Safety Standard Recognized, C700, Encapsulated, KJY Type, X1 440/400 VAC/Y2 300/250 VAC (Industrial Grade) #### **Overview** KEMET's C700 encapsulated radial leaded ceramic disc capacitors are specifically designed for interference-suppression AC line filtering applications. Having internationally recognized safety certifications, these capacitors are well-suited for applications that require keeping potentially disruptive or damaging line transients and EMI out of susceptible equipment. They are also an ideal solution when needing to suppress line disturbances at the source. Safety Certified Capacitors are classified as either X and/or Y capacitors. Class X capacitors are primarily used in line-to-line (across-the-line) applications. In this application, there is no danger of electric shock to humans should the capacitor fail, but could result in a risk of fire. The class Y capacitor is primarily used in line-to-ground (line by-pass) applications. In this application, failure of the capacitor could lead to danger of electric shock. With a working voltage of 440/400 VAC in line-to-line (Class X) and 300/250 VAC in line-to-ground (Class Y) applications, these safety capacitors meet the impulse test criteria outlined in IEC Standard 60384. Meeting subclass X1 and Y2 requirements, these devices are certified to withstand impulses up to 4 KV (X1) and 5 KV (Y2) respectively. These encapsulated devices also meet the flame test requirements outlined in UL Standard 94 V-0. #### **Benefits** - Safety standard recognized (IEC 60384-14) - Reliable operation up to 125°C - Class X1 440/400 VAC/Y2 300/250 VAC - 5.0 mm, 7.5 mm, 10 mm, and 12.5mm lead spacing - Lead(Pb)-free and RoHS Compliant - Halogen-free - · Capacitance offerings ranging from 100 pF up to 10 nF - Available capacitance tolerances of ±5%, ±10%, and ±20% - · High-reliability - · Preformed (crimped) or straight lead configurations - · Non-polar device, minimizing installation concerns - Encapsulation meets flammability standard UL 94 V-0 ## **Applications** Typical applications include: - · Line-to-line (Class X) filtering - · Line-to-ground (Class Y) filtering - Antenna coupling - Primary and secondary coupling (switching power supplies) - Line disturbances suppression (motors and motor controls, relays, switching power supplies and invertors) ## **Ordering Information** | C7 | 8 | 1 | U | 103 | M | Υ | V | D | Α | A | 7301 | |------------------------|--|--|---------------|---|--------------------------|--|---|-------------|---|-----------------|---| | Ceramic
Series | Body
Diameter | Lead
Spacing ^{1,2,3} | Spec. | Capacitance
Code (pF) | Capacitance
Tolerance | Rated
Voltage | Dielectric/
Temp. Char. | Design | Lead
Configuration ^{1,3} | Failure
Rate | Packaging
(C-Spec) | | C7 =
Ceramic
700 | 0 = 7.0 mm
1 = 8.0 mm
2 = 9.0 mm
3 = 10.0 mm
4 = 11.0 mm
5 = 12.0mm
6 = 13.0 mm
7 = 14.0 mm
8 = 15.0 mm
9 = 16.0 mm | 5 = 5.0 mm
7 = 7.5 mm
1 = 10.0 mm
2 = 12.5 mm | U =
Safety | Two
significant
digits and
Number of
zeroes | K = ±10%
M = ±20% | Y = X1
400
VAC/
Y2 250
VAC
Z = X1
440
VAC/
Y2 300
VAC | S = SL
Y = Y5P
W = Y5U
V = Y5V | D =
Disc | A = Straight B = Vertical Kink C = Outside Kink D = Inside Kink | A =
N/A | See "Packaging C-Spec Ordering Options Table" below | ¹ Due to a high risk of arcing, "Inside Kink" lead configuration cannot be combined with the 5 mm lead spacing option. The "Inside Kink" option is only available on capacitors with lead spacing of 7.5 mm or greater. A potential for arcing may exist when combining the "Inside Kink" lead configuration with a 7.5 mm lead spacing option, especially in high humidity environments and/or when exposure to voltages and transients may impact creepage and clearance requirements. ## **Packaging C-Spec Ordering Options Table** | Packaging Type | Lead Length
(mm) ^{2,3} | Packaging
Ordering Code (C-Spec) | |----------------|------------------------------------|-------------------------------------| | Reel | See Note 2 | 7301 | | Ammo Pack | See Note 2 | 7317 | | | 3.5 ±1.0 | WL35 | | Bulk Bag | 5.0 ±1.0 | WL50 | | | 25.0 mm Minimum | WL25 | ¹ For nonstandard lead length inquiries, please contact KEMET. ² Capacitor body diameter will limit available lead spacing and packaging options. See "Dimensions" and "Product Ordering Codes and Ratings" sections of this document to determine availability. ³ Bulk packaging lead length availability is dependent upon "Lead Configuration" and "Lead Spacing." See "Dimensions" section of this document to verify availability of a specific lead length option. For nonstandard lead length inquiries, please contact KEMET. $^{^{2}}$ Lead length for ammo and reel pack packaging is defined by the H and H0 dimensions in Table 3. ## **Lead Configurations** ¹Due to a high risk of arcing, the "Inside Kink" lead configuration option cannot be combined with 5 mm lead spacing ("S" dimension above). The "Inside Kink" option is only available on devices with lead spacing of 7.5 mm, 10 mm, or 12.5 mm. #### **Dimensions - Millimeters** | | Lead | S | Lead | D | Т | V | F | |----------------------------|---------------|------------------------------|----------------------|---------------------------------|-------------------------------|-----------|------------------| | Lead
Configuration | Configuration | Lead
Spacing ² | Spacing
Tolerance | Body
Diameter ² | Body
Thickness | Width | Lead
Diameter | | | | 5.0 | | | | | | | Straight | A | 7.5 | | | | | | | Straight | A | 10.0 | | See Table 1 - "Product Ordering | | | | | | | 12.5 | | | | | | | | В | 5.0 | | | | | | | Vertical Kink | | 7.5 | ±1.0 | | | | | | (Preformed) | | 10.0 | | | | | | | | | 12.5 | | | roduct Ordering
d Ratings" | 2.1 ± 0.5 | 0.60 ±0.1 | | | | 5.0 | | oodes and Natings | | | | | Outside Kink | С | 7.5 | | | | | | | (Preformed) | C | 10.0 | | | | | | | | | 12.5 | | | | | | | Incido Kink | | 7.5 | | | | | | | Inside Kink
(Preformed) | D | 10.0 | | | | | | | (i reformed) | | 12.5 | | | | | | ¹Lead Configuration is identified in the 13th character of the ordering code. See "Lead Configuration" and "Ordering Information" sections of this document for further details. ² Body diameter of capacitor will limit available lead spacing and packaging options. See "Product Ordering Codes and Ratings" sections of this document for further details. ## **Approval Standard and Certification No.** | Safety Standard | Standard No. | Subclass | Working Voltage | Certificate No. | | |-----------------|-----------------|----------|-----------------|------------------|--| | TUV | IEC 60384-14 | X1 | | R50466992 | | | 100 | IEC 00364-14 | Y2 | 250 VAC | <u>K30400992</u> | | | TUV | IFO 60004 14 | X1 | 440 VAC | DE0.46.6000 | | | 100 | IEC 60384-14 | Y2 | 300 VAC | R50466992 | | | UL | UL 60384-14 and | X1 | 400 VAC | F2F(200 | | | CAN/CSA | E60384-14 | Y2 | 250 VAC | <u>E356389</u> | | | UL | UL 60384-14 and | X1 | 440 VAC | F256200 | | | CAN/CSA | E60384-14 | Y2 | 300 VAC | E356389 | | These devices are TUV and UL recognized for antenna coupling and AC line-to-line (Class X) and line-to-ground (Class Y) applications per IEC60384-14 and UL 60384-14. # **Environmental Compliance** These devices are Halogen-free and RoHS Compliant. They meet all requirements set forth by both EU and China RoHS directives. ## Table 1A - X1 400 Y2 250 Product Ordering Codes and Ratings | | | | | I | Dimensions (mm |) | | |----------------------------|-----------------------|-------------|--------------------------|----------------------------|-----------------------------|---------------|--------------------------------------| | Dielectric/
Temp. Char. | KEMET
Part Number | Capacitance | Capacitance
Tolerance | Body Diameter
(Maximum) | Body Thickness
(Maximum) | Lead Diameter | Lead Spacing | | | C71(1)U101KYYD(2)A(3) | 100 pF | | | | | | | | C71(1)U151KYYD(2)A(3) | 150 pF | | | | | | | | C71(1)U181KYYD(2)A(3) | 180 pF | | 8.0 | | | | | | C71(1)U221KYYD(2)A(3) | 220 pF | | 0.0 | | | | | Y5P | C71(1)U331KYYD(2)A(3) | 330 pF | ±10% | | | | 5 mm
7.5 mm
10.0 mm
12.5 mm | | | C71(1)U471KYYD(2)A(3) | 470 pF | | | 5.0 | 0.60 ± 0.1 | | | | C72(1)U561KYYD(2)A(3) | 560 pF | | 9.0 | | | | | | C72(1)U681KYYD(2)A(3) | 680 pF | | | | | | | | C73(1)U102KYYD(2)A(3) | 1000 pF | | 10.0 | | | | | | C71(1)U102MYWD(2)A(3) | 1000 pF | | 8.0 | | | | | | C72(1)U152MYWD(2)A(3) | 1500 pF | ±20% | 9.0 | | | | | | C73(1)U222MYWD(2)A(3) | 2200 pF | | 10.0 | | | | | Y5U | C74(1)U252MYWD(2)A(3) | 2500 pF | | 11.0 | | | | | | C75(1)U332MYWD(2)A(3) | 3300 pF | | 12.0 | | | | | | C76(1)U392MYWD(2)A(3) | 3900 pF | | 13.0 | | | | | | C77(1)U472MYWD(2)A(3) | 4700 pF | | 14.0 | | | | | | C71(1)U102MYVD(2)A(3) | 1000 pF | | 8.0 | | | | | | C71(1)U152MYVD(2)A(3) | 1500 pF | | | | | | | | C72(1)U222MYVD(2)A(3) | 2200 pF | | 9.0 | | | | | | C73(1)U252MYVD(2)A(3) | 2500 pF | | 10.0 | | | | | | C73(1)U332MYVD(2)A(3) | 3300 pF | | | | | | | Y5V | C74(1)U392MYVD(2)A(3) | 3900 pF | ±20% | 11.0 | | | | | | C75(1)U472MYVD(2)A(3) | 4700 pF | | 12.0 | | | | | | C76(1)U502MYVD(2)A(3) | 5000 pF | | 13.5 | | | | | | C77(1)U562MYVD(2)A(3) | 5600 pF | | 14.0 | | | | | | C78(1)U682MYVD(2)A(3) | 6800 pF | | 15.0 | | | | | | C79(1)U103MYVD(2)A(3) | 10000 pF | | 16.0 | | | | | Dielectric/
Temp. Char. | KEMET
Part Number | Capacitance | Capacitance
Tolerance | Body Diameter
(Maximum) | Body Thickness
(Maximum) | Lead Diameter | Lead Spacing | ⁽¹⁾ To properly complete ordering code, insert the one-digit numeric code to reflect required lead spacing: (Note that select capacitance values and packaging options may limit lead spacing availability. See table above to verify availability.) - 5 = 5.0 mm 7 = 7.5mm 1 = 10.0 mm - 2 = 12.5 mm - A = Straight - B = Vertical Kink - C = Outside Kink - D = Inside Kink ⁽²⁾ To properly complete ordering code, insert the one-digit character code to reflect the required lead configuration: (See "Lead Configuration" section of this document, page 2, for further details.) ⁽³⁾ To properly complete ordering code, enter the four-digit numeric or alphanumeric "Packaging C-Spec Ordering Code." See "Dimensions" section of this document, page 2, for available options. ## Table 1B - X1 440 Y2 300 Product Ordering Codes and Ratings | | | | | I | Dimensions (mm |) | | |----------------------------|-----------------------|-------------|--------------------------|----------------------------|-----------------------------|---------------|------------------------------| | Dielectric/
Temp. Char. | KEMET
Part Number | Capacitance | Capacitance
Tolerance | Body Diameter
(Maximum) | Body Thickness
(Maximum) | Lead Diameter | Lead Spacing | | | C71(1)U101KZYD(2)A(3) | 100 pF | | | | | | | | C71(1)U151KZYD(2)A(3) | 150 pF | | | | | | | | C71(1)U181KZYD(2)A(3) | 180 pF | | 8.0 | | | | | | C71(1)U221KZYD(2)A(3) | 220 pF | | 0.0 | | | | | Y5P | C71(1)U331KZYD(2)A(3) | 330 pF | ±10% | | | | 7.5 mm
10.0 mm
12.5 mm | | | C71(1)U471KZYD(2)A(3) | 470 pF | | | 5.0 | 0.60 ± 0.1 | | | | C72(1)U561KZYD(2)A(3) | 560 pF | | 9.0 | | | | | | C72(1)U681KZYD(2)A(3) | 680 pF | | | | | | | | C73(1)U102KZYD(2)A(3) | 1000 pF | | 10.0 | | | | | | C71(1)U102MZWD(2)A(3) | 1000 pF | ±20% | 8.0 | | | | | | C72(1)U152MZWD(2)A(3) | 1500 pF | | 9.0 | | | | | | C73(1)U222MZWD(2)A(3) | 2200 pF | | 10.0 | | | | | Y5U | C74(1)U252MZWD(2)A(3) | 2500 pF | | 11.0 | | | | | | C75(1)U332MZWD(2)A(3) | 3300 pF | | 12.0 | | | | | | C76(1)U392MZWD(2)A(3) | 3900 pF | | 13.0 | | | | | | C77(1)U472MZWD(2)A(3) | 4700 pF | | 14.0 | | | | | | C71(1)U102MZVD(2)A(3) | 1000 pF | | 8.0 | | | | | | C71(1)U152MZVD(2)A(3) | 1500 pF | | | | | | | | C72(1)U222MZVD(2)A(3) | 2200 pF | | 9.0 | | | | | | C73(1)U252MZVD(2)A(3) | 2500 pF | | 10.0 | | | | | | C73(1)U332MZVD(2)A(3) | 3300 pF | | | | | | | Y5V | C74(1)U392MZVD(2)A(3) | 3900 pF | ±20% | 11.0 | | | | | | C75(1)U472MZVD(2)A(3) | 4700 pF | | 12.0 | | | | | | C76(1)U502MZVD(2)A(3) | 5000 pF | | 13.5 | | | | | | C77(1)U562MZVD(2)A(3) | 5600 pF | | 14.0 | | | | | | C78(1)U682MZVD(2)A(3) | 6800 pF | | 15.0 | | | | | | C79(1)U103MZVD(2)A(3) | 10000 pF | | 16.0 | | | | | Dielectric/
Temp. Char. | KEMET
Part Number | Capacitance | Capacitance
Tolerance | Body Diameter
(Maximum) | Body Thickness
(Maximum) | Lead Diameter | Lead Spacing | ⁽¹⁾ To properly complete ordering code, insert the one-digit numeric code to reflect required lead spacing: (Note that select capacitance values and packaging options may limit lead spacing availability. See table above to verify availability.) ^{7 = 7.5}mm ^{1 = 10.0} mm $^{2 = 12.5 \}text{ mm}$ ⁽²⁾ To properly complete ordering code, insert the one-digit character code to reflect the required lead configuration: (See "Lead Configuration" section of this document, page 2, for further details.) A = Straight B = Vertical Kink C = Outside Kink D = Inside Kink ⁽³⁾ To properly complete ordering code, enter the four-digit numeric or alphanumeric "Packaging C-Spec Ordering Code." See "Dimensions" section of this document, page 2, for available options. # **Table 2 – Performance & Reliability: Test Methods and Conditions** | Item | | Specif | fication | Test Method | | | | |------------------------|------------------------------|--------------------------------|------------------------------|--|---|--------------------------------|--| | Operating Tem | Operating Temperature Range | | | -55°C to +125°C | | | | | | Between lead wires | No failures | | The capacitor shall not be damaged when 2,600 VAC (rms) is applied between the lead wires for 60 seconds. | | | | | Dielectric
Strength | Body Insulation | No failures | | The terminals (leads) of the capacitor shall be connected together. A metal foil is tightly wrapped around the body of the capacitor at a distance of about 3 to 4 mm from each terminal. The capacitor is then inserted into a container filled with metal balls approximately 1 mm in diameter. 2,600 VAC (rms) is applied for 60 seconds between the capacitor lead wires and metal balls. (charge/discharge current ≤ 50 mA). | | | | | Insulation R | esistance (IR) | 10,000 M | Ω minimum | | tance shall be measure
seconds of charging. | d with 500 ±50 VDC | | | Capac | citance | Within speci | fied tolerance | | | | | | | | Temperature
Characteristics | Specification | Characteristic | Frequency | Voltage | | | Dissination F | actor (DE) or O | Y5P | DF ≤ 2.5% | SL | 1 MHz ±20% | 5.0 V _{rms} Maximum | | | Dissipation | Dissipation Factor (DF) or Q | | DF ≤ 5.0% | Y5P /Y5U/Y5V 1 MHz ±20% | | 0.0 V _{rms} Waxiiiaii | | | | | | Q ≥ 300 | The measurement at reference temperature 25°C | | | | | | | SL | Q = 300 | A : 4 | | -h -4 | | | | | | | A capacitance measurement is made at each step specified: Step Temperature | | | | | | | Temperature | | | Step
1 | +25 ±2°(| | | | | Characteristics | | 2 | | | | | _ | | Y5P | Within ±10% | | Minimum operating | | | | Temperature | Characteristics | Y5U | Within +22%/-56% | 3 | +25 ±2°0 | | | | | | Y5V | Within +22%/-82% | 4 | Maximum operating | | | | | | SL | +350~1,000% | 5 | +25 ±2°0 | <u> </u> | | | | | | | condition ¹ for 24 ±2 | at 85 ±2°C for 1 hour ar
hours before measurer | ment. | | | | Tensile | | pacitor body shall
preak. | With the termination in its normal position, the specimen is held by its body in such a manner that the axis of the termination is vertical. A tensile force of 10 N is applied to the termination in the direction of its axis and acting in a direction away from the body of the specimen. | | | | | Terminal
Strength | Bending | | pacitor body shall
preak. | With the termination in its normal position, the specimen is held by its body in such a manner that the axis of the termination is vertical; a mass force of 5 N is then suspended from the end of the termination. The body of the specimen is then inclined within a period of 2 to 3 seconds, through an angle of approximately 90° in the vertical plane and then resumed to its initial position over the same period of time; this operation constitutes one bend. One bend immediately followed by a second bend in the opposite direction. | | | | $^{^{1}}$ "Room Condition" is defined as follows: Temperature: 20 ~ 35°C/Humidity: 45 ~ 75%/Atmospheric Pressure: 86 ~ 106 kPa. ## Table 2 - Performance & Reliability: Test Methods and Conditions cont. | lte | m | Specif | ication | Test M | lethod | | | |-----------------------------------|------------------------|--|------------------------------------|--|---|--|--| | | Appearance | No visua | al defect | As shown in the figure below, the molten solder up to 1.5 mm (+5/- | lead wires are immersed in | | | | | IR | 1,000 ΜΩ | Minimum | epoxy meniscus (root of lead wire). Duration/Solder Temperature: 3.5 ±0.5 seconds/350°C ±10°C or 10 ±1 seconds/260°C ±5°C | | | | | | Dielectric
Strength | Per item 1 | | or 10 ±1 seconds/260°C ±5°C Thermal Capacitor Screen | | | | | Soldering Effect
(Non-Preheat) | Capacitance | | 5V: within ±10%
5% or ±0.25 pF, | Pretreatment: Capacitor is stored at 85°C ±2°C for 1 hour and then placed at room condition¹ for 24 ±2 hours before initial measurements. Post-treatment: Capacitor is stored for 1 to 2 hours at room condition¹. | | | | | | Appearance | No visua | al defect | Steady State Humidity: | Load Humidity: | | | | | | Temperature
Characteristics | Capacitance
Change | | | | | | | Capacitance | Y5P | Within ±10% | | | | | | | | Y5U | Within ±15% | 90 to 95% humidity at 40°C | 90 to 95% humidity at 40°C | | | | Biased Humidity | | Y5V | Within ±30% | ±2°C for 500 ±12 hours. | ±2°C for 500 ±12 hours with full rated voltage applied. | | | | | | SL | Within ±5% | Post-treatment: | Post-treatment: | | | | | DF | Y5V and Y5U: 7.5% maximum
Y5P: 5% maximum | | Capacitor is stored for 1 to 2 hours at room condition ¹ . | Capacitor is stored for 1 to 2 hours at room condition ¹ . | | | | | Q | Q ≥ 135 | | | | | | | | IR | 3,000 ΜΩ | minimum | | | | | | | Dielectric
Strength | No fa | ilures | | | | | | | Appearance | No visua | al defect | Impulse Voltage: Each individual | capacitor is subjected to three | | | | | Capacitance
Change | Y5P, Y5U w
Y5V with | vithin ±20%
nin ±30% | 5 kv impulses prior to life testing. Vp Cx tr td | | | | | | IR | 3,000 MΩ
SL: 1,000 M | minimum
Ω minimum | 0.01 | (uS) (uS)
1.2 46
1.5 47 | | | | High
Temperature
Life | Dielectric
Strength | No fa | ilures | Capacitors are placed in a circulating air oven for a period of 1,000 hours. The air in the oven is maintained at a temperature of 125°C ±2 throughout the test. The capacitors are subjected to 170% of Rated Voltage. Each hour the voltage is increased to AC 1,000 V _{rms} for 0.1 seconds. | | | | $^{^{1}}$ "Room Condition" is defined as follows: Temperature: 20 ~ 35°C/Humidity: 45 ~ 75%/Atmospheric Pressure: 86 ~ 106 kPa. ## Table 2 - Performance & Reliability: Test Methods and Conditions cont. | Item | Specification | Test Method | | | | |----------------------|--|--|--|--|--| | Flame Test | The capacitor flame extinguishes as follows: Cycle Time 1 ~ 4 30 seconds maximum 5 60 seconds maximum | The capacitor is exposed to a flame for 15 seconds and then removed for 15 seconds. This test is repeated for 5 cycles. Capacitor Flame Gas Burner (Unit:mm) | | | | | Active Flammability | The cheesecloth should not ignite. | The capacitors are individually wrapped in at least one, but not more than two, complete layers of cheesecloth. They are then subjected to 20 discharges. The interval between successive discharges is 5 seconds. The VAC is maintained for 2 minutes after the last discharge. | | | | | Passive Flammability | The burning time should not exceed
30 seconds.
The tissue paper should not ignite. | The capacitor under test is held into a flame and in a position which best promotes burning. Each specimen is exposed to the flame once. Test Specimen About 10mm Thick Board Time of Exposure to Flame: 30 seconds Length of Flame: 12 ±1 mm Gas Burner Length: 35 mm minimum Inside Diameter: 0.5 ±0.1 mm Outside Diameter: 0.9 mm maximum Gas Butane Gas Purity: 95% minimum | | | | [&]quot;Room Condition" is defined as follows: Temperature: 20 ~ 35°C/Humidity: 45 ~ 75%/Atmospheric Pressure: 86 ~ 106 kPa. ## **Soldering and Mounting Information** #### **Soldering:** When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could reflow the solder joint between the lead and ceramic element and/or may result in thermal shocks that can crack the ceramic element. When soldering these capacitors with a soldering iron, it should be performed under the following conditions: - Temperature of iron-tip: 400°C maximum - · Soldering iron wattage: 50 W maximum - · Soldering time: 3.5 seconds maximum #### Cleaning (ultrasonic cleaning): To perform ultrasonic cleaning, observe the following conditions: - · Rinse bath capacity: output of 20 watts per liter or less - · Rinsing time: 5 minute maximum - Do not vibrate the PCB/PWB directly - Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires #### Construction ## **Marking** These capacitors shall be laser marked with KEMET's trademark, type designation, capacitor class, rated voltage, rated capacitance, and capacitance tolerance codes. In addition, all devices are marked with the recognized approval mark and a date/lot code for traceability. Marking will be supplied on one side of the encapsulated capacitor body. All marking shall be legible to allow for clear identification of the component. Marking appears in legible contrast. Illustrated below is an example of the marking format and content. Date/Lot Code e.g., 9D (December 2019, Taiwan) | 9 | D | • | |--|--|--| | Last digit of year,
e.g.,
3 = 2013 | Manufacturing Month: 1-9 = Jan - Sept O = October N = November D = December | Manufacturing
Location Code
(blank): Taiwan
C: Dongguan | ## **Packaging Quantities** | Capacitor | | Bulk Bag (Loose) | | | | |-----------------------|------------------------------------|-----------------------|---------------------------------------|--|--| | Body Diameter
(mm) | Body Diameter
Code ¹ | Lead Length
(WL25) | Cut Lead Length
(WL35, WL50, WL10) | | | | 7.0 | 0 | | | | | | 8.0 | 1 | | | | | | 9.0 | 2 | | | | | | 10.0 | 3 | | | | | | 11.0 | 4 | 200 pieces/bag | 500 pieces/bag | | | | 12.0 | 5 | p.0000, bug | proces, any | | | | 13.0 | 6 | | | | | | 14.0 | 7 | | | | | | 15.0 | 8 | | | | | | 16.0 | 9 | | | | | ¹ The "Body Diameter Code" is located in the third character position of the ordering code. This code identifies the maximum diameter of the capacitor body in millimeters. For more information regarding the ordering code, see "Ordering Information" section of this document. | Lead
Spacing | Body
Diameter (mm) | Pitch
(Carrier Tape) | Body
Diameter Code | Reel
(7301) | Ammo
Pack (7317) | |-----------------|-----------------------|-------------------------|-----------------------|-------------------|---------------------| | E | ≤ 12.0 | 12.7 | 0 - 5 | 2,000 pieces/reel | 1,000 pieces/box | | 5 | 12.0 < D ≤ 16.0 | 25.4 | 6 - 9 | 1,000 pieces/reel | 750 pieces/box | | | ≤ 12.0 | 12.7 | 0 - 5 | 2,000 pieces/reel | 1,000 pieces/box | | 7.5 | 12.0 < D ≤ 15.0 | 25.4 | 6 - 8 | 1,000 pieces/reel | 750 pieces/box | | | ≥ 16.0 | 25.4 | 9 | 750 pieces/reel | 750 pieces/box | | 10 | ≤ 10 | 05.4 | 0 - 3 | 1,000 pieces/reel | 1,000 pieces/box | | 10 | ≥ 11 | 25.4 | 4 - 9 | 750 pieces/reel | 750 pieces/box | | 40.5 | ≤ 9 | 25.4 | 0 - 2 | 1,000 pieces/reel | 500 pieces/box | | 12.5 | ≥ 10 | 25.4 | 3 - 9 | 500 pieces/reel | 500 pieces/box | ## Figure 1 - Ammo/Reel Pack Taping Format #### 5 mm and 7.5 mm Lead Spacing: #### 5 mm, 7.5 mm, 10 mm and 12.5 mm Lead Spacing: #### For All Lead Spacing: Table 3 - Ammo/Reel Pack Taping Specifications | Lead Spacing | | 5 mm | | | | 7.5 mm | | | | 10 mm | | 12.5 mm | | |---|----------------|--|-----------------|------------------------|-----------|-----------|-----------|------------------------|-----------|-----------|------------------------|-----------|------------------------| | Lead Style | | Straight | | Preformed ¹ | | Straight | | Preformed ¹ | | Straight | Preformed ¹ | Straight | Preformed ¹ | | Item | Symbol | | Dimensions (mm) | | | | | | | | | | | | Lead Spacing | F | 5.0 ±1.0 | | | | 7.5 ±1.0 | | | | 10.0 ±1.0 | | 12.5 ±1.0 | | | Component Pitch | Р | 12.7 ±1.0 | 25.4 ±2.0 | 12.7 ±1.0 | 25.4 ±2.0 | 12.7 ±1.0 | 25.4 ±2.0 | 12.7 ±1.0 | 25.4 ±2.0 | 25.4 | ±2.0 | 25.4 | ±2.0 | | Sprocket Hole Pitch | P ₀ | 12.7 ±0.3 | | | | 12.7 ±0.3 | | | | 12.7 ±0.3 | | 12.7 ±0.3 | | | Sprocket Hole Center to
Component Center | P ₂ | 6.35 ±1.5 | 12.7 ±1.5 | 6.35 ±1.5 | 12.7 ±1.5 | 6.35 ±1.5 | 12.7 ±1.5 | 6.35 ±1.5 | 12.7 ±1.5 | 12.7 | ±1.5 | 12.7 ±1.5 | | | Sprocket Hole Center to
Lead Center | P ₁ | 3.85 ±0.7 | 10.2 ±1.5 | 3.85 ±0.7 | 10.2 ±1.5 | 2.6 ±0.7 | 8.95 ±1.5 | 2.6 ±0.7 | 8.95 ±1.5 | 7.7 | ±1.5 | 6.45 ±1.5 | | | Body Diameter | D | See "Product Ordering Codes and Ratings" section of this document. | | | | | | | | | | | | | Component Alignment
(side/side) | ΔS | 0 ±2.0 | | | | | | | | | | | | | Carrier Tape Width | W | 18.0 +1.0/-0.5 | | | | | | | | | | | | | Sprocket Hole Position | W ₁ | 9.0 ±0.5 | | | | | | | | | | | | ¹ Preformed (crimped) lead configurations include vertical kink, outside kink, and inside kink. See "Lead Configurations" and "Ordering Information" sections of this document for further details. ² Also referred to as "lead length" in this document. ## **Table 3 – Ammo Pack Taping Specifications cont.** | Lead Spacing | | 5 n | nm | 7.5 | mm | 10 | mm | 12.5 mm | | | | | |---|-----------------|---|--------------|----------------|------------------------|----------------|------------------------|----------------|------------------------|--|--|--| | Lead Style | | Straight Preformed ¹ | | Straight | Preformed ¹ | Straight | Preformed ¹ | Straight | Preformed ¹ | | | | | Item | Symbol | Dimensions (mm) | | | | | | | | | | | | Height to Seating Plane ²
(preformed leads ¹) | H ₀ | N/A | 16.0 +2.0/-0 | | | | | Height to SeatingPlane ² (straight leads) | н | 20.0 +1.5/-1.0 | N/A | | | | | Lead Protrusion | ę | 2.0 maximum | | | | | | | | | | | | Diameter of Sprocket
Hole | D _o | 4.0 ±0.2 | | | | | | | | | | | | Lead Diameter | φd | 0.6 ±0.1 | | | | | | | | | | | | Carrier Tape Thickness | t, | 0.6 ±0.3 | | | | | | | | | | | | Total Thickness
(Carrier Tape, Hold-
Down Tape and Lead) | t ₂ | 1.5 maximum | | | | | | | | | | | | Component Alignment | Δh ₁ | 20 marinum | | | | | | | | | | | | (front/back) | Δh_2 | 2.0 maximum | | | | | | | | | | | | Cut Out Length | L | 11.0 maximum | | | | | | | | | | | | Hold-Down Tape Width | W _o | 10.0 minimum | | | | | | | | | | | | Hold-Down Tape Position | W ₂ | 3.0 maximum | | | | | | | | | | | | Coating Extension on
Leads (meniscus) | e | 3.0 maximum for straight lead; not to exceed the bend for preformed1 lead configurations. | | | | | | | | | | | | Body Thickness | Т | 8.0 maximum | | | | | | | | | | | ¹ Prefromed (crimped) lead configurations include vertical kink and outside kink. See "Lead Configurations" and "Ordering Information" sections of this document for further details. ## **Application Notes:** #### **Storage and Operating Conditions:** The Insulating coating of these devices does not form an air and moisture tight seal. Avoid exposure to moisture and do not use or store these devices in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. Before cleaning, bonding or molding these devices, it is important to verify that your process does not affect product quality and performance. KEMET recommends testing and evaluating the performance of a cleaned, bonded or molded product prior to implementing and/or qualifying any of these processes. Store the capacitors where the temperature and relative humidity do not exceed 40 degrees centigrade and 70% respectively. For optimum solderability, capacitor stock should be used promptly, preferably within 6 months of receipt. #### **Working Voltage:** Application voltage (Vp-p or Vo-p) must not exceed the voltage rating of the capacitor. Irregular voltages can be generated for a transient period of time when voltage is initially applied and/or removed from a circuit. It is important to choose a capacitor with a voltage rating greater than or equal to these irregular voltages. ² Also referred to as "lead length" in this document. ## **Application Notes (cont.):** #### **Operating Temperature and Self-Generating Heat:** The surface temperature of a capacitor should be kept below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high-frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. Temperature rise due to self-generated heating should not exceed 20°C (while operated at an atmosphere temperature of 25°C). #### **Handling - Vibration and Impact:** Do not expose these devices or their leads to excessive shock or vibration during use. FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED. ### **KEMET Electronics Corporation Sales Offices** For a complete list of our global sales offices, please visit www.kemet.com/sales. #### **Disclaimer** All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained. Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage. Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.