

Reliability Report

Report Title: GaAs PHEMT-J Process Cumulative

Reliability

Report Number: 2013-00285

Revision: 10

Date: 11 March 2024

Summary

This report summarizes the process HTOL testing of the GaAs PHEMT-J process.

Table 1: Process Characteristics

Fabrication Details

Wafer Fabrication Process	GaAs PHEMT-J		
Passivation Layer	SiN		
Bond Pad Metal Composition	Au		

Description / Results of Tests Performed

The following tables provide a description of the qualification tests conducted and the associated test results for products manufactured on the same technologies as described in Table 1. All devices were electrically tested before and after each stress. Any device that did not meet all electrical data sheet limits following stressing would be considered a valid (stress-attributable) failure unless there was conclusive evidence to indicate otherwise.

Table 2: Process Qualification Test Results

Test Name	Specification	Conditions	Device	Lot #	Sample Size	Qty. Failures
High Temperature Operating Life (HTOL)	JESD22-A108	T _{j-stress} =125°C, Biased, 1,000 Hrs T _{j-stress} =150°C, Biased, 1,000 Hrs T _{j-stress} =150°C, Biased, 168 Hrs	HMC6488A HMC6484 HMC1190A HMC284A HMC349A HMC1190A ADCA5191 ADCA5190 ADCS3280 HMC472A	QTR2012-00017 QTR2012-00042 Q11869 QTR2012-00461 QTR2014-00445 Q13411 Q18440 18440.1.2 18371.2.2 QTR2013-00524	80 80 49 160 80 148 98 82 32	0 0 0 0 0 0 0 0

Samples of the many devices manufactured with these package and process technologies are continuously undergoing reliability evaluation as part of the ADI Reliability Monitor Program. Additional qualification data is available on Analog Devices' web site.

Approvals

Reliability Engineer: Tom Wood

Additional Information

Data sheets and other additional information are available on Analog Devices' web site

Appendix

GaAs PHEMT-J Failure Rate Estimate

The failure rate estimation was determined using the process HTOL test results and the parameters shown below:

- Die Use Junction Temperature, $T_{j-use} = 85^{\circ}C$
- GaAs PHEMT-J Activation Energy = 1.46 eV
- Acceleration Factor (AF): $AF = \exp \left[\left(\frac{E_A}{k} \right) \cdot \left(\left(\frac{1}{T_{USE}} \right) \left(\frac{1}{T_{STRESS}} \right) \right) \right]$
- Equivalent hours = Device hours x Acceleration Factor

Device	Qual Number	Equivalent Device Hours	
HMC6488A	QTR2012-00017	9.4x10 ⁶ hours	
HMC6484	QTR2012-00042	9.4x10 ⁶ hours	
HMC1190A	Q11869	5.75x10 ⁶ hours	
HMC284A	QTR2012-00461	2.34x108 hours	
HMC349A	QTR2014-00445	1.17x108 hours	
HMC1190A	Q13411	8.18x10 ⁷ hours	
ADCA5191	Q18440	1.43x108 hours	
ADCA5190	18440.1.2	1.20x108 hours	
HMC472A	QTR2013-00524	2.78x108 hours	
ADCA3280	18371.2.2	4.09x108 hours	
Total Equivalent Device Hours =		1.41x10 ⁹ hours	

The failure rate was calculated using Chi Square Statistic:

$$\lambda_{\rm CL} = \frac{\chi^2_{\%CL,2f+2} \cdot 10^9}{2 \cdot t \cdot ss \cdot AF} \ \, {\rm at 60\% \ and 90\% \ Confidence \ Level \ (CL), \ with \ 0 \ units \ out \ of \ spec}$$

and an 85°C die junction temperature;

Failure Rate

$$\lambda_{60} = [(\chi^2)_{60,2}]/(2X \quad 1.41x10^9 \)] = 4.1/ \quad 2.81x10^9 \ = \ 6.50x10^{-10} \ failures/hour \ or \quad 0.7 \qquad FIT \ or \ MTTF = 1.54x10^9 \ Hours$$

$$\lambda_{90} = [(\chi^2)_{90,2}]/(2X \quad 1.41x10^9 \)] = 7.8/ \quad 2.81x10^9 \ = \ 1.64x10^{-9} \ failures/hour \ or \quad 21.6 \qquad FIT \ or \ MTTF = 6.11x10^8 \ Hours$$