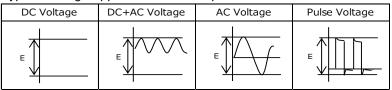
	Reference Specification
Lea	aded MLCC for Consumer Electronics & Industrial Equipment RDE Series
Product specific	cations in this catalog are as of Apr. 2024, and are subject to change or
obsolescence w	

Please refer to the product information page for more information on ceramic capacitors.→ Ceramic capacitor product information Various data can be obtained directly from the product search. \rightarrow <u>Product search (SMD)</u> / <u>Product search (Lead Type)</u>


\triangle caution

1. OPERATING VOLTAGE

Do not apply a voltage to the capacitor that exceeds the rated voltage as called out in the specifications.

- 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage.
- (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.
- (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

Typical Voltage Applied to the DC Capacitor

(E: Maximum possible applied voltage.)

1-2. Influence of over voltage

Over voltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers. The time duration until breakdown depends on the applied voltage and the ambient temperature.

Use a safety standard certified capacitor in a power supply input circuit (AC filter), as it is also necessary to consider the withstand voltage and impulse withstand voltage defined for each device.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C.

Since the self-heating is low in the Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.), the allowable power becomes extremely high compared to the Class 2 capacitors.

However, when a load with self-heating of 20°C is applied at the rated voltage, the allowable power may be exceeded. Please confirm that there is no rising trend of the capacitor's surface temperature and that the surface temperature of the capacitor does not exceed the maximum operating temperature.

Excessive generation of heat may cause deterioration of the characteristics and reliability of the capacitor.

When measuring the self-heating temperature, be aware that accurate measurement may not be possible due to the following effects.

- The heat generated by other parts
- Air flow such as convection and cooling fans
- Temperature sensor used for measuring surface temperature of capacitor In the case using a thermocouple, it is recommended that use a K thermocouple of Φ0.1mm with less heat capacity.

3. FAIL-SAFE

Capacitors that are cracked by dropping or bending of the board may cause deterioration of the insulation resistance, and result in a short.

If the circuit being used may cause an electrical shock, smoke or fire when a capacitor is shorted, be sure to install fail-safe functions, such as a fuse, to prevent secondary accidents.

4. OPERATING AND STORAGE ENVIRONMENT

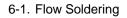
The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months. Use capacitors within 6 months after delivered. Check the solderability after 6 months or more. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high humidity conditions.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

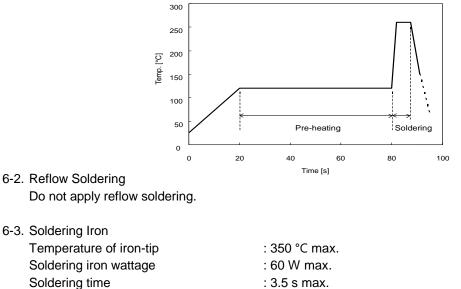
5-1. Mechanical shock due to being dropped may cause damage or a crack in the dielectric material of the capacitor.

Do not use a dropped capacitor because the quality and reliability may be deteriorated.


5-2. Excessive shock or vibration may cause to fatigue destruction of lead wires mounted on the circuit board. If necessary, take measures to hold a capacitor on the circuit boards by adhesive, molding resin or coating and other.

Please confirm there is no influence of holding measures on the product with an intended equipment.

6. SOLDERING


When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Please verify that the soldering process does not affect the quality of capacitors.

Soldering temperature Soldering time Preheating temperature Preheating time : 260 °C max. : 7.5 s max. : 120 °C max. : 60 s max.

[Standard Condition for Flow Soldering]

EGLEDMNO03C

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

The products listed in the specification(hereinafter the product(s) is called as the "Product(s)") are designed and manufactured for applications specified in the specification. (hereinafter called as the "Specific Application")

We shall not warrant anything in connection with the Products including fitness, performance, adequateness, safety, or quality, in the case of applications listed in from (1) to (11) written at the end of this precautions, which may generally require high performance, function, quality, management of production or safety.

Therefore, the Product shall be applied in compliance with the specific application.

WE DISCLAIM ANY LOSS AND DAMAGES ARISING FROM OR IN CONNECTION WITH THE PRODUCTS INCLUDING BUT NOT LIMITED TO THE CASE SUCH LOSS AND DAMAGES CAUSED BY THE UNEXPECTED ACCIDENT, IN EVENT THAT (i) THE PRODUCT IS APPLIED FOR THE PURPOSE WHICH IS NOT SPECIFIED AS THE SPECIFIC APPLICATION FOR THE PRODUCT, AND/OR (ii) THE PRODUCT IS APPLIED FOR ANY FOLLOWING APPLICATION PURPOSES FROM (1) TO (11) (EXCEPT THAT SUCH APPLICATION PURPOSE IS UNAMBIGUOUSLY SPECIFIED AS SPECIFIC APPLICATION FOR THE PRODUCT IN OUR CATALOG SPECIFICATION FORMS, DATASHEETS, OR OTHER DOCUMENTS OFFICIALLY ISSUED BY US*)

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment
- 7. Traffic control equipment
- 8. Disaster prevention/security equipment
- 9. Industrial data-processing equipment
- 10. Combustion/explosion control equipment
- 11. Equipment with complexity and/or required reliability equivalent to the applications listed in the above.

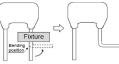
For exploring information of the Products which will be compatible with the particular purpose other than those specified in the specification, please contact our sales offices, distribution agents, or trading companies with which you make a deal, or via our web contact form.

Contact form: https://www.murata.com/contactform

*We may design and manufacture particular Products for applications listed in (1) to (11). Provided that, in such case we shall unambiguously specify such Specific Application in the specification without any exception.

Therefore, any other documents and/or performances, whether exist or non-exist, shall not be deemed as the evidence to imply that we accept the applications listed in (1) to (11).

NOTICE


1. CLEANING

- 1-1. Please evaluate the capacitor using actual cleaning equipment and conditions to confirm the quality, and select the solvent for cleaning.
- 1-2. Unsuitable cleaning may leave residual flux or other foreign substances, causing deterioration of electrical characteristics and the reliability of the capacitors.
- 1-3. To perform ultrasonic cleaning, observe the following conditions.
 Rinse bath capacity : Output of 20 watts per liter or less.
 Rinsing time : 5 min maximum.
 Do not vibrate the PCB/PWB directly.
 Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

- 2-1. Insert the lead wire into the PCB with a distance appropriate to the lead space. If the lead wires are inserted into different spacing holes, cracks may occur in the outer resin or the internal element.
- 2-2. When bending the lead wire, excessive force applied to the capacitor body may cause cracks in the outer resin or the internal element. Hold the lead wire closer to the capacitor body than the lead wire bending position with the fixture, then bend it.

(See the right figure)

- 2-3. When cutting and clinching the lead wire, do not apply excessive force to the capacitor body.
- 2-4. When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.

3. CAPACITANCE CHANGE OF CAPACITORS

Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

4. CHARACTERISTICS EVALUATION IN THE ACTUAL SYSTEM

- 4-1. Evaluate the capacitor in the actual system, to confirm that there is no problem with the performance and specification values in a finished product before using.
- 4-2. Since a voltage dependency and temperature dependency exists in the capacitance of Class 2 ceramic capacitors, the capacitance may change depending on the operating conditions in the actual system. Therefore, be sure to evaluate the various characteristics, such as the leakage current and noise absorptivity, which will affect the capacitance value of the capacitor.
- 4-3. In addition, voltages exceeding the predetermined surge may be applied to the capacitor by the inductance in the actual system.

Evaluate the surge resistance in the actual system as required.

4-4. When using Class 2 ceramic capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated. Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur.

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this product specification.

1. Application

This product specification is applied to Leaded MLCC RDE series.

1.Specific applications:

•Consumer Equipment: Products that can be used in consumer equipment such as home appliances, audio/visual equipment, communication equipment, information equipment, office equipment, and household robotics, and whose functions are not directly related to the protection of human life and property.

•Industrial Equipment: Products that can be used in industrial equipment such as base stations, manufacturing equipment, industrial robotics equipment, and measurement equipment, and whose functions do not directly relate to the protection of human life and property.

•Medial Equipment [GHTF A/B/C] except for Implant Equipment: Products suitable for use in medical devices designated under the GHTF international classifications as Class A or Class B (the functions of which are not directly involved in protection of human life or property) or in medical devices other than implants designated under the GHTF international classifications as Class C (the malfunctioning of which is considered to pose a comparatively high risk to the human body).

•Automotive infotainment/comfort equipment: Products that can be used for automotive equipment such as car navigation systems and car audio systems that do not directly relate to human life and whose structure, equipment, and performance are not specifically required by law to meet technical standards for safety assurance or environmental protection.

2. Unsuitable Application: Applications listed in "Limitation of applications" in this product specification.

2. Rating

Part Number Configuration

RDE	D7	2E	225	Μ	U	B1	H03	В
Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
	Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

Temperature Characteristics

Code	Temp. Char.	Temp. Range	Cap. Change	Standard Temp.	Operating Temp. Range
D7	X7T (EIA code)	-55~125°C	+22/-33%	25°C	-55~125°C

Rated Voltage

Code	Rated voltage
05	DO050V/
2E	DC250V
2W	DC450V
200	DC430V
21	DC630V
20	DC030V

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 225.

22 × 10⁵ = 2200000 pF

Capacitance Tolerance

Code	Capacitance Tolerance
K	+/-10%
М	+/-20%

Dimension (LxW)

Please refer to [Part number list].

Lead Style

*Lead wire is "solder coated CP wire".

Eeda miele e		
Code	Lead Style	Lead spacing (mm)
B1	Straight type	5.0+/-0.8
E1	Straight taping type	5.0+0.6/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

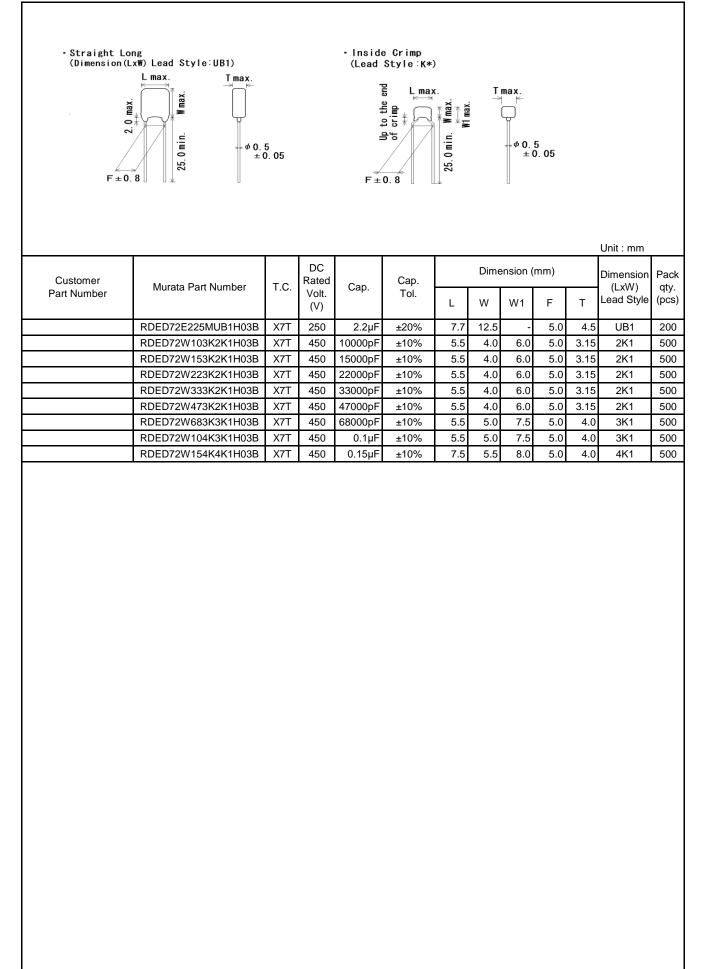
Individual Specification

Murata's control code.

Please refer to [Part number list].

Package

Code	Package
A	Taping type of Ammo
В	Bulk type


3. Marking

Temp. char.	:	Letter code: 7 (X7T char.)
Capacitance	:	3 digit numbers
Capacitance tolerance	:	Code
Rated voltage	:	Letter code : 4 (DC250V)
		Letter code : 9 (DC450V)
		Letter code : 7 (DC630V)
Company name code	:	Abbreviation : 🕑

(Ex.)

Rated voltage	DC250V	DC450V	DC630V
2	683	C ¹⁵³	Cm ¹⁵³
	K47	K97	K77
3,4	(m 334	(m 104	۲223
	K47	K97	К77
5,U	ک	&	&
	225	125	564
	M47	K97	M77

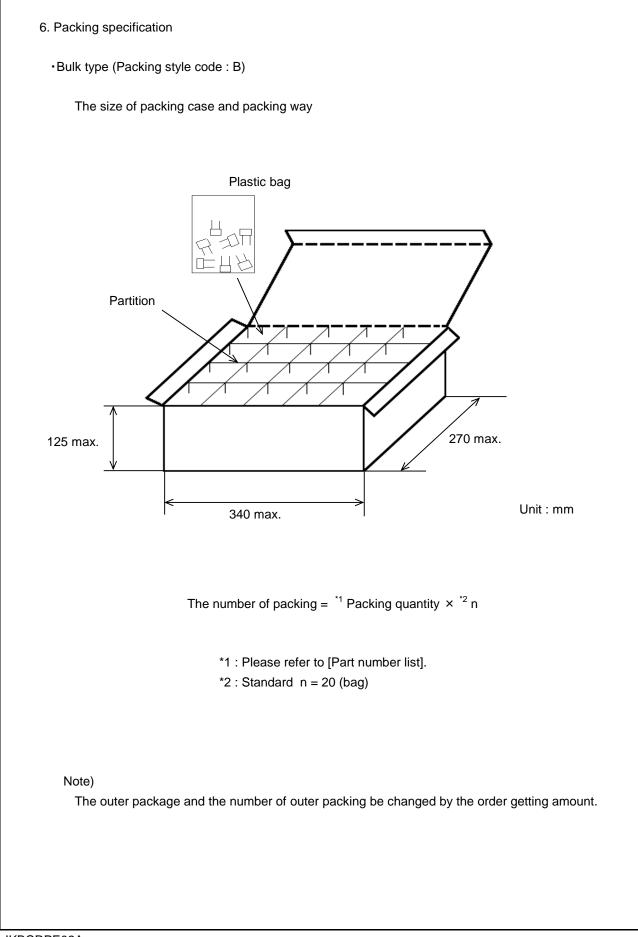
$\begin{array}{c} \cdot \text{ Inside Grimp}\\ (\text{Lead Style:K*}) \\ & & & & & & & & & & & & & & & & & & $				I CI	erence on	,							
(Lead Style: k*) = (Lead Style: B1)	. Part number list												
$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					• Straigh	it Long							
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $					(Lead 5		ax.		Tmax.				
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	o the enc					5 max.	W max.						
F ± 0.8 S S S S S Customer Part Number Murata Part Number T.C. DC Rated Voit. (V) Cap. (V) Cap. Tol. Dimension (mm) Dimension (LSW) Part Lead Style Part Lead Style <td>up of c</td> <td>÷ • 0.5</td> <td>05</td> <td></td> <td></td> <td>1.5</td> <td>min.</td> <td></td> <td>φ (</td> <td>). 5</td> <td></td> <td></td> <td></td>	up of c	÷ • 0.5	05			1.5	min.		φ (). 5			
Customer Part Number Murata Part Number T.C. Nurata Part Number DC Rated Volt. (V) Cap. Cap. Volt. (V) Dimension L W W1 F T Dimension (LXW) Part Part RDED72E333K2K1H03B X7T 250 33000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E104K3K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0	E+0.8	.0± 52.0	05			F+0.8	25.0		-	⊧0.05			
$ \begin{array}{c} \mbox{Customer} \\ \mbox{Part Number} \\ \mbo$	1 ± 0. 0								ŭ				
$ \begin{array}{c} \mbox{Customer} \\ \mbox{Part Number} \\ \mbo$													
Customer Part Number Murata Part Number T.C. Rated Volt. (V) Cap. (V) Cap. Tol. Cap. Tol. Cap. Tol. Cap. Tol. Cap. Tol. Cap. Tol. Cap. L W W1 F T Cap. (LxW) Murata Part Number Murata Part Number Rated Volt. (V) Cap. Volt. (V) Tol. L W W1 F T Cap. (LxW) Murata Part Number Rue Cap. Volt. (V) Tol. L W W1 F T Cap. (LxW) Murata Part Number Murat Part Number Murat Part Number Murata Part Part Number Murata Part Number Murata Part Part Part Part Part Part Part				DC				Dime	ansion (mm)			_
RDED72E333K2K1H03B X7T 250 33000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E154K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E224K4K1H03B X7T 250 0.22µF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 50		Murata Part Number	T.C.	Rated	Cap.					-	_	(LxW)	qty
RDED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E154K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E224K4K1H03B X7T 250 0.22µF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 50 RDED72E334K4K1H03B X7T 250 0.33µF ±10% 7.5 5.0 4.0 4K1 50 RDED72E474K5B1H03B X7			V7T		22000pE	109/					-		
RDED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 50 RDED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E154K3K1H03B X7T 250 0.15µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E224K4K1H03B X7T 250 0.22µF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 50 RDED72E334K4K1H03B X7T 250 0.33µF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 50 RDED72E374K4K5B1H03B X7T 250 0.47µF ±10% 7.5 7.5 5.0 4.5 5B1 50 RDED72E684K5B1H03B<													
RDED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E154K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 50 RDED72E224K4K1H03B X7T 250 0.22µF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 50 RDED72E334K4K1H03B X7T 250 0.33µF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 50 RDED72E374K5B1H03B X7T 250 0.47µF ±10% 7.5 7.5 5.0 4.0 4K1 50 RDED72E474K5B1H03B X7T 250 0.48µF ±10% 7.5 7.5 5.0 4.5 5B1 50 RDED72E684K5B1H03B X7T													50
RDED72E224K4K1H03B X7T 250 0.22µF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 50 RDED72E334K4K1H03B X7T 250 0.33µF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 50 RDED72E334K4K1H03B X7T 250 0.47µF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 50 RDED72E474K5B1H03B X7T 250 0.47µF ±10% 7.5 7.5 5.0 4.5 5B1 50 RDED72E684K5B1H03B X7T 250 0.68µF ±10% 7.5 7.5 5.0 4.5 5B1 50				250				5.0					
RDED72E334K4K1H03B X7T 250 0.33µF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 50 RDED72E474K5B1H03B X7T 250 0.47µF ±10% 7.5 7.5 - 5.0 4.0 4K1 50 RDED72E474K5B1H03B X7T 250 0.47µF ±10% 7.5 7.5 - 5.0 4.5 5B1 50 RDED72E684K5B1H03B X7T 250 0.68µF ±10% 7.5 7.5 - 5.0 4.5 5B1 50													
RDED72E474K5B1H03B X7T 250 0.47µF ±10% 7.5 7.5 - 5.0 4.5 5B1 50 RDED72E684K5B1H03B X7T 250 0.68µF ±10% 7.5 7.5 - 5.0 4.5 5B1 50													
RDED72E684K5B1H03B X7T 250 0.68µF ±10% 7.5 7.5 - 5.0 4.5 5B1 50					-				8.0				_
									-				
									-				

$ \frac{1}{2} 1$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Customer Part Number Murata Part Number T.C. DC Rated Volt. (V) Cap. Cap. Volt. (V) Cap. Tol. Dimension (mm) Dimension (LxW) Lad Style Part Number RDED72W224K5B1H03B X7T 450 0.22µF ±10% 7.5 7.5 5.0 4.5 5B1 55 RDED72W334K5B1H03B X7T 450 0.33µF ±10% 7.5 7.5 5.0 4.5 5B1 55 RDED72W334K5B1H03B X7T 450 0.47µF ±10% 7.5 7.5 5.0 4.5 5B1 55 RDED72W564K5B1H03B X7T 450 0.56µF ±10% 7.5 7.5 5.0 4.5 5B1 55 RDED72W564K5B1H03B X7T 450 0.56µF ±10% 7.5 7.5 5.0 4.5 5B1 55 RDED72W105MUB1H03B X7T 450 1.0µF ±20% 7.7 12.5 5.0 4.5 5B1 55
Customer Part Number Murata Part Number T.C. Rated Volt. (V) Cap. Volt. (V) Cap. Tol. Cap. Tol. Cap. Tol. Cap. Tol. Cap. Tol. <t< th=""></t<>
RDED72W334K5B1H03B X7T 450 0.33µF ±10% 7.5 - 5.0 4.5 5B1 5 RDED72W474K5B1H03B X7T 450 0.47µF ±10% 7.5 7.5 - 5.0 4.5 5B1 5 RDED72W474K5B1H03B X7T 450 0.47µF ±10% 7.5 7.5 - 5.0 4.5 5B1 5 RDED72W564K5B1H03B X7T 450 0.56µF ±10% 7.5 7.5 - 5.0 4.5 5B1 5 RDED72W105MUB1H03B X7T 450 1.0µF ±20% 7.7 12.5 - 5.0 4.5 UB1 2
RDED72W334K5B1H03B X7T 450 0.33μF ±10% 7.5 7.5 - 5.0 4.5 5B1 5 RDED72W474K5B1H03B X7T 450 0.47μF ±10% 7.5 7.5 - 5.0 4.5 5B1 5 RDED72W474K5B1H03B X7T 450 0.47μF ±10% 7.5 7.5 - 5.0 4.5 5B1 5 RDED72W564K5B1H03B X7T 450 0.56μF ±10% 7.5 7.5 - 5.0 4.5 5B1 5 RDED72W105MUB1H03B X7T 450 1.0μF ±20% 7.7 12.5 - 5.0 4.5 UB1 2
RDED72W474K5B1H03B X7T 450 0.47μF ±10% 7.5 7.5 - 5.0 4.5 5B1 55 RDED72W564K5B1H03B X7T 450 0.56μF ±10% 7.5 7.5 - 5.0 4.5 5B1 55 RDED72W105MUB1H03B X7T 450 1.0μF ±20% 7.7 12.5 - 5.0 4.5 UB1 2
RDED72W564K5B1H03B X7T 450 0.56μF ±10% 7.5 7.5 - 5.0 4.5 5B1 5 RDED72W105MUB1H03B X7T 450 1.0μF ±20% 7.7 12.5 - 5.0 4.5 UB1 2
RDED72W105MUB1H03B X7T 450 1.0µF ±20% 7.7 12.5 - 5.0 4.5 UB1 2
RDED72W125MUB1H03B X7T 450 1.2µF ±20% 7.7 12.5 - 5.0 4.5 UB1 2

4		5). 05										
			DC				<u> </u>	. ,	, <u>,</u>		Unit : mm	
Customer Part Number	Murata Part Number	T.C.	Rated Volt. (V)	Cap.	Cap. Tol.	L	Dime	ension (W1	(mm) F	т	Dimension (LxW) Lead Style	qt
	RDED72J474MUB1H03B	X7T	630	0.47µF	±20%	7.7	13.0	-	5.0	4.5	UB1	20
	RDED72J564MUB1H03B	X7T	630	0.56µF	±20%	7.7	13.0	-	5.0	4.5	UB1	20

• Inside Cr (Lead Styl		ight Tapi d Style∶E											
		T					L	max.		T_max.			
		Ĭ	τ. -		H ± 0.5		F±0:6						
												Unit : mm	
Customer			DC Rated		Cap.		Di	imensi	on (mn	n)		Dimension	Pa
Part Number	Murata Part Number	T.C.	Volt. (V)	Cap.	Tol.	L	W	W1	F	т	H/H0	(LxW) Lead Style	qi (p
	RDED72E333K2M1H03A	X7T	250	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDED72E473K2M1H03A	X7T	250	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDED72E683K2M1H03A	X7T	250	68000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDED72E104K3M1H03A	X7T	250	0.1µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	20
	RDED72E154K3M1H03A	X7T	250	0.15µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	20
	RDED72E224K4M1H03A	X7T	250	0.22µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	15
	RDED72E334K4M1H03A	X7T	250	0.33µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	15
	RDED72E474K5E1H03A	X7T	250	0.47µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	15
	RDED72E684K5E1H03A	X7T	250	0.68µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	15
	RDED72E105K5E1H03A	X7T	250	1.0µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	15
	RDED72E225MUE1H03A	X7T	250	2.2µF	±20%	7.7	12.5	-	5.0	4.5	17.5	UE1	10
	RDED72W103K2M1H03A	X7T	450	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDED72W153K2M1H03A	X7T	450	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDED72W223K2M1H03A	X7T	450	22000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDED72W333K2M1H03A	X7T	450	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDED72W473K2M1H03A	X7T	450	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDED72W683K3M1H03A	X7T	450	68000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	20
	RDED72W104K3M1H03A		450	0.1µF	±10%	5.5					16.0		20
	RDED72W154K4M1H03A RDED72W224K5E1H03A	X7T X7T	450 450	0.15µF 0.22µF	±10% ±10%	7.5 7.5		8.0	5.0 5.0	4.0 4.5	16.0 17.5		15
	RDED72W224K5E1H03A	X7T	450	0.22µi	±10%	7.5			5.0	4.5	17.5		15
	RDED72W334K5E1H03A	X7T	450	0.35µr 0.47µF	±10%	7.5			5.0	4.5	17.5		15
	RDED72W564K5E1H03A	X7T	450	0.56µF	±10%	7.5		-	5.0	4.5	17.5		15
	RDED72W105MUE1H03A		450	1.0µF	±20%	7.7		-	5.0	4.5	17.5	UE1	15
	RDED72W125MUE1H03A		450	1.2µF	±20%	7.7		-	5.0	4.5	17.5	UE1	10
	RDED72J103K2M1H03A	X7T	630	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDED72J153K2M1H03A	X7T	630	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDED72J223K3M1H03A	X7T	630	22000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	20
	RDED72J333K3M1H03A	X7T	630	33000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	20
	RDED72J473K3M1H03A	X7T	630	47000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	20
	RDED72J683K4M1H03A	X7T	630	68000pF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	15
	RDED72J104K5E1H03A	X7T	630	0.1µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	15
	RDED72J154K5E1H03A	X7T	630	0.15µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	15
	RDED72J224K5E1H03A	X7T	630	0.22µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	15
	RDED72J274K5E1H03A RDED72J474MUE1H03A	X7T X7T	630 630	0.27µF 0.47µF	±10% ±20%	7.5 7.7	8.0 13.0	-	5.0 5.0	4.5 4.5	17.5 17.5	5E1 UE1	15 10

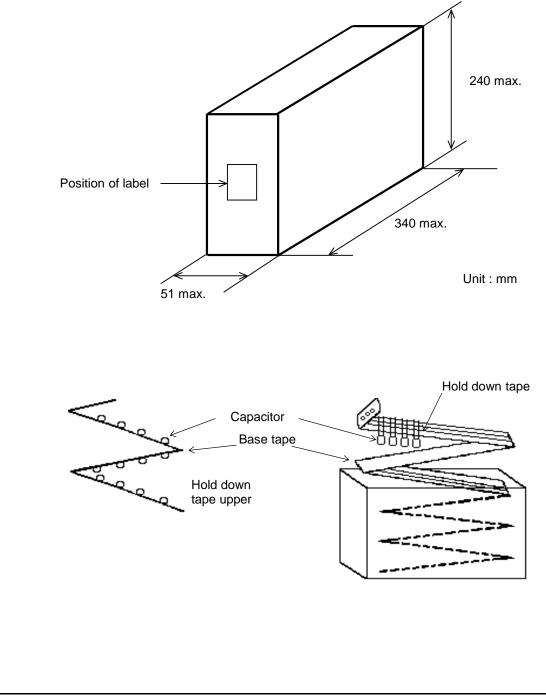
ре).	cification Tes	t Item	Specification	Test Method (Ref. Standard:JIS C 5101(all parts), IEC60384(all parts)					
0. 1	Appearance		No defects or abnormalities.	Visual inspection.					
2	Dimension and	d Marking	Within the specified dimensions and Marking.	Visual inspection, Using Caliper. The capacitor should not be damaged when voltage					
3	Dielectric	Between	No defects or abnormalities.	The capacitor sho	ould not be da	amaged when voltage			
	Strength	Terminals		in Table is applied	d between the	e terminations for 1 to 5 seco	nds.		
				(Charge/Discharg	ge current \leq	50mA.)			
				Ra	ated voltage	Test voltage]		
				I	DC250V	200% of the rated voltage]		
				1	DC450V	150% of the rated voltage			
				1	DC630V	120% of the rated voltage			
		Terminal To	No defects or abnormalities.	The capacitor is r	placed in a co	ntainer with metal balls of 1m	m diameter		
		External Resin				cuit, is kept approximately 2n			
						pressed for 1 to 5 seconds t			
				capacitor termina	als and metal	balls.			
				(Charge/Discharg	ge current \leq	50mA.)			
				Ra	ated voltage	Test voltage			
					250V·DC450		tage		
					DC630V	DC1300V			
4	Insulation	Between	10,000M Ω or 100M Ω ·µF min.			ld be measured with			
	Resistance	Terminals	(Whichever is smaller)	DC500V (DC250)		-			
	(I.R.)			DC250V, DC450	,				
				humidity and with (Charge/Discharg					
5	Capacitance	1	Within the specified tolerance.	, o	·	be measured at 25°C			
0	oupuonanoo			-		hown in the table.			
6	Dissipation Fa	ctor	0.01 max.						
	(D.F.)			Ito	Char. em	X7T			
	. ,				Frequency	1±0.1kHz			
					Voltage	AC1±0.2V(r.m.s.)			
					Voltage	NO120.27(I.III.3.)			
7	Capacitance		within +22/-33%	The capacitance	change shou	ld be measured at each speci	ified		
	Temperature			temperature stage	je.				
	Characteristic	6			Step	Temperature(°C)			
					1	25±2			
					2	-55±3			
					3	25±2			
					4	125±3			
					5	25±2			
				Pretreatment					
					eatment at 1	50+0/-10°C for one			
				hour and then set at *room condition for 24 ± 2 hours.					
8	Terminal	Tensile	Termination not to be broken or loosened.						
	Strength	Strength		apply the force gradually to each lead					
				in the radial direct	ction of the ca	pacitor			
				until reaching 10N	N and then ke	ep 💋			
				the force applied	for 10±1 seco	onds.			
		Bending	Termination not to be broken or loosened.			ected to a force of			
		Strength		2.5N and then be bent 90° at the point of egress in					
				one direction. Each wire is then returned to the					
				original position and bent 90° in the opposite					
_	N (1)					d per 2 to 3 seconds.			
9	Vibration	Appearance	No defects or abnormalities.	The capacitor sho	-	-			
	Resistance	Capacitance	Within the specified tolerance.		-	I amplitude of 1.5mm,			
		D.F.	0.01max.		-	formly between the			
				approximate limits					
					-	Hz to 55Hz and return			
					mayersed in a	approximately 1 minute.			
						,			
				This motion shall	be applied fo	r a period of 2 hours in directions (total of 6 hours).			


0.	I Çal	Test Item Specification		Test Method (Ref. Standard:JIS C 5101(all parts), IEC60384 (all parts							
0	Solderability		Solder is deposited on unintermittently								
-			immersed portion in axial direction			sin in weight					
			covering 3/4 or more in circumferential			er solution for		nds.			
			direction of lead wires.			e depth of dip					
						the terminal					
						: 245±5°C (S		iCu)			
1-1	Resistance	Appearance	No defects or abnormalities.			-		melted solde	er		
	to Soldering	Capacitance	Within ±10%	1.5 to 2	2.0mm fro	m the root of	terminal at 2	260±5°C for 1	0±1 seconds	j.	
	Heat	Change									
	(Non-	Dielectric	No defects.	• Pre-tr	eatment						
	Preheat)	Strength		Capaci	tor should	d be stored a	t 150+0/-10°	°C for one hou	ir, then place)	
		(Between		at *roor	m conditio	on for 24±2 h	ours before i	nitial measure	ement.		
		terminals)		Post-t	treatment						
				Capaci	tor should	d be stored fo	r 24±2 hour	s at *room co	ndition.		
1-2	Resistance	Appearance	No defects or abnormalities.	First the	e capacit	or should be	stored at 120	0+0/-5°C for 6	0+0/-5 secon	nds.	
	to Soldering	Capacitance	Within ±10%	Then, t	he lead w	rires should b	e immersed	in the melted	solder		
	Heat	Change		1.5 to 2	2.0mm fro	m the root of	terminal at 2	260±5°C for 7	.5+0/-1 secor	nds.	
	(On-	Dielectric	No defects.								
	Preheat)	Strength		• Pre-tr	eatment						
		(Between		Capaci	tor should	d be stored a	t 150+0/-10°	°C for one hou	ir, then place	÷	
		terminals)		at *roor	m conditio	on for 24±2 h	ours before i	nitial measure	ement.		
				 Post-t 	treatment						
				Capaci	tor should	d be stored fo	r 24±2 hour	s at *room co	ndition.		
1-3	Resistance	Appearance	No defects or abnormalities.	Test co	ondition						
	to Soldering	Capacitance	Within ±10%	Termperature of iron-tip : 350±10°C Soldering time : 3.5±0.5 seconds							
	Heat	Change									
	(soldering	Dielectric	No defects.	Solderi	ng positio	on					
	iron method)	Strength		Straig	ht Lead :	1.5 to 2.0mm	from the ro	ot of terminal.			
		(Between		Crimp	Lead : 1	.5 to 2.0mm f	rom the end	of lead bend.			
		terminals)									
				 Pre-tr 	eatment						
				Capaci	tor should	d be stored a	t 150+0/-10°	°C for one hou	ir, then place	;	
							ours before i	nitial measure	ement.		
					treatment						
10	-			-				s at *room co	ndition.		
	Temperature	Appearance	No defects or abnormalities.		-	according to	the 4 heat tr	reatments			
	Cycle	Capacitance	Within ±12.5%			wing table.	0 h a				
		Change	0.01	Set at	room cor	ndition for 24		en measure.		,	
		D.F.	0.01max.	-	Step	1	2	3	4		
		I.R.	1 ,000MΩ or 50MΩ • μF min. (Whichever is smaller)		Temp.	Min.	Room	Max.	Room		
		Dielectric	No defects or abnormalities.	-	(°C)	Operating Temp. ±3	Temp.	Operating Temp. ±3	Temp.		
		Strength			Time					1	
		(Between			Time (min.)	30±3	3 max.	30±3	3 max.	1	
		(Between Terminals)		l				1		1	
				• Pretre	eatment						
						reatment at 1	50+0/-10°C	for one			
						et at *room co					
13	Humidity	Appearance	No defects or abnormalities.			r at 40±2°C a					
	(Steady	Capacitance	Within ±12.5%			5% for 500+24					
	State)	Change						±2 hours, the	n measure.		
	,	D.F.	0.02 max.					, -			
		I.R.	1,000MΩ or 50MΩ • μF min.	Pretre	eatment						
			(Whichever is smaller)			reatment at 1	50+0/-10°C	for one			
			· · · · · · · · · · · · · · · · · · ·			et at *room co					
"roor	n condition" T	emperature : 1!	5 to 35°C, Relative humidity : 45 to 75%, Ati								
					F. SSOULO						

Reference only

1

No.	Tes	t Item	Specification	Test Method (Ref. Standard:JIS C 5101(all parts), IEC60384 (all					
14	Humidity	Appearance	No defects or abnormalities.	Apply the rated voltage at 40±2°C and relative					
	Load	Capacitance	Within ±12.5%	humidity of 90 to	95% for 500+24	/-0 hours.			
		Change		Remove and set	at *room condition	on for 24 ± 2 hours, then measure.			
		D.F.	0.02 max.	(Charge/Discharg	ge current \leq 50r	nA.)			
		I.R.	500MΩ or 25MΩ • μF min.						
			(Whichever is smaller)	 Pretreatment 					
				Perform a heat tr	reatment at 150+	0/-10°C for one			
				hour and then se	et at *room condit	ion for 24±2 hours.			
15	High	Appearance	No defects or abnormalities.	Apply voltage in	Table for 1000+4	8/-0 hours at the			
	Temperature	Capacitance	Within ±12.5%	maximum operat	ting temperature	ture ±3°C.			
	Load	Change		Remove and set	at *room condition	on for 24±2 hours, then measure.			
		D.F.	0.02 max.	(Charge/Discharge current \leq 50mA.)					
		I.R.	1 ,000MΩ or 50MΩ •μF min.	F	Rated voltage	Test voltage			
			(Whichever is smaller)		DC250V	150% of the rated voltage			
					DC450V	130% of the rated voltage			
					DC630V	120% of the rated voltage			
				 Pretreatment 					
						test temperature.			
						on for 24±2 hours.			
16	Solvent	Appearance	No defects or abnormalities.		•	ersed, unagitated,			
	Resistance	Marking	Legible.	ů.	to 25°C for 30±5				
				а, ,	Aarking on the su				
				capacitor shall in	nmendiately be vi	isually examined.			
	1	1							


* "room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

-Ammo pack taping type (Packing style code : A)

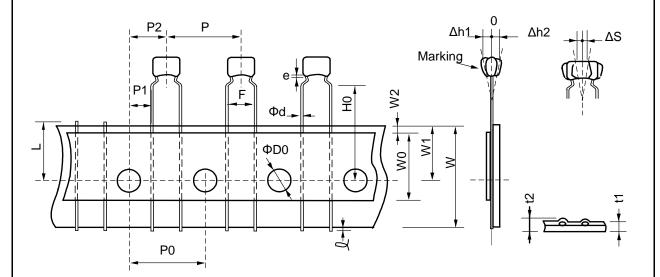
A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

The size of packing case and packing way

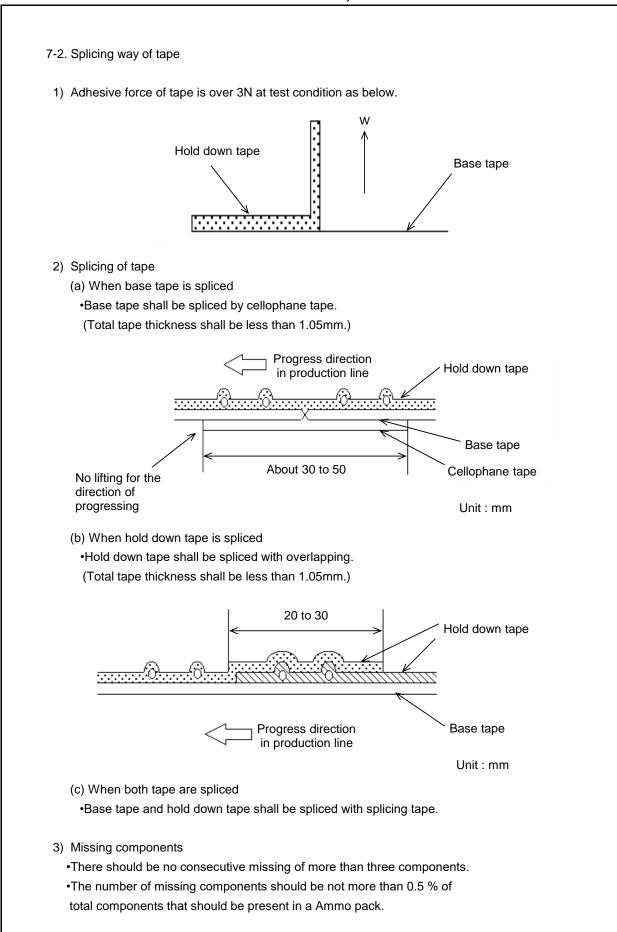
7. Taping specification

7-1. Dimension of capacitors on tape

Straight taping type < Lead Style : E1 >


Pitch of component 12.7mm / Lead spacing 5.0mm

Unit : mm


			Unit : mm
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7]
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
For straight lead type	Н	17.5+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	ΦD0	4.0+/-0.1	
Lead diameter	Φd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness.
Deviation coroop topo	∆h1	2.0 max. (Dime	ension code : U)
Deviation across tape	∆h2	1.0 max. (exce	pt as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	2.0 max. (Dime 1.5 max. (exce	ension code:U) pt as above)

Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

Unit : mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	HO	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	ΦD0	4.0+/-0.1	
Lead diameter	Φd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation corose tone	∆h1	2.0 max. (D	imension code : W)
Deviation across tape	∆h2	1.0 max. (e)	(cept as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of	crimp

