retries the transfer up to the limit RETRY_LIMIT.

CTL_Write_ND
This function performs a CONTROL-Write transaction with no data stage (_ND = no data). This function is
called only for the host Set_Address request. It makes two calls to Send_Packet: first for the SETUP packet,
and second for the IN-Handshake packet.

IN_Transfer
This function makes as many calls to Send_Packet (specifying IN) as necessary to retrieve USB data records.
The MAX3420E and MAX3421E endpoint FIFOs are 64 bytes long, so a long descriptor, for example, requires
multiple IN requests with the packet data stitched together into a large array (XfrData[2000]).

CTL_Read
This function performs the three-stage CONTROL-Read USB transaction. It makes three calls:

1. To Send_Packet to issue the SETUP packet
2. To IN_Transfer to get the data into XfrData[]
3. To Send_Packet to issue the OUT-Handshake packet

enumerate_device
This function executes the 10 transfers shown in Appendix A. Because it calls the previous functions to do the
low-level USB work, it is easy to follow the enumeration steps by studying this function.

print_error
This function checks the 4-bit HRSL value (item 3 in Figure 9) to print the outcome of the last host transfer. If
the passed value is zero, it prints nothing. It returns the HRSL value so the calling function can easily check
for an error, e.g.,

if(print_error(HR)) return;

3420_HIDKB.C
This module implements a USB peripheral using the MAX3420E. It conforms to the standard HID class to
automatically type text as if it had originated from a standard keyboard. The entry point is the service_irqs
function, which is invoked as an interrupt service routine in response to the LPC2138 EINT1 pin. EINT1 is
connected to the MAX3420E INT output pin.

Page 13 of 17

Reset_Peripheral
This function resets the MAX3420E in the same manner as Reset_Host.

initialize_3420
This function does three things:

1. Configures the MAX3420E SPI interface for full-duplex operation (separate MOSI and MISO pins)
2. Configures the MAX3420E INT pin as positive-edge active
3. Enables the MAX3420E interrupts used by the application

service_irqs
This function directly handles bus reset and device disconnect. It also calls do_SETUP to handle enumeration
and do_IN3 to do the keyboard typing.

Note: To keep code size down, this application does not handle USB suspend-resume. An example of how to
do this is in the application note 3690, "USB Enumeration Code (and More) for the MAX3420E." The
enumeration code in AN3690 was used as the basis for 3420_HIDKB.C.

do_SETUP
This function handles device enumeration by inspecting various bytes in the 8-byte SETUP packet, then
calling functions to handle the specific request. The code handles only the USB Standard request type, since
the application does not implement USB Class or Vendor requests.

do_IN3
This function sends keystrokes according to the Message[] character array in HIDKB_enum_tables.h. The
format of three bytes per character is defined in the HID Report Descriptor in the same include file, as shown
in Figure 10.

Page 14 of 17

http://www.maximintegrated.com/an3690

Figure 10. This Report Descriptor specifies the 3-byte data format for a keyboard keystroke.

Final Thoughts and a Disclaimer
The USB device that you plug into J1 could be any of the one billion or so devices available, so needless to
say, there can be a wide range of responses to host enumeration requests. Any device that has been
compliance-tested (evidenced by displaying the USB logo) should exhibit no errors when enumerated. The
error checking in this program consists of inspecting the HRSL values after every host transaction. This error
checking has not been extensively tested since many of the error conditions are difficult to force.

Appendix A
USB Bus Trace for 3420E_HIDKB.C Enumeration

Page 15 of 17

More detailed image (PDF, 234kB)

ARM is a registered trademark and registered service mark of ARM Limited.
ARM7 is a trademark of ARM Limited.
Keil is a registered trademark and registered service mark of ARM Limited.
Philips is a registered trademark of Koninklijke Philips Electronics N.V. Ltd.
Windows is a registered trademark and registered service mark of Microsoft Corporation.

Related Parts

MAX3420E USB Peripheral Controller with SPI Interface Free Samples

MAX3420E USB Peripheral Controller with SPI Interface Free Samples

MAX3420E USB Peripheral Controller with SPI Interface Free Samples

MAX3421E USB Peripheral/Host Controller with SPI Interface Free Samples

MAX3421E USB Peripheral/Host Controller with SPI Interface Free Samples

MAX3421E USB Peripheral/Host Controller with SPI Interface Free Samples

MAX3421EVKIT-1 Evaluation Kit for the MAX3421E/MAX3420E

MAX3421EVKIT-1 Evaluation Kit for the MAX3421E/MAX3420E

MAX3421EVKIT-1 Evaluation Kit for the MAX3421E/MAX3420E

MAX4793 200mA/250mA/300mA Current-Limit Switches Free Samples

MAX4793 200mA/250mA/300mA Current-Limit Switches Free Samples

MAX4793 200mA/250mA/300mA Current-Limit Switches Free Samples

Page 16 of 17

http://www.maximintegrated.com/images/appnotes/3936/3936Fig11.pdf
http://www.maximintegrated.com/images/appnotes/3936/3936Fig11.pdf
http://www.maximintegrated.com/datasheet/index.mvp/id/4751
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX3420E
http://www.maximintegrated.com/datasheet/index.mvp/id/4751
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX3420E
http://www.maximintegrated.com/datasheet/index.mvp/id/4751
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX3420E
http://www.maximintegrated.com/datasheet/index.mvp/id/3639
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX3421E
http://www.maximintegrated.com/datasheet/index.mvp/id/3639
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX3421E
http://www.maximintegrated.com/datasheet/index.mvp/id/3639
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX3421E
http://www.maximintegrated.com/datasheet/index.mvp/id/5329
http://www.maximintegrated.com/datasheet/index.mvp/id/5329
http://www.maximintegrated.com/datasheet/index.mvp/id/5329
http://www.maximintegrated.com/datasheet/index.mvp/id/3653
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX4793
http://www.maximintegrated.com/datasheet/index.mvp/id/3653
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX4793
http://www.maximintegrated.com/datasheet/index.mvp/id/3653
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX4793

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3936: http://www.maximintegrated.com/an3936
APPLICATION NOTE 3936, AN3936, AN 3936, APP3936, Appnote3936, Appnote 3936
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 17 of 17

http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an3936
http://www.maximintegrated.com/legal

	maxim-ic.com
	The Maxim USB Laboratory - Application Note - Maxim

