
Maxim > Design Support > Technical Documents > Application Notes > 1-Wire® Devices > APP 27
Maxim > Design Support > Technical Documents > Application Notes > Battery Management > APP 27

Maxim > Design Support > Technical Documents > Application Notes > iButton® > APP 27

Keywords: 1-Wire cyclic redundancy check (CRC), iButton CRC, ROM ID

APPLICATION NOTE 27

Understanding and Using Cyclic Redundancy
Checks with Maxim 1-Wire and iButton Products
Mar 29, 2001

Abstract: All 1-Wire® devices, including iButton® devices, contain an 8-byte unique registration number
in read-only memory (ROM). This registration number is used as a unique network address on a 1-Wire
bus. To ensure data communication integrity, one byte of each registration number is a 1-Wire CRC
byte. This application note explains how to calculate this 8-bit 1-Wire CRC. It also goes on to explain the
16-bit CRC that is used to verify records saved in the memory of the devices. Both the 1-Wire CRC and
the CRC-16 are generated in hardware of select 1-Wire devices to validate data.

Introduction
The Maxim iButton products are a family of devices that all communicate over a single wire following a
specific command sequence referred to as the 1-Wire Protocol. A key feature of each device is a unique
8-byte ROM code written into each part at the time of manufacture. The components of this 8-byte code
can be seen in Figure 1. The least significant byte contains a family code that identifies the type of
iButton product. For example, the DS1990A has a family code of 01 hex and the DS1922L has a family
code of 41 hex. Since multiple devices of the same or different family types can reside on the same 1-
Wire bus simultaneously, it is important for the host to determine how to properly access each of the
devices that it locates on the 1-Wire bus. The family code provides this information. The next 6 bytes
contain a unique serial number that allows multiple devices within the same family code to be
distinguished from each other. This unique serial number can be thought of as an "address" for each
device on the 1-Wire bus. The entire collection of devices, plus the host, form a type of miniature local
area network, or MicroLAN; they all communicate over the single common wire. The most significant
byte in the ROM code of each device contains a cyclic redundancy check (CRC) value based on the
previous 7 bytes of data for that part. When the host system begins communication with a device, the 8-
byte ROM is read, LSB first. If the CRC that is calculated by the host agrees with the CRC contained in
byte 7 of ROM data, the communication can be considered valid. If this is not the case, an error has
occurred and the ROM code should be read again.

Page 1 of 18

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/1/c/1-Wire%26reg%3B%20Devices#c1
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/1/c/1-Wire%26reg%3B%20Devices#c1
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/1/c/1-Wire%26reg%3B%20Devices#c1
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/5/c/Battery%20Management#c5
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/65/c/iButton%26reg%3B#c65
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/65/c/iButton%26reg%3B#c65
http://www.maximintegrated.com/DS1990A
http://www.maximintegrated.com/DS1922L

Figure 1. iButton system configuration using 1-Wire CRC.

Some of the iButton products have up to 8kB of random-access memory (RAM) in addition to the 8
bytes of ROM that can be accessed by the host system with appropriate commands. Even if iButton
devices do not have CRC hardware onboard, if the host has the capability to calculate a CRC value for
the ROM codes, then a procedure to store and retrieve data in the RAM portion of the devices using
CRCs can also be developed. Data can be written to the device in the normal manner; then a CRC
value that has been calculated by the host is appended and stored with the data. When this data is
retrieved from the iButton device, the process is reversed. The host compares the CRC value that was
computed for the data bytes to the value stored in memory as the CRC for that data. If the values are
equal, the data read from the iButton device can be considered valid. To take advantage of the power of
CRCs to validate the serial communication on the 1-Wire bus, an understanding of what a CRC is and
how they work is necessary. In addition, a practical method for calculation of the CRC values by the host
are required for either a hardware or software implementation.

Background
Serial data can be checked for errors in a variety of ways. One common way is to include an additional
bit in each packet being checked to indicate if an error has occurred. For packets of 8-bit ASCII
characters, for example, an extra bit is appended to each ASCII character that indicates if the character
contains errors. Suppose the data consisted of a bit string of 11010001. A 9th bit would be appended so
the total number of bits that are 1s is always an odd number. Thus, a 1 would be appended and the data
packet would become 111010001. The underlined character indicates the parity bit value required to
make the complete 9-bit packet have an odd number of bits. If the received data was 111010001, then it
would be assumed that the information was correct. If, however, the data received was 111010101,
where the 7th bit from the left has been incorrectly received, the total number of 1s is no longer odd and
an error condition has been detected and appropriate action would be taken. This type of scheme is
called odd parity. Similarly, the total number of 1s could also be chosen to always be equal to an even
number, thus the term even parity. This scheme is limited to detecting an odd number of bit errors,
however. In the example above, if the data were corrupted and became 111011101, where both the 6th

and 7th bits from the left were wrong, the parity check appears correct; yet the error would go
undetected whether even or odd parity was used.

Description

Page 2 of 18

Maxim 1-Wire CRC
The error detection scheme most effective at locating errors in a serial-data stream with a minimal
amount of hardware is the CRC. The operation and properties of the CRC function used in Maxim
products is presented without going into the mathematical details of proving the statements and
descriptions. The mathematical concepts behind the properties of the CRC are described in detail in the
references. The CRC can be most easily understood by considering the function as it would actually be
built in hardware, usually represented as a shift register arrangement with feedback as shown in Figure
2. Alternatively, the CRC is sometimes referred to as a polynomial expression in a dummy variable X,
with binary coefficients for each of the terms. The coefficients correspond directly to the feedback paths
shown in the shift register implementation. The number of stages in the shift register for the hardware
description, or the highest order coefficient present in the polynomial expression, indicate the magnitude
of the CRC value that is computed. CRC codes that are commonly used in digital data communications
include the CRC-16 and the CRC-CCITT, each of which computes a 16-bit CRC value. The Maxim 1-
Wire CRC magnitude is 8 bits, which is used for checking the 64-bit ROM code written into each 1-Wire
product. This ROM code consists of an 8-bit family code written into the least significant byte, a unique
48-bit serial number written into the next 6 bytes, and a CRC value that is computed based on the
preceding 56 bits of ROM and then written into the most significant byte. The location of the feedback
paths represented by the exclusive-OR gates in Figure 2, or the presence of coefficients in the
polynomial expression, determine the properties of the CRC and the ability of the algorithm to locate
certain types of errors in the data. For the 1-Wire CRC, the types of errors that are detectable are:

1. Any odd number of errors anywhere within the 64-bit number.
2. All double-bit errors anywhere within the 64-bit number.
3. Any cluster of errors that can be contained within an 8-bit "window" (1-8 bits incorrect).
4. Most larger clusters of errors.

The input data is exclusive-OR'ed with the output of the eighth stage of the shift register in Figure 2. The
shift register can be considered mathematically as a dividing circuit. The input data is the dividend, and
the shift register with feedback acts as a divisor. The resulting quotient is discarded, and the remainder
is the CRC value for that particular stream of input data, which resides in the shift register after the last
data bit has been shifted in. From the shift register implementation it is obvious that the final result (CRC
value) is dependent, in a very complex way, on the past history of the bits presented. Therefore, it would
take an extremely rare combination of errors to escape detection by this method.

Figure 2. Maxim 1-Wire 8-bit CRC.

The example in Example 2 calculates the CRC value after each data bit is presented. The shift register
circuit is always reset to 0s at the start of the calculation. The computation begins with the LSB of the

Page 3 of 18

64-bit ROM, which is the 02 hex family code in this example. After all 56 data bits (serial number +
family code) are input, the value that is contained in the shift register is A2 hex, which is the 1-Wire
CRC value for that input stream. If the CRC value that has been calculated (A2 hex in this example) is
now used as input to the shift register for the next 8 bits of data, the final result in the shift register after
the entire 64 bits of data have been entered should be all 0s. This property is always true for the 1-Wire
CRC algorithm. If any 8-bit value that appears in the shift register is also used as the next 8 bits in the
input stream, then the result that appears in the shift register after the 8th data bit has been shifted in is
always 00 hex. This can be explained by observing that the contents of the 8th stage of the shift register
is always equal to the incoming data bit, making the output of the EXOR gate controlling the feedback
and the next state value of the first stage of the shift register always equal to a logic 0. This causes the
shift register to simply shift in 0s from left to right as each data bit is presented, until the entire register is
filled with 0s after the 8th bit. The structure of the Maxim 1-Wire 64-bit ROM uses this property to
simplify the hardware design of a device used to read the ROM. The shift register in the host is cleared
and then the 64 ROM bits are read, including the CRC value. If a correct read has occurred, the shift
register is again all 0s, which is an easy condition to detect. If a non-zero value remains in the shift
register, the read operation must be repeated.

Until now, the discussion has centered around a hardware representation of the CRC process, but
clearly a software solution that parallels the hardware methodology is another means of computing the
1-Wire CRC values. An example of how to code the procedure is given in Example 1. Notice that the
XRL (exclusive OR) of the A register with the constant 18 hex is due to the presence of the EXOR
feedback gates in the 1-Wire CRC after the fourth and fifth stages as shown in Figure 2. An alternative
software solution is to simply build a lookup table that is accessed directly for any 8-bit value currently
stored in the CRC register and any 8-bit pattern of new data. For the simple case where the current
value of the CRC register is 00 hex, the 256 different bit combinations for the input byte can be
evaluated and stored in a matrix, where the index to the matrix is equal to the value of the input byte
(i.e., the index is I = 0 to 255). It can be shown that if the current value of the CRC register is not 00
hex, then for any current CRC value and any input byte, the lookup table values are the same as for the
simplified case, but the computation of the index into the table takes the form of:

New CRC = Table [I] for I = 0 to 255;
where I = (Current CRC) EXOR (Input byte)

For the case where the current CRC register value is 00 hex, the equation reduces to the simple case.
This second approach can reduce computation time since the operation can be done on a byte basis,
rather than the bit-oriented commands of the previous example. There is a memory capacity tradeoff,
however, since the lookup table must be stored and consumes 256 bytes compared to virtually no
storage for the first example except for the program code. An example of this type of code is shown in
Example 3. Table 1 shows the previous example repeated using the lookup table approach. Two
properties of the 1-Wire CRC can be helpful in debugging code used to calculate the CRC values. The
first property has already been mentioned for the hardware implementation. If the current value of the
CRC register is used as the next byte of data, the resulting CRC value is always 00 hex (see
explanation above). A second property that can be used to confirm proper operation of the code is to
enter the 1's complement of the current value of the CRC register. For the 1-Wire CRC algorithm, the
resulting CRC value is always 35 hex, or 53 decimal. The reason for this can be explained by observing
the operation of the CRC register as the 1's complement data is entered, as shown in Table 2.

Example 1. Assembly Language Procedure

Page 4 of 18

DO_CRC: PUSH ACC ;save accumulator
 PUSH B ;save the B register
 PUSH ACC ;save bits to be shifted
 MOV B,#8 ;set shift = 8 bits ;

CRC_LOOP: XRL A,CRC ;calculate CRC
 RRC A ;move it to the carry
 MOV A,CRC ;get the last CRC value
 JNC ZERO ;skip if data = 0
 XRL A,#18H ;update the CRC value
;
ZERO: RRC A ;position the new CRC
 MOV CRC,A ;store the new CRC
 POP ACC ;get the remaining bits
 RR A ;position the next bit
 PUSH ACC ;save the remaining bits
 DJNZ B,CRC_LOOP ;repeat for eight bits
 POP ACC ;clean up the stack
 POP B ;restore the B register
 POP ACC ;restore the accumulator
 RET

Example 2. Example Calculation for 1-Wire CRC

CRC Value Input Value

00000000 0

00000000 1

10001100 0 2

01000110 0

00100011 0

10011101 0

11000010 0 0

01100001 0

10111100 0

01011110 0

00101111 1 C

Page 5 of 18

00010111 1

00001011 1

00000101 0

10001110 0 1

01000111 0

10101111 0

11011011 0

11100001 0 8

11111100 1

11110010 1

11110101 1

01111010 0 B

00111101 1

00011110 1

10000011 0

11001101 0 1

11101010 0

01110101 0

10110110 0

01011011 0 0

10100001 0

11011100 0

01101110 0

00110111 0 0

10010111 0

11000111 0

11101111 0

11111011 0 0

11110001 0

11110100 0

01111010 0

Page 6 of 18

00111101 0 0

10010010 0

01001001 0

10101000 0

01010100 0 0

00101010 0

00010101 0

10000110 0

01000111 0 0

10101101 0

11011010 0

01101101 0

10111010 0 0

01011101 0

10100010 = A2 hex = CRC Value for [00000001B81C (Serial Number) + 02 (Family Code)]

10100010 0

01010001 1

00101000 0 2

00010100 0

00001010 0

00000101 1

00000010 0 A

00000001 1

00000000 = 00 hex = CRC Value for A2 [(CRC) + 00000001B81C (Serial Number) + 02 (Family
Code)]

Example 3. 1-Wire CRC Lookup Function

Var
 CRC : Byte;
Procedure Do_CRC(X: Byte);
{
 This procedure calculates the cumulative Maxim 1-Wire CRC of all
bytes passed to it.
The result accumulates in the global variable CRC.

Page 7 of 18

}
Const
 Table : Array[0..255] of Byte = (

 0, 94, 188, 226, 97, 63, 221, 131, 194, 156, 126, 32, 163, 253, 31,
65,
 157, 195, 33, 127, 252, 162, 64, 30, 95, 1, 227, 189, 62, 96, 130,
220,
 35, 125, 159, 193, 66, 28, 254, 160, 225, 191, 93, 3, 128, 222, 60,
98,
 190, 224, 2, 92, 223, 129, 99, 61, 124, 34, 192, 158, 29, 67, 161,
255,
 70, 24, 250, 164, 39, 121, 155, 197, 132, 218, 56, 102, 229, 187, 89,
7,
 219, 133, 103, 57, 186, 228, 6, 88, 25, 71, 165, 251, 120, 38, 196,
154,
 101, 59, 217, 135, 4, 90, 184, 230, 167, 249, 27, 69, 198, 152, 122,
36,
 248, 166, 68, 26, 153, 199, 37, 123, 58, 100, 134, 216, 91, 5, 231,
185,
 140, 210, 48, 110, 237, 179, 81, 15, 78, 16, 242, 172, 47, 113, 147,
205,
 17, 79, 173, 243, 112, 46, 204, 146, 211, 141, 111, 49, 178, 236, 14,
80,
 175, 241, 19, 77, 206, 144, 114, 44, 109, 51, 209, 143, 12, 82, 176,
238,
 50, 108, 142, 208, 83, 13, 239, 177, 240, 174, 76, 18, 145, 207, 45,
115,
 202, 148, 118, 40, 171, 245, 23, 73, 8, 86, 180, 234, 105, 55, 213,
139,
 87, 9, 235, 181, 54, 104, 138, 212, 149, 203, 41, 119, 244, 170, 72,
22,
 233, 183, 85, 11, 136, 214, 52, 106, 43, 117, 151, 201, 74, 20, 246,
168,
 116, 42, 200, 150, 21, 75, 169, 247, 182, 232, 10, 84, 215, 137, 107,
53);

Begin
 CRC := Table[CRC xor X];
End;

Table 1. Table Lookup Method for Computing 1-Wire CRC

Current CRC Value (=
Current Table Index)

Input
Data

New Index (= Current
CRC xor Input Data)

Table (New Index) (=
New CRC Value)

0000 0000 = 00 hex
0000
0010 =
02 hex

(00 H xor 02 H) = 02
hex = 2 dec

Table[2]= 1011 1100 =
BC hex = 188 dec

0001

Page 8 of 18

1011 1100 = BC hex 1100 =
1C hex

(BC H xor 1C H) = A0
hex = 160 dec

Table[160]= 1010 1111
= AF hex = 175 dec

1010 1111 = AF hex
1011
1000 =
B8 hex

(AF H xor B8 H) = 17
hex = 23 dec

Table[23]= 0001 1110 =
1E hex = 30 dec

0001 1110 = 1E hex
0000
0001 =
01 hex

(1E H xor 01 H) = 1 F
hex = 31 dec

Table[31]= 1101 110 =
DC hex = 220 dec

1101 1100 = DC hex
0000
0000 =
00 hex

(DC H xor 00 H) = DC
hex = 220 dec

Table[220]= 1111 0100
= F4 hex = 244 dec

11110100 = F4 hex
0000
0000 =
00 hex

(F4 H xor 00 H) = F4
hex = 244 dec

Table [244]= 0001 0101
= 15 hex = 21 dec

0001 0101 = 15 hex
0000
0000 =
00 hex

(15 H xor 00 H) = 15
hex = 21 dec

Table[21]= 1010 0010 =
A2 hex = 162 dec

1010 0010 = A2 hex 10100010
= A2 hex

(A2 H xor A2 H) = hex =
0 dec

Table[0]=0000 0000 =
00 hex = 0 dec

CRC Register Combined with 1's Complement of CRC Register
Table 2. CRC Register Value Input

X0 X1 X2 X3 X4 X5 X6 X7 X7*

1 X0 X1 X2 X3* X4* X5 X6 X6*

1 1 X0 X1 X2* X3 X4* X5 X5*

1 1 1 X0 X1* X2* X3 X4* X4*

0 1 1 1 X0 X1* X2 X3 X3*

1 0 1 1 0 X0* X1* X2 X2*

1 1 0 1 0 1 X0* X1* X1*

0 1 1 0 1 0 1 X0* X0*

0 0 1 1 0 1 0 1 Final CRC Value = 35 hex, 53
decimal

Note: Xi* = Complement of Xi

CRC-16 Computation for RAM Records in iButton Devices
As mentioned in the introduction, some iButton devices have RAM in addition to the unique 8-byte ROM
code found in all iButton devices. Because the amount of data stored in RAM can be large compared to

Page 9 of 18

the 8-byte ROM code, Maxim recommends using a 16-bit CRC value to ensure the integrity of the data,
rather than the 8-bit 1-Wire CRC used for the ROM. The particular CRC suggested is commonly
referred to as CRC-16. The shift register and polynomial representations are given in Figure 3. The
figure shows that for a 16-bit CRC, the shift register contains 16 stages and the polynomial expression
has a term of the sixteenth order. As stated previously, the iButton devices do not calculate the CRC
values. The host must generate the value and then append the 16-bit CRC value to the end of the
actual data. Due to the uncertainty of the iButton device's "communication channel," i.e., the two metal
contact surfaces, data transfers can experience errors that generally fall into three categories. First, brief
intermittent connections can cause small numbers of bit errors to occur in the data, which the normal
CRC-16 function is designed to detect. The second type of error occurs when contact is lost altogether,
for example when the iButton device is removed from the reader too quickly.

This causes the last portion of the data to be read as logic 1s, since no connection to an iButton device
is interpreted as all 1s by the host. The normal CRC-16 function can also detect this condition under
most circumstances. The third type of error is generated by a short circuit across the reader, which can
be caused by an iButton device that is not inserted correctly, or tilted significantly once in the reader. A
short at the reader causes the data to be read as all 0s by the host. When using CRCs, this can cause
problems, since the method to determine the validity of the data is to read the data plus the stored CRC
value, and see if the resulting CRC computed at the host is 0000 hex (for a 16-bit CRC). If the reader
was shorted, the data plus the CRC value stored with the data is read as all 0's, and a false read has
occurred, but the CRC computed by the host incorrectly indicates a valid read. To avoid this situation,
Maxim recommends storing the complement of the computed CRC-16 value (CRC-16*) with the data
that is written into the RAM. Using an uncomplemented CRC-16 value, the retrieval of data from the
iButton device is similar to the 1-Wire CRC case. That is, if the CRC register in the host is initialized to
0000 hex and then all of the data plus the CRC-16 value stored with the data is read from the iButton
device, the resulting calculation by the host should have a 0000 hex, as a final result. If instead, the
complement of the CRC-16 value is stored with the data in the iButton, then the CRC register at the
host is initialized to 0000 hex and the actual data plus the stored CRC-16* value is read. The resultant
CRC value should be B001 hex for a valid read. This greatly improves the operation of the system, since
it can no longer be fooled by a short at the reader. The reason that the CRC-16 function has these
properties can be shown in an analogous manner to the 1-Wire CRC case (see Figures 3 and 5). The
operation of the 16-bit CRC is identical in theory to the 8-bit version described earlier, but the properties
of the CRC change since a 16-bit value is now available for error detection. For the CRC-16 function,
the types of errors that are detectable are:

1. Any odd number of errors anywhere within the data record.
2. All double-bit errors anywhere within the data record.
3. Any cluster of errors that can be contained within a 16-bit "window" (1–16 bits incorrect).
4. Most larger clusters of errors.

Page 10 of 18

Figure 3. CRC-16 hardware description and polynomial.

The hardware implementation of the CRC-16 function is straightforward from the description given in
Figure 3. Example 4 shows a software solution that is analogous to the hardware operations that
compute the CRC-16 values using single-bit operations. As before, a less computation-intensive
software solution can be developed through the use of a lookup table. The basic concepts presented for
the 8-bit 1-Wire CRC lookup table also work for the CRC-16 case. A slight modification in procedure
from the 8-bit case is required, however, because if the entire 16-bit result for the CRC-16 function were
mapped into one table as before, the table would have 216 or 65,536 entries. A different approach is
shown in Example 5, where the 16-bit CRC values are computed and stored in two 256-entry tables,
one containing the high order byte and the other the low-order byte of the resultant CRC. For any
current 16-bit CRC value, expressed as Current_CRC16_Hi for the current high-order byte and
Current_CRC16_Lo for the current low-order byte, and any new input byte, the equation to determine the
index into the high-order byte table for locating the new high-order byte CRC value (New_CRC16_Hi) is
given as:

New_CRC16_Hi = CRC16_Tabhi[I] for I = 0 to 255; where I = (Current_CRC16_Lo) EXOR (Input byte)

The equation to determine the index into the low-order byte table for locating the new low-order byte
CRC value (New_CRC16_Lo) is given as:

New_CRC16_Lo = (CRC16_Tablo[I]) EXOR (Current_CRC16_Hi) for I = 0 to 255;
where I = (Current_CRC16_Lo) EXOR (Input byte)

An example of how this method works is shown in Figure 4.

Example 4. Assembly Language for CRC-16 Computation

crc_lo data 20h ; lo byte of crc calculation (bit addressable)
crc_hi data 21h ; hi part of crc calculation

Page 11 of 18

;---
; CRC16 subroutine.
; - accumulator is assumed to have byte to be crc'ed
; - two direct variables are used crc_hi and crc_lo
; - crc_hi and crc_lo contain the CRC16 result
;---
crc16: ; calculate crc with accumulator
 push b ; save value of b
 mov b, #08h ; number of bits to crc.
crc_get_bit:
 rrc a ; get low order bit into carry
 push acc ; save a for later use
 jc crc_in_1 ;got a 1 input to crc
 mov c, crc_lo.0 ;xor with a 0 input bit is bit
 sjmp crc_cont ;continue
crc_in_1:
 mov c, crc_lo.0 ;xor with a 1 input bit
 cpl c ;is not bit.
crc_cont:
 jnc crc_shift ; if carry set, just shift
 cpl crc_hi.6 ;complement bit 15 of crc
 cpl crc_lo.1 ;complement bit 2 of crc
crc_shift
 mov a, crc_hi ; carry is in appropriate setting
 rrc a ; rotate it
 mov crc_hi, a ; and save it
 mov a, crc_lo ; again, carry is okay
 rrc a ; rotate it
 mov crc_lo, a ; and save it
 pop acc ; get acc back
 djnz b, crc_get_bit ; go get the next bit
 pop b ; restore b
 ret
 end

Example 5. Assembly Language for CRC-16 Using a Lookup Table

crc_lo data 40h ; any direct address is okay
crc_hi data 41h
tmp data 42h

;---
; CRC16 subroutine.
; - accumulator is assumed to have byte to be crc'ed

Page 12 of 18

; - three direct variables are used, tmp, crc_hi and crc_lo
; - crc_hi and crc_lo contain the CRC16 result
; - this CRC16 algorithm uses a table lookup
;---
crc16:
 xrl a, crc_lo ; create index into tables
 mov tmp, a ; save index
 push dph ; save dptr
 push dpl ;
 mov dptr, #crc16_tablo ; low part of table address
 movc a, @a+dptr ; get low byte
 xrl a, crc_hi ;
 mov crc_lo, a ; save of low result
 mov dptr, #crc16_tabhi ; high part of table address
 mov a, tmp ; index
 movc a, @a+dptr ;
 mov crc_hi, a ; save high result
 pop dpl ; restore pointer
 pop dph ;
 ret ; all done with calculation
crc16_tablo:
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h

Page 13 of 18

 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
 db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
crc16_tabhi:
 db 000h, 0c0h, 0c1h, 001h, 0c3h, 003h, 002h, 0c2h
 db 0c6h, 006h, 007h, 0c7h, 005h, 0c5h, 0c4h, 004h
 db 0cch, 00ch, 00dh, 0cdh, 00fh, 0cfh, 0ceh, 00eh
 db 00ah, 0cah, 0cbh, 00bh, 0c9h, 009h, 008h, 0c8h
 db 0d8h, 018h, 019h, 0d9h, 01bh, 0dbh, 0dah, 01ah
 db 01eh, 0deh, 0dfh, 01fh, 0ddh, 01dh, 01ch, 0dch
 db 014h, 0d4h, 0d5h, 015h, 0d7h, 017h, 016h, 0d6h
 db 0d2h, 012h, 013h, 0d3h, 011h, 0d1h, 0d0h, 010h
 db 0f0h, 030h, 031h, 0f1h, 033h, 0f3h, 0f2h, 032h
 db 036h, 0f6h, 0f7h, 037h, 0f5h, 035h, 034h, 0f4h
 db 03ch, 0fch, 0fdh, 03dh, 0ffh, 03fh, 03eh, 0feh
 db 0fah, 03ah, 03bh, 0fbh, 039h, 0f9h, 0f8h, 038h
 db 028h, 0e8h, 0e9h, 029h, 0ebh, 02bh, 02ah, 0eah
 db 0eeh, 02eh, 02fh, 0efh, 02dh, 0edh, 0ech, 02ch
 db 0e4h, 024h, 025h, 0e5h, 027h, 0e7h, 0e6h, 026h
 db 022h, 0e2h, 0e3h, 023h, 0e1h, 021h, 020h, 0e0h
 db 0a0h, 060h, 061h, 0a1h, 063h, 0a3h, 0a2h, 062h
 db 066h, 0a6h, 0a7h, 067h, 0a5h, 065h, 064h, 0a4h
 db 06ch, 0ach, 0adh, 06dh, 0afh, 06fh, 06eh, 0aeh
 db 0aah, 06ah, 06bh, 0abh, 069h, 0a9h, 0a8h, 068h
 db 078h, 0b8h, 0b9h, 079h, 0bbh, 07bh, 07ah, 0bah
 db 0beh, 07eh, 07fh, 0bfh, 07dh, 0bdh, 0bch, 07ch
 db 0b4h, 074h, 075h, 0b5h, 077h, 0b7h, 0b6h, 076h
 db 072h, 0b2h, 0b3h, 073h, 0b1h, 071h, 070h, 0b0h
 db 050h, 090h, 091h, 051h, 093h, 053h, 052h, 092h
 db 096h, 056h, 057h, 097h, 055h, 095h, 094h, 054h
 db 09ch, 05ch, 05dh, 09dh, 05fh, 09fh, 09eh, 05eh
 db 05ah, 09ah, 09bh, 05bh, 099h, 059h, 058h, 098h
 db 088h, 048h, 049h, 089h, 04bh, 08bh, 08ah, 04ah
 db 04eh, 08eh, 08fh, 04fh, 08dh, 04dh, 04ch, 08ch
 db 044h, 084h, 085h, 045h, 087h, 047h, 046h, 086h
 db 082h, 042h, 043h, 083h, 041h, 081h, 080h, 040h

Page 14 of 18

Figure 4. Comparison of calculation and table lookup method for CRC-16.

An interesting intermediate method is presented in Example 6. The code generates a CRC-16 value for
each byte input to it by operating on the entire current CRC value and the incoming byte using the
equations shown in Figure 5. The derivations for the equations are also shown, using alpha characters
to represent the current 16-bit CRC value and numeric characters to represent the bits of the incoming
byte. The result after eight shifts yields the equations shown. These equations can then be used to
precompute large portions of the new CRC value. Notice, for example, that the quantity
ABCDEFGH01234567 (defined as the EXOR of all of those bits) is the parity of the incoming data byte
and the low-order byte of the current CRC. This method reduces computation time and memory space
as compared to both the bit-by-bit and lookup table methods described above. Finally, two properties of
the CRC-16 function that can be used as test cases are mentioned as an aid to debugging the code for
any of the previous methods. The first property is identical to the 1-Wire CRC case. If the current 16-bit
contents of the CRC register are also used as the next 16 bits of input, the resulting CRC value is
always 0000 hex. A second property of the CRC-16 function is also similar to the 1-Wire CRC case, if
the 1's complement of the current 16-bit contents of the CRC register are also used as the next 16-bits
of input, the resulting CRC value is always B0 01 hex. The proof for these two CRC-16 properties
follows in an analogous way to the proof for the 1-Wire CRC case.

Example 6. Assembly Language Procedure for High-Speed CRC-16 Computation

lo equ 40h ; low byte of CRC
hi equ 41h ; high byte of CRC

crc16:
 push acc ; save the accumulator.
 xrl a, lo

Page 15 of 18

 mov lo, hi ; move the high byte of the CRC.
 mov hi, a ; save data xor low(crc) for later
 mov c, p
 jnc crc0
 xrl lo, #01h ; add the parity to CRC bit 0
crc0:
 rrc a ; get the low bit in c
 jnc crc1
 xrl lo, #40h ; need to fix bit 6 of the result
crc1:
 mov c, acc.7
 xrl a, hi ; compute the results for other bits.
 rrc a ; shift them into place
 mov hi, a ; and save them
 jnc crc2
 xrl lo, #80h ; now clean up bit 7
crc2:
 pop acc ; restore everything and return
 ret

More detailed image (GIF)
Figure 5. High-speed CRC-16 computation method.

References
Stallings, William, Ph.D., Data and Computer Communications. 2nd ed., New York: Macmillan Publishing.
pp. 107–112.
Buller, Jon, "High Speed Software CRC Generation", EDN, Volume 36, #25, p. 210.

1-Wire is a registered trademark of Maxim Integrated Products, Inc.
iButton is a registered trademark of Maxim Integrated Products, Inc.

Related Parts

DS1822 Econo 1-Wire Digital Thermometer Free Samples

DS18B20 Programmable Resolution 1-Wire Digital Thermometer Free Samples

Page 16 of 18

http://www.maximintegrated.com/images/appnotes/27/27Fig06.gif
http://www.maximintegrated.com/images/appnotes/27/27Fig06.gif
http://www.maximintegrated.com/datasheet/index.mvp/id/2795
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1822
http://www.maximintegrated.com/datasheet/index.mvp/id/2812
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS18B20

DS18B20-PAR 1-Wire Parasite-Power Digital Thermometer

DS18S20 1-Wire Parasite-Power Digital Thermometer Free Samples

DS18S20-PAR Parasite-Power Digital Thermometer

DS1904 iButton RTC Free Samples

DS1920 iButton Temperature Logger

DS1921G Thermochron iButton Device

DS1963S iButton Monetary Device with SHA-1 Function

DS1971 iButton 256-Bit EEPROM

DS1973 iButton 4Kb EEPROM Free Samples

DS1982 iButton 1Kb Add-Only Free Samples

DS1985 iButton 16Kb Add-Only Free Samples

DS1986 iButton 64Kb Add-Only

DS1990A iButton Serial Number Free Samples

DS1992 iButton 1Kb/4Kb Memory Free Samples

DS1993 iButton 1Kb/4Kb Memory Free Samples

DS1995 iButton 16Kb Memory Free Samples

DS1996 iButton 64Kb Memory Free Samples

DS2401 Silicon Serial Number Free Samples

DS2405 Addressable Switch

DS2406 Dual Addressable Switch Plus 1Kb Memory Free Samples

DS2408 1-Wire 8-Channel Addressable Switch Free Samples

DS2411 Silicon Serial Number with VCC Input Free Samples

DS2415 1-Wire Time Chip

DS2417 1-Wire Time Chip With Interrupt Free Samples

DS2431 1024-Bit 1-Wire EEPROM Free Samples

DS2432 1Kb Protected 1-Wire EEPROM with SHA-1 Engine Free Samples

DS2433 4Kb 1-Wire EEPROM

DS2438 Smart Battery Monitor Free Samples

DS2450 1-Wire Quad A/D Converter

DS2502 1Kb Add-Only Memory Free Samples

DS2502-E48 48-Bit Node Address Chip Free Samples

Page 17 of 18

http://www.maximintegrated.com/datasheet/index.mvp/id/2813
http://www.maximintegrated.com/datasheet/index.mvp/id/2815
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS18S20
http://www.maximintegrated.com/datasheet/index.mvp/id/2816
http://www.maximintegrated.com/datasheet/index.mvp/id/2817
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1904
http://www.maximintegrated.com/datasheet/index.mvp/id/2818
http://www.maximintegrated.com/datasheet/index.mvp/id/4023
http://www.maximintegrated.com/datasheet/index.mvp/id/2822
http://www.maximintegrated.com/datasheet/index.mvp/id/2823
http://www.maximintegrated.com/datasheet/index.mvp/id/2824
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1973
http://www.maximintegrated.com/datasheet/index.mvp/id/2825
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1982
http://www.maximintegrated.com/datasheet/index.mvp/id/2827
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1985
http://www.maximintegrated.com/datasheet/index.mvp/id/2828
http://www.maximintegrated.com/datasheet/index.mvp/id/2829
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1990A
http://www.maximintegrated.com/datasheet/index.mvp/id/2831
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1992
http://www.maximintegrated.com/datasheet/index.mvp/id/2831
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1993
http://www.maximintegrated.com/datasheet/index.mvp/id/2832
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1995
http://www.maximintegrated.com/datasheet/index.mvp/id/2833
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1996
http://www.maximintegrated.com/datasheet/index.mvp/id/2903
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2401
http://www.maximintegrated.com/datasheet/index.mvp/id/2906
http://www.maximintegrated.com/datasheet/index.mvp/id/2907
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2406
http://www.maximintegrated.com/datasheet/index.mvp/id/3818
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2408
http://www.maximintegrated.com/datasheet/index.mvp/id/3711
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2411
http://www.maximintegrated.com/datasheet/index.mvp/id/2910
http://www.maximintegrated.com/datasheet/index.mvp/id/2911
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2417
http://www.maximintegrated.com/datasheet/index.mvp/id/4272
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2431
http://www.maximintegrated.com/datasheet/index.mvp/id/2914
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2432
http://www.maximintegrated.com/datasheet/index.mvp/id/2915
http://www.maximintegrated.com/datasheet/index.mvp/id/2919
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2438
http://www.maximintegrated.com/datasheet/index.mvp/id/2921
http://www.maximintegrated.com/datasheet/index.mvp/id/2924
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2502
http://www.maximintegrated.com/datasheet/index.mvp/id/3748
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2502-E48

DS2505 16Kb Add-Only Memory Free Samples

DS2506 64Kb Add-Only Memory

DS2760 High-Precision Li+ Battery Monitor

MAX31820 1-Wire Ambient Temperature Sensor Free Samples

MAX31820PAR 1-Wire Parasite-Power, Ambient Temperature Sensor

MAX31826 1-Wire Digital Temperature Sensor with 1Kb Lockable
EEPROM

Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 27: http://www.maximintegrated.com/an27
APPLICATION NOTE 27, AN27, AN 27, APP27, Appnote27, Appnote 27
© 2013 Maxim Integrated Products, Inc.
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 18 of 18

http://www.maximintegrated.com/datasheet/index.mvp/id/2927
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2505
http://www.maximintegrated.com/datasheet/index.mvp/id/2928
http://www.maximintegrated.com/datasheet/index.mvp/id/2931
http://www.maximintegrated.com/datasheet/index.mvp/id/8130
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX31820
http://www.maximintegrated.com/datasheet/index.mvp/id/8132
http://www.maximintegrated.com/datasheet/index.mvp/id/7400
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX31826
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an27
http://www.maximintegrated.com/legal

	maximintegrated.com
	Understanding and Using Cyclic Redundancy Checks with Maxim 1-Wire and iButton Products - Application Note - Maxim

