# Description

The 9DBV05x1/9DBV07x1/9DBV09x1 fanout buffers are low-power, high-performance fanout buffers in Renesas' Full Featured PCIe family. The buffers have 5, 7 or 9 outputs with each output having an OE# to support the PCIe CLKREQ# function. The devices have 3 selectable SMBus addresses.

# **PCIe Clocking Architectures**

- Common Clocked (CC)
- Independent Reference (IR) with and without spread spectrum (SRIS, SRNS)

# **Typical Applications**

- Servers/High-performance Computing
- nVME Storage
- Networking
- Accelerators
- Industrial Control

# **Key Specifications**

- PCIe Gen5 CC additive phase jitter <40fs RMS</li>
- 12kHz–20MHz additive phase jitter = 165fs RMS at 156.25MHz (typical)
- Output-to-output skew < 50ps</li>
- Power consumption as low as 41mW (typical)
- 1MHz to 200MHz operating frequency

# **Block Diagram**

### **Features**

- 5–9 Low-Power HCSL (LP-HCSL) outputs
  - 100Ω outputs eliminate 4 resistors per output pair (9DBVxx41)
  - 33Ω outputs eliminate 2 resistors per output pair allowing use in both 85Ω and 100Ω systems (9DBVxx31)
- Easy AC-coupling to other logic families, see application note AN-891
- Spread spectrum compatible
- OE# pins support PCIe CLKREQ# function
- 3 selectable SMBus addresses
- 3.3V tolerant SMBus interface
- SMBus-selectable features allow optimization to customer requirements:
  - · Individual slew rate control for each output
  - Differential output amplitude
  - Device contains default configuration; SMBus interface not required for device operation
- -40°C to +85°C operating temperature range
- Packages: See Ordering Information for more details



# Contents

| Description                                |
|--------------------------------------------|
| PCIe Clocking Architectures                |
| Typical Applications                       |
| Key Specifications                         |
| Features                                   |
| Block Diagram                              |
| Pin Assignments                            |
| 9DBV05x1 Pin Assignment                    |
| 9DBV07x1 Pin Assignment                    |
| 9DBV09x1 Pin Assignment                    |
| Pin Descriptions                           |
| Absolute Maximum Ratings                   |
| Thermal Characteristics                    |
| Electrical Characteristics                 |
| Power Management                           |
| Test Loads                                 |
| General SMBus Serial Interface Information |
| How to Write                               |
| How to Read                                |
| Package Outline Drawings                   |
| Marking Diagrams                           |
| 9DBV05x1                                   |
| 9DBV07x1                                   |
| 9DBV09x1                                   |
| Ordering Information                       |
| Revision History                           |

### **Pin Assignments**

### 9DBV05x1 Pin Assignment

Figure 1. Pin Assignment for 5 × 5 mm 32-VFQFPN Package – Top View





### 9DBV07x1 Pin Assignment





### 9DBV09x1 Pin Assignment



Figure 3. Pin Assignment for 6 × 6 mm 48-VFQFPN Package – Top View

**48-VFQFPN, 6 x 6 mm, 0.4mm pitch** v prefix indicates internal 120kOhm pull-down resistor ^ prefix indicates internal 120kOhm pull-up resistor ^v prefix indicates internal 120kOhm pull-up and pull-down resistor (biased to VDD/2)

# **Pin Descriptions**

#### **Table 1. Pin Descriptions**

| Name         | Туре   | Description                                                                                                                                                                                               | 9DBV09xx<br>Pin No.   | 9DBV07xx<br>Pin No.   | 9DBV05xx<br>Pin No. |
|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------------------|
| ^CKPWRGD_PD# | Input  | Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor. | 48                    | 40                    | 31                  |
| CLK_IN       | Input  | True input for differential reference clock.                                                                                                                                                              | 6                     | 6                     | 5                   |
| CLK_IN#      | Input  | Complementary input for differential reference clock.                                                                                                                                                     | 7                     | 7                     | 6                   |
| DIF0         | Output | Differential true clock output.                                                                                                                                                                           | 15                    | 14                    | 13                  |
| DIF0#        | Output | Differential complementary clock output.                                                                                                                                                                  | 16                    | 15                    | 14                  |
| DIF1         | Output | Differential true clock output.                                                                                                                                                                           | 18                    | 18                    | 18                  |
| DIF1#        | Output | Differential complementary clock output.                                                                                                                                                                  | 19                    | 19                    | 19                  |
| DIF2         | Output | Differential true clock output.                                                                                                                                                                           | 23                    | 22                    | 22                  |
| DIF2#        | Output | Differential complementary clock output.                                                                                                                                                                  | 24                    | 23                    | 23                  |
| DIF3         | Output | Differential true clock output.                                                                                                                                                                           | 26                    | 27                    | 27                  |
| DIF3#        | Output | Differential complementary clock output.                                                                                                                                                                  | 27                    | 28                    | 28                  |
| DIF4         | Output | Differential true clock output.                                                                                                                                                                           | 32                    | 33                    | 2                   |
| DIF4#        | Output | Differential complementary clock output.                                                                                                                                                                  | 33                    | 34                    | 3                   |
| DIF5         | Output | Differential true clock output.                                                                                                                                                                           | 35                    | 36                    | _                   |
| DIF5#        | Output | Differential complementary clock output.                                                                                                                                                                  | 36                    | 37                    | _                   |
| DIF6         | Output | Differential true clock output.                                                                                                                                                                           | 41                    | 3                     | _                   |
| DIF6#        | Output | Differential complementary clock output.                                                                                                                                                                  | 42                    | 4                     | _                   |
| DIF7         | Output | Differential true clock output.                                                                                                                                                                           | 44                    | _                     | _                   |
| DIF7#        | Output | Differential complementary clock output.                                                                                                                                                                  | 45                    | _                     | _                   |
| DIF8         | Output | Differential true clock output.                                                                                                                                                                           | 3                     | _                     | _                   |
| DIF8#        | Output | Differential complementary clock output.                                                                                                                                                                  | 4                     | _                     | _                   |
| EPAD         | GND    | Connect epad to ground.                                                                                                                                                                                   | 49                    | 41                    | 33                  |
| GND          | GND    | Ground pin.                                                                                                                                                                                               | 22, 29, 40            | 41                    | 15, 20, 26,<br>30   |
| GNDDIG       | GND    | Ground pin for digital circuitry.                                                                                                                                                                         | 9                     | 41                    | 8                   |
| GNDR         | GND    | Analog ground pin for the differential input (receiver).                                                                                                                                                  | 8                     | 41                    | 7                   |
| NC           | _      | No connect.                                                                                                                                                                                               | _                     | 20,30                 | _                   |
| SCLK_3.3     | Input  | Clock pin of SMBus circuitry, 3.3V tolerant.                                                                                                                                                              | 10                    | 30                    | 10                  |
| SDATA_3.3    | I/O    | Data pin for SMBus circuitry, 3.3V tolerant.                                                                                                                                                              | 11                    | 9                     | 11                  |
| VDDDIG1.8    | Power  | 1.8V digital power (dirty power).                                                                                                                                                                         | 12                    | 11                    | 9                   |
| VDDIO        | Power  | Power supply for differential outputs.                                                                                                                                                                    | 13, 21, 31,<br>39, 47 | 12, 17, 26,<br>32, 39 | _                   |
| VDDO1.8      | Power  | Power supply for outputs. Nominally 1.8V.                                                                                                                                                                 | 20, 30, 38            | 16, 25, 31            | 16, 21, 25          |

#### Table 1. Pin Descriptions (Cont.)

| Name      | Туре          | Description                                                                                                                                          | 9DBV09xx<br>Pin No. | 9DBV07xx<br>Pin No. | 9DBV05xx<br>Pin No. |
|-----------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|
| VDDR1.8   | Power         | Power supply for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately. Nominally 1.8V. | 5                   | 5                   | 4                   |
| vOE0#     | Input         | Active low input for enabling output 0. This pin has an internal pull-down.<br>1 = disable output, 0 = enable output.                                | 14                  | 13                  | 12                  |
| vOE1#     | Input         | Active low input for enabling output 1. This pin has an internal pull-down.<br>1 = disable output, 0 = enable output.                                | 17                  | 21                  | 17                  |
| vOE2#     | Input         | Active low input for enabling output 2. This pin has an internal pull-down.<br>1 = disable output, 0 = enable output.                                | 25                  | 24                  | 24                  |
| vOE3#     | Input         | Active low input for enabling output 3. This pin has an internal pull-down.<br>1 = disable output, 0 = enable output.                                | 28                  | 29                  | 29                  |
| vOE4#     | Input         | Active low input for enabling output 4. This pin has an internal pull-down.<br>1 = disable output, 0 = enable output.                                | 34                  | 35                  | 1                   |
| vOE5#     | Input         | Active low input for enabling output 5. This pin has an internal pull-down.<br>1 = disable output, 0 = enable output.                                | 37                  | 38                  | _                   |
| vOE6#     | Input         | Active low input for enabling output 6. This pin has an internal pull-down.<br>1 = disable output, 0 = enable output.                                | 43                  | 2                   | _                   |
| vOE7#     | Input         | Active low input for enabling output 7. This pin has an internal pull-down.<br>1 = disable output, 0 = enable output.                                | 46                  | _                   | _                   |
| vOE8#     | Input         | Active low input for enabling output 8. This pin has an internal pull-down.<br>1 = disable output, 0 = enable output.                                | 2                   | _                   | _                   |
| vSADR_tri | Latched<br>In | Tri-level latch to select SMBus Address. It has an internal pull-down resistor. See SMBus Address Selection table.                                   | 1                   | 1                   | 32                  |

# **Absolute Maximum Ratings**

Stresses above the ratings listed below can cause permanent damage to the 9DBV05x1/9DBV07x1/9DBV09x1. These ratings, which are standard values for Renesas commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

**Table 2. Absolute Maximum Ratings** 

| Parameter                 | Symbol             | Conditions                                       | Minimum | Typical | Maximum               | Units | Notes |
|---------------------------|--------------------|--------------------------------------------------|---------|---------|-----------------------|-------|-------|
| Supply Voltage            | V <sub>DD</sub> x  | Applies to $V_{DD}$ , $V_{DDA}$ and $V_{DDIO}$ . | -0.5    |         | 2.5                   | V     | 1,2   |
| Input Voltage             | V <sub>IN</sub>    |                                                  | -0.5    |         | V <sub>DD</sub> + 0.5 | V     | 1,3   |
| Input High Voltage, SMBus | V <sub>IHSMB</sub> | SMBus clock and data pins.                       |         |         | 3.6                   | V     | 1     |
| Storage Temperature       | Ts                 |                                                  | -65     |         | 150                   | °C    | 1     |
| Junction Temperature      | Tj                 |                                                  |         |         | 125                   | °C    | 1     |
| Input ESD Protection      | ESD prot           | Human Body Model                                 | 2000    |         |                       | V     | 1     |

<sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> Operation under these conditions is neither implied nor guaranteed.

<sup>3</sup> Not to exceed 2.5V.

# **Thermal Characteristics**

#### Table 3. Thermal Characteristics

| Parameter           | Symbol               | Conditions                       | Package | Typical Values | Units | Notes |
|---------------------|----------------------|----------------------------------|---------|----------------|-------|-------|
|                     | θ <sub>JC</sub>      | Junction to case.                |         | 33             | °C/W  | 1     |
|                     | θ <sub>Jb</sub>      | Junction to base.                |         | 2              | °C/W  | 1     |
| 9DBV09x1<br>Thermal | θ <sub>JA0</sub>     | Junction to air, still air.      | NDG48   | 37             | °C/W  | 1     |
| Resistance          | $\theta_{JA1}$       | Junction to air, 1 m/s air flow. | - NDG40 | 30             | °C/W  | 1     |
|                     | $\theta_{JA3}$       | Junction to air, 3 m/s air flow. |         | 27             | °C/W  | 1     |
|                     | $\theta_{JA5}$       | Junction to air, 5 m/s air flow. |         | 26             | °C/W  | 1     |
|                     | $\theta_{\text{JC}}$ | Junction to case.                |         | 42             | °C/W  | 1     |
|                     | $\theta_{Jb}$        | Junction to base.                |         | 2              | °C/W  | 1     |
| 9DBV07x1<br>Thermal | θ <sub>JA0</sub>     | Junction to air, still air.      | NDG40   | 39             | °C/W  | 1     |
| Resistance          | $\theta_{JA1}$       | Junction to air, 1 m/s air flow. | NDG40   | 33             | °C/W  | 1     |
|                     | $\theta_{JA3}$       | Junction to air, 3 m/s air flow. |         | 28             | °C/W  | 1     |
|                     | $\theta_{JA5}$       | Junction to air, 5 m/s air flow. |         | 27             | °C/W  | 1     |

| Parameter           | Symbol           | Conditions                       | Package | Typical Values | Units | Notes |
|---------------------|------------------|----------------------------------|---------|----------------|-------|-------|
|                     | θ <sub>JC</sub>  | Junction to case.                |         | 42             | °C/W  | 1     |
| -                   | θ <sub>Jb</sub>  | Junction to base.                |         | 2              | °C/W  | 1     |
| 9DBV05x1<br>Thermal | θ <sub>JA0</sub> | Junction to air, still air.      | NLG32   | 39             | °C/W  | 1     |
| Resistance          | θ <sub>JA1</sub> | Junction to air, 1 m/s air flow. | INLG52  | 33             | °C/W  | 1     |
|                     | θ <sub>JA3</sub> | Junction to air, 3 m/s air flow. |         | 28             | °C/W  | 1     |
|                     | $\theta_{JA5}$   | Junction to air, 5 m/s air flow. |         | 27             | °C/W  | 1     |

#### Table 3. Thermal Characteristics (Cont.)

<sup>1</sup> EPAD soldered to ground.

## **Electrical Characteristics**

 $T_A = T_{COM}$  or  $T_{IND}$ . Supply voltages per normal operation conditions; see Test Loads for loading conditions.

#### Table 4. Clock Input Parameters

| Parameter                        | Symbol             | Conditions                              | Minimum | Typical | Maximum | Units | Notes |
|----------------------------------|--------------------|-----------------------------------------|---------|---------|---------|-------|-------|
| Input Crossover Voltage – DIF_IN | V <sub>CROSS</sub> | Crossover voltage.                      | 150     |         | 900     | mV    | 1     |
| Input Swing – DIF_IN             | V <sub>SWING</sub> | Differential value.                     | 300     |         |         | mV    | 1     |
| Input Slew Rate – DIF_IN         | dv/dt              | Measured differentially.                | 0.4     |         | 8       | V/ns  | 1,2   |
| Input Leakage Current            | I <sub>IN</sub>    | $V_{IN} = V_{DD}$ , $V_{IN} = GND$ .    | -5      |         | 5       | μA    |       |
| Input Duty Cycle                 | d <sub>tin</sub>   | Measurement from differential waveform. | 40      |         | 60      | %     | 1     |
| Input Jitter – Cycle to Cycle    | J <sub>DIFIn</sub> | Differential measurement.               | 0       |         | 125     | ps    | 1     |

<sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

 $^2$  Slew rate measured through ±75mV window centered around differential zero.

#### Table 5. Input/Supply/Common Parameters-Normal Operating Conditions

| Parameter             | Symbol            | Conditions                                                                                                                                          | Minimum              | Typical    | Maximum               | Units | Notes |
|-----------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-----------------------|-------|-------|
| Supply Voltage        | V <sub>DD</sub> x | Supply voltage for core and analog.                                                                                                                 | 1.7                  | 1.8        | 1.9                   | V     |       |
| Output Supply Voltage | V <sub>DDIO</sub> | Supply voltage for DIF outputs, if present.                                                                                                         | 0.9975               | 1.05 - 1.8 | 1.9                   | V     |       |
| Ambient Operating     | т                 | Commercial range (T <sub>COM</sub> ).                                                                                                               | 0                    | 25         | 70                    | °C    |       |
| Temperature           | Т <sub>АМВ</sub>  | Industrial range (T <sub>IND</sub> ).                                                                                                               | -40                  | 25         | 85                    | °C    |       |
| Input High Voltage    | V <sub>IH</sub>   | Single-ended inputs, except SMBus                                                                                                                   | 0.75 V <sub>DD</sub> |            | V <sub>DD</sub> + 0.3 | V     |       |
| Input Mid Voltage     | V <sub>IM</sub>   | Single-ended tri-level inputs ('_tri' suffix).                                                                                                      | 0.4 V <sub>DD</sub>  |            | 0.6 V <sub>DD</sub>   | V     |       |
| Input Low Voltage     | V <sub>IL</sub>   | Single-ended inputs, except SMBus.                                                                                                                  | -0.3                 |            | 0.25 V <sub>DD</sub>  | V     |       |
|                       | I <sub>IN</sub>   | Single-ended inputs, $V_{IN}$ = GND, $V_{IN}$ = $V_{DD}$ .                                                                                          | -5                   |            | 5                     | μA    |       |
| Input Current         | I <sub>INP</sub>  | Single-ended inputs.<br>$V_{IN} = 0$ V; inputs with internal pull-up resistors.<br>$V_{IN} = V_{DD}$ ; inputs with internal pull-down<br>resistors. | -200                 |            | 200                   | μΑ    |       |

| Parameter                                 | Symbol                 | Conditions                                                                                            | Minimum | Typical | Maximum | Units                                                                                                  | Notes |
|-------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------|---------|---------|---------|--------------------------------------------------------------------------------------------------------|-------|
| Input Frequency                           | F <sub>IN</sub>        |                                                                                                       | 1       |         | 200     | MHz                                                                                                    |       |
| Pin Inductance                            | L <sub>pin</sub>       |                                                                                                       |         |         | 7       | nH                                                                                                     | 1     |
|                                           | C <sub>IN</sub>        | Logic inputs, except DIF_IN.                                                                          | 1.5     |         | 5       | pF                                                                                                     | 1     |
| Capacitance                               | C <sub>INDIF_IN</sub>  | DIF_IN differential clock inputs.                                                                     | 1.5     |         | 2.7     | pF                                                                                                     | 1, 6  |
|                                           | C <sub>OUT</sub>       | Output pin capacitance.                                                                               |         |         | 6       | nH<br>pF<br>pF<br>ms<br>kHz<br>kHz<br>clocks<br>clocks<br>ns<br>ns<br>ns<br>s<br>V<br>b<br>V<br>v<br>v | 1     |
| Clk Stabilization                         | T <sub>STAB</sub>      | From V <sub>DD</sub> power-up and after input clock stabilization or deassertion of PD# to 1st clock. |         |         | 1       | ms                                                                                                     | 1, 2  |
| Input SS Modulation<br>Frequency PCIe     | f <sub>MODINPCIe</sub> | Allowable frequency for PCIe applications (Triangular modulation).                                    | 30      |         | 33      | kHz                                                                                                    |       |
| Input SS Modulation<br>Frequency non-PCIe | f <sub>MODIN</sub>     | Allowable frequency for non-PCIe applications (Triangular modulation).                                | 0       |         | 66      | kHz                                                                                                    |       |
| OE# Latency                               | t <sub>LATOE</sub> #   | DIF start after OE# assertion.<br>DIF stop after OE# deassertion.                                     | 1       |         | 3       | clocks                                                                                                 | 1,3   |
| Tdrive_PD#                                | t <sub>DRVPD</sub>     | DIF output enable after PD# deassertion.                                                              |         |         | 300     | μs                                                                                                     | 1,3   |
| Tfall                                     | t <sub>F</sub>         | Fall time of single-ended control inputs.                                                             |         |         | 5       | ns                                                                                                     | 2     |
| Trise                                     | t <sub>R</sub>         | Rise time of single-ended control inputs.                                                             |         |         | 5       | ns                                                                                                     | 2     |
| SMBus Input Low Voltage                   | V <sub>ILSMB</sub>     | $V_{DDSMB}$ = 3.3V, see note 4 for VDDSMB < 3.3V.                                                     |         |         | 0.8     | V                                                                                                      | 4     |
| SMBus Input High Voltage                  | V <sub>IHSMB</sub>     | $V_{DDSMB}$ = 3.3V, see note 5 for VDDSMB < 3.3V.                                                     | 2.1     |         | 3.3     | V                                                                                                      | 5     |
| SMBus Output Low Voltage                  | V <sub>OLSMB</sub>     | At I <sub>PULLUP</sub> .                                                                              |         |         | 0.4     | V                                                                                                      |       |
| SMBus Sink Current                        | I <sub>PULLUP</sub>    | At V <sub>OL.</sub>                                                                                   | 4       |         |         | mA                                                                                                     |       |
| Nominal Bus Voltage                       | V <sub>DDSMB</sub>     |                                                                                                       | 1.7     |         | 3.6     | V                                                                                                      |       |
| SCLK/SDATA Rise Time                      | t <sub>RSMB</sub>      | (Max V <sub>IL</sub> - 0.15V) to (Min V <sub>IH</sub> + 0.15V).                                       |         |         | 1000    | ns                                                                                                     | 1     |
| SCLK/SDATA Fall Time                      | t <sub>FSMB</sub>      | (Min V <sub>IH</sub> + 0.15V) to (Max V <sub>IL</sub> - 0.15V).                                       |         |         | 300     | ns                                                                                                     | 1     |
| SMBus Operating Frequency                 | f <sub>SMB</sub>       | SMBus operating frequency.                                                                            |         |         | 400     | kHz                                                                                                    | 7     |

#### Table 5. Input/Supply/Common Parameters-Normal Operating Conditions (Cont.)

<sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> Control input must be monotonic from 20% to 80% of input swing.

 $^3$  Time from deassertion until outputs are > 200mV.

 $^{4}$  For V<sub>DDSMB</sub> < 3.3V, V<sub>ILSMB</sub> < = 0.35V<sub>DDSMB</sub>.

<sup>5</sup> For  $V_{DDSMB}$  < 3.3V,  $V_{ILSMB}$  < = 0.65 $V_{DDSMB}$ .

<sup>6</sup> DIF\_IN input.

<sup>7</sup> The differential input clock must be running for the SMBus to be active.

#### Table 6. Current Consumption – 9DBV09x1

| Parameter                   | Symbol               | Conditions                                                       | Minimum | Typical | Maximum | Units | Notes |
|-----------------------------|----------------------|------------------------------------------------------------------|---------|---------|---------|-------|-------|
| Operating Supply<br>Current | I <sub>DDR</sub>     | V <sub>DDR</sub> at 100MHz.                                      |         | 3       | 5       | mA    |       |
|                             | I <sub>DDDIG</sub>   | V <sub>DDIG</sub> , all outputs at 100MHz.                       |         | 6       | 10      | mA    |       |
|                             | I <sub>DDO</sub>     | V <sub>DDO1.8</sub> + V <sub>DDIO</sub> , all outputs at 100MHz. |         | 35      | 40      | mA    |       |
|                             | I <sub>DDRPD</sub>   | V <sub>DDR</sub> , CKPWRGD_PD# = 0.                              |         | 0.4     | 1       | mA    | 1     |
| Power Down<br>Current       | I <sub>DDDIGPD</sub> | $V_{DDIG}$ , CKPWRGD_PD# = 0.                                    |         | 0.6     | 1       | mA    | 1     |
|                             | I <sub>DDOPD</sub>   | $V_{DDO1.8}$ + $V_{DDIO}$ , CKPWRGD_PD# = 0.                     |         | 0.002   | 0.1     | mA    | 1     |

<sup>1</sup> Input clock stopped.

#### Table 7. Current Consumption – 9DBV07x1

| Parameter                   | Symbol               | Conditions                                                       | Minimum | Typical | Maximum | Units | Notes |
|-----------------------------|----------------------|------------------------------------------------------------------|---------|---------|---------|-------|-------|
| Operating Supply<br>Current | I <sub>DDR</sub>     | V <sub>DDR</sub> at 100MHz.                                      |         | 3       | 5       | mA    |       |
|                             | I <sub>DDDIG</sub>   | V <sub>DDIG</sub> , all outputs at 100MHz.                       |         | 5       | 8       | mA    |       |
|                             | I <sub>DDO</sub>     | V <sub>DDO1.8</sub> + V <sub>DDIO</sub> , all outputs at 100MHz. |         | 26      | 32      | mA    |       |
|                             | I <sub>DDRPD</sub>   | V <sub>DDR</sub> , CKPWRGD_PD# = 0.                              |         | 0.4     | 1       | mA    | 1     |
| Power Down<br>Current       | I <sub>DDDIGPD</sub> | $V_{DDIG}$ , CKPWRGD_PD# = 0.                                    |         | 0.5     | 1       | mA    | 1     |
|                             | I <sub>DDOPD</sub>   | $V_{DDO1.8} + V_{DDIO}$ , CKPWRGD_PD# = 0.                       |         | 0.0005  | 0.10    | mA    | 1     |

<sup>1</sup> Input clock stopped.

#### Table 8. Current Consumption – 9DBV05x1

| Parameter                   | Symbol               | Conditions                                   | Minimum | Typical | Maximum | Units | Notes |
|-----------------------------|----------------------|----------------------------------------------|---------|---------|---------|-------|-------|
| Operating Supply<br>Current | I <sub>DDR</sub>     | V <sub>DDR</sub> at 100MHz.                  |         | 2       | 3       | mA    |       |
|                             | I <sub>DDDIG</sub>   | V <sub>DDIG</sub> , all outputs at 100MHz.   |         | 0.2     | 0.5     | mA    |       |
|                             | I <sub>DDO</sub>     | V <sub>DDO1.8</sub> , all outputs at 100MHz. |         | 23      | 27      | mA    |       |
|                             | I <sub>DDRPD</sub>   | V <sub>DDR</sub> , CKPWRGD_PD# = 0.          |         | 0.001   | 0.1     | mA    | 1     |
| Power Down<br>Current       | I <sub>DDDIGPD</sub> | $V_{DDIG}$ , CKPWRGD_PD# = 0.                |         | 0.2     | 0.3     | mA    | 1     |
|                             | I <sub>DDOPD</sub>   | V <sub>DDO1.8</sub> , CKPWRGD_PD# = 0.       |         | 0.4     | 0.8     | mA    | 1     |

<sup>1</sup> Input clock stopped.

| Parameter              | Symbol                | Conditions                         | Minimum | Typical | Maximum | Units | Notes |
|------------------------|-----------------------|------------------------------------|---------|---------|---------|-------|-------|
| Duty Cycle Distortion  | t <sub>DCD</sub>      | Measured differentially at 100MHz. | -1      | 0       | 1       | %     | 1,3   |
| Skew, Input to Output  | t <sub>pdBYP</sub>    | V <sub>T</sub> = 50%.              | 1800    | 2421    | 3000    | ps    | 1     |
| Skew, Output to Output | t <sub>sk3</sub>      | V <sub>T</sub> = 50%.              |         | 29      | 60      | ps    | 1, 4  |
| Jitter, Cycle to Cycle | t <sub>jcyc-cyc</sub> | Additive jitter.                   |         | 1.1     | 5       | ps    | 1,2   |

#### Table 9. Output Duty Cycle, Jitter, Skew and PLL Characteristics

<sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> Measured from differential waveform.

<sup>3</sup> Duty cycle distortion is the difference in duty cycle between the output and the input clock

<sup>4</sup> All outputs at default slew rate.

#### Table 10. LP-HCSL Outputs

| Parameter              | Symbol     | Conditions                                         | Minimum | Typical | Maximum | Specification<br>Limits | Units | Notes |
|------------------------|------------|----------------------------------------------------|---------|---------|---------|-------------------------|-------|-------|
| Slew Rate              | dV/dt      | Scope averaging on, fast slew rate setting.        | 1.6     | 2.9     | 4.3     | 1-4                     | V/ns  | 1,2,3 |
| Slew Rale              | av/at      | Scope averaging on, slow slew rate setting.        | 1.2     | 2.0     | 3.3     | 1-4                     | V/ns  | 1,2,3 |
| Slew Rate Matching     | ∆dV/dt     | Single-ended measurement.                          |         | 6       | 18      | 20                      | %     | 1,4,7 |
| Maximum Voltage        | Vmax       | Measurement on single-ended                        | 694     | 804     | 976.8   | 660–1150                |       | 7,8   |
| Minimum Voltage        | Vmin       | signal using absolute value (scope averaging off). | -108    | -18     |         | -300                    | mV    | 7,8   |
| Crossing Voltage (abs) | Vcross_abs | Scope averaging off.                               | 303     | 405     | 507     | 250–550                 | mV    | 1,5,7 |
| Crossing Voltage (var) | ∆-Vcross   | Scope averaging off.                               |         | 12      | 50      | 140                     | mV    | 1,6,7 |

<sup>1</sup> Guaranteed by design and characterization, not 100% tested in production. C<sub>L</sub> = 2pF with R<sub>S</sub> = 33Ω for Zo = 50Ω (100Ω differential trace impedance)

<sup>2</sup> Measured from differential waveform.

<sup>3</sup> Slew rate is measured through the Vswing voltage range centered around differential 0 V. This results in a ±150mV window around differential 0V.

<sup>4</sup> Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

<sup>5</sup> Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

<sup>6</sup> The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross\_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

<sup>7</sup> At default SMBus settings. 660mV V<sub>HIGH</sub> is the minimum when V<sub>DDIO</sub> is >= 1.05V ±5%. If V<sub>DDIO</sub> is < 1.05V ±5%, the minimum V<sub>HIGH</sub> will be V<sub>DDIO</sub>min - 250mV. For example, for V<sub>DDIO</sub> = 0.9V ±5%, V<sub>HIGH</sub>min will be 860mV - 250mV = 610mV.

<sup>8</sup> Includes previously separate values of +300mV overshoot and -300mV of undershoot.

| Parameter                                              | Symbol                      | Conditions                    | Minimum | Typical | Maximum | Limits | Units    | Notes   |
|--------------------------------------------------------|-----------------------------|-------------------------------|---------|---------|---------|--------|----------|---------|
|                                                        | t <sub>jphPCleG1-CC</sub>   | PCIe Gen 1 (2.5 GT/s)         |         | 1.7     | 3.0     | 86     | ps (p-p) | 1,2     |
| Additive PCIe Phase Jitter.                            | +                           | PCIe Gen 2 Hi Band (5.0 GT/s) |         | 0.033   | 0.049   | 3      | ps (RMS) | 1,2     |
| Fanout Buffer Mode <sup>7</sup>                        | <sup>t</sup> jphPCleG2-CC   | PCIe Gen 2 Lo Band (5.0 GT/s) |         | 0.122   | 0.199   | 3.1    | ps (RMS) | 1,2     |
| (Common Clocked                                        | t <sub>jphPCleG3-CC</sub>   | PCIe Gen 3 (8.0 GT/s)         |         | 0.059   | 0.098   | 1      | ps (RMS) | 1,2     |
| Architecture)                                          | t <sub>jphPCleG4-CC</sub>   | PCIe Gen 4 (16.0 GT/s)        |         | 0.059   | 0.098   | 0.5    | ps (RMS) | 1,2,3,4 |
|                                                        | t <sub>jphPCleG5-CC</sub>   | PCIe Gen 5 (32.0 GT/s)        |         | 0.023   | 0.038   | 0.15   | ps (RMS) | 1,2,3,5 |
|                                                        | t <sub>jphPCleG1-SRIS</sub> | PCIe Gen 1 (2.5 GT/s)         |         | 0.175   | 0.275   |        | ps (RMS) | 1,2,6   |
| Additive PCIe Phase Jitter,                            | t <sub>jphPCleG2-SRIS</sub> | PCIe Gen 2 (5.0 GT/s)         |         | 0.156   | 0.247   |        | ps (RMS) | 1,2,6   |
| Fanout Buffer Mode <sup>7</sup><br>(SRIS Architecture) | t <sub>jphPCleG3-SRIS</sub> | PCIe Gen 3 (8.0 GT/s)         |         | 0.041   | 0.064   | N/A    | ps (RMS) | 1,2,6   |
|                                                        | t <sub>jphPCleG4-SRIS</sub> | PCIe Gen 4 (16.0 GT/s)        |         | 0.043   | 0.066   |        | ps (RMS) | 1,2,6   |
|                                                        | t <sub>jphPCleG5-SRIS</sub> | PCIe Gen 5 (32.0 GT/s)        |         | 0.036   | 0.059   |        | ps (RMS) | 1,2,6   |

#### Table 11. Additive PCIe Phase Jitter for Fanout Buffer Mode

<sup>1</sup> The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section of the data sheet for the exact measurement setup. The total Ref Clk jitter limits for each data rate are listed for convenience. The worst case results for each data rate are summarized in this table. If oscilloscope data is used, equipment noise is removed from all results.

<sup>2</sup> Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.

<sup>3</sup> SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content.

<sup>4</sup> Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.

<sup>5</sup> Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.

<sup>6</sup> The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by  $\sqrt{2}$ . An additional consideration is the value for which to divide by  $\sqrt{2}$ . The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by  $\sqrt{2}$ , if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A "rule-of-thumb" SRIS limit would be either 0.5ps RMS/ $\sqrt{2}$  = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/ $\sqrt{2}$  = 0.5ps RMS if the clock chip is near the clock input.

<sup>7</sup> Additive jitter for RMS values is calculated by solving for "b" where  $b = \sqrt{(c^2 - a^2)}$  and "a" is rms input jitter and "c" is rms output jitter.

#### Table 12. Phase Jitter Parameters – 12kHz to 20MHz

| Parameter                                                   | Symbol                     | Conditions                             | Minimum | Typical | Maximum | Specification<br>Limits | Units    | Notes |
|-------------------------------------------------------------|----------------------------|----------------------------------------|---------|---------|---------|-------------------------|----------|-------|
| 12kHz–20MHz<br>Additive Phase Jitter,<br>Fanout Buffer Mode | t <sub>jph12k-20MFOB</sub> | Fanout Buffer Mode,<br>SSC OFF, 100MHz |         | 156     |         | N/A                     | fs (RMS) | 1,2,3 |

<sup>1</sup> Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details.

<sup>2</sup> 12kHz to 20MHz brick wall filter.

<sup>3</sup> For RMS values, additive jitter is calculated by solving for "b" where  $b = \sqrt{(c^2 - a^2)}$ , "a" is rms input jitter and "c" is rms total jitter.

### **Power Management**

#### Table 13. Power Management

| CKPWRGD_PD# | CLK_IN  | SMBus EN bit | OE[x]# Pin | DIF[x]  |
|-------------|---------|--------------|------------|---------|
| 0           | Х       | Х            | Х          | Low/Low |
| 1           | Running | 0            | Х          | Low/Low |
| 1           | Running | 1            | 0          | Low/Low |
| 1           | Running | 1            | 1          | Running |

### **Test Loads**

#### Figure 4. Test Load for AC/DC Measurements



#### Table 14. Parameters for AC/DC Measurements

| Clock Source | Device Under Test (DUT) | Rs (Ω)      | Differential Zo (Ω) | L (cm) | C <sub>L</sub> (pF) | Parameters Measured |
|--------------|-------------------------|-------------|---------------------|--------|---------------------|---------------------|
| SMA100B      | 9DBVxx3x                | 33 External | 100                 | 12.7   | 2                   |                     |
| SMA100B      | 9DBVxx3x                | 24 External | 85                  | 12.7   | 2                   | AC/DC parameters    |
| SMA100B      | 9DBVxx4x                | Internal    | 100                 | 12.7   | 2                   |                     |





| Clock Source | Device Under Test (DUT) | Rs (Ω)      | Differential Zo (Ω) | L (cm) | C <sub>L</sub> (pF) | Parameters Measured |
|--------------|-------------------------|-------------|---------------------|--------|---------------------|---------------------|
| SMA100B      | 9DBVxx3x                | 33 External | 100                 | 12.7   | 2                   |                     |
| SMA100B      | 9DBVxx3x                | 24 External | 85                  | 12.7   | 2                   | PCle                |
| SMA100B      | 9DBVxx4x                | Internal    | 100                 | 12.7   | 2                   |                     |

# **General SMBus Serial Interface Information**

#### **How to Write**

- Controller (host) sends a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte location = N
- Renesas clock will acknowledge
- Controller (host) sends the byte count = X
- Renesas clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- Renesas clock will acknowledge each byte one at a time
- Controller (host) sends a stop bit

|         | Index Block Write Operation |        |                          |  |  |  |  |  |  |
|---------|-----------------------------|--------|--------------------------|--|--|--|--|--|--|
| Contro  | oller (Host)                |        | Renesas (Slave/Receiver) |  |  |  |  |  |  |
| Т       | starT bit                   | 1 1    |                          |  |  |  |  |  |  |
| Slave   | e Address                   |        |                          |  |  |  |  |  |  |
| WR      | WRite                       | 1      |                          |  |  |  |  |  |  |
|         |                             | 1      | ACK                      |  |  |  |  |  |  |
| Beginni | ing Byte = N                | 1 1    |                          |  |  |  |  |  |  |
|         |                             | 1      | ACK                      |  |  |  |  |  |  |
| Data By | te Count = X                | 1      |                          |  |  |  |  |  |  |
|         |                             | 1 1    | ACK                      |  |  |  |  |  |  |
| Beginr  | ning Byte N                 |        |                          |  |  |  |  |  |  |
|         |                             | 1 1    | ACK                      |  |  |  |  |  |  |
| 0       |                             | $\sim$ |                          |  |  |  |  |  |  |
| 0       |                             | X Byte | 0                        |  |  |  |  |  |  |
| 0       |                             | fe     | 0                        |  |  |  |  |  |  |
|         |                             | 1 [    | 0                        |  |  |  |  |  |  |
| Byte    | N + X - 1                   | 1      |                          |  |  |  |  |  |  |
|         |                             |        | ACK                      |  |  |  |  |  |  |
| Р       | stoP bit                    | 1 [    |                          |  |  |  |  |  |  |

#### How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte location = N
- Renesas clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- Renesas clock will acknowledge
- Renesas clock will send the data byte count = X
- Renesas clock sends Byte N+X-1
- Renesas clock sends Byte 0 through Byte X (if X<sub>(H)</sub> was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

|    | Index Block Re     | ead Oper | ation             |
|----|--------------------|----------|-------------------|
|    | Controller (Host)  |          | Renesas           |
| Т  | starT bit          |          |                   |
|    | Slave Address      |          |                   |
| WR | WRite              |          |                   |
|    |                    |          | ACK               |
| B  | Beginning Byte = N |          |                   |
|    |                    |          | ACK               |
| RT | Repeat starT       |          |                   |
|    | Slave Address      |          |                   |
| RD | ReaD               |          |                   |
|    |                    |          | ACK               |
|    |                    | _        | Data Byte Count=X |
|    | ACK                |          |                   |
|    |                    |          | Beginning Byte N  |
|    | ACK                |          |                   |
|    |                    | e        | 0                 |
|    | 0                  | X Byte   | 0                 |
|    | 0                  | ×        | 0                 |
|    | 0                  |          |                   |
|    |                    |          | Byte N + X - 1    |
| N  | Not acknowledge    |          |                   |
| Р  | stoP bit           | 7        |                   |

#### Table 16. SMBus Address Selection

|                                                       | SADR | Address | + Read/Write Bit |
|-------------------------------------------------------|------|---------|------------------|
|                                                       | 0    | 1101011 | Х                |
| State of SADR_tri on first application of CKPWRGD_PD# | М    | 1101100 | Х                |
|                                                       | 1    | 1101101 | Х                |

#### Table 17. Byte 0: Output Enable Register 1

| Byte 0              | Bit7     | Bit6          | Bit5     | Bit4     | Bit3        | Bit2     | Bit1     | Bit0     |  |  |  |  |  |  |
|---------------------|----------|---------------|----------|----------|-------------|----------|----------|----------|--|--|--|--|--|--|
| Control<br>Function |          | Output Enable |          |          |             |          |          |          |  |  |  |  |  |  |
| Туре                |          | R/W           |          |          |             |          |          |          |  |  |  |  |  |  |
| 0                   |          |               |          | Lo       | w/Low       |          |          |          |  |  |  |  |  |  |
| 1                   |          |               |          | OE# F    | Pin Control |          |          |          |  |  |  |  |  |  |
| 9DBV09xx<br>Name    | DIF7_en  | DIF6_en       | DIF5_en  | DIF4_en  | DIF3_en     | DIF2_en  | DIF1_en  | DIF0_en  |  |  |  |  |  |  |
| 9DBV09xx<br>Default | 1        | 1             | 1        | 1        | 1           | 1        | 1        | 1        |  |  |  |  |  |  |
| 9DBV07xx<br>Name    | DIF5_en  | DIF4_en       | Reserved | DIF3_en  | DIF2_en     | DIF1_en  | Reserved | DIF0_en  |  |  |  |  |  |  |
| 9DBV07xx<br>Default | 1        | 1             | 1        | 1        | 1           | 1        | 1        | 1        |  |  |  |  |  |  |
| 9DBV05xx<br>Name    | Reserved | DIF3_en       | DIF2_en  | Reserved | DIF1_en     | Reserved | DIF0_en  | Reserved |  |  |  |  |  |  |
| 9DBV05xx<br>Default | 1        | 1             | 1        | 1        | 1           | 1        | 1        | 1        |  |  |  |  |  |  |

| Byte 1              | Bit7                     | Bit6 | Bit5            | Bit4                     | Bit3                     | Bit2                     | Bit1                         | Bit0                         |
|---------------------|--------------------------|------|-----------------|--------------------------|--------------------------|--------------------------|------------------------------|------------------------------|
| Control<br>Function |                          |      | Output _enable  |                          |                          |                          | Controls Out                 | out Amplitude                |
| Туре                |                          |      | RW              |                          |                          |                          | RW                           | RW                           |
| 0                   |                          |      | Low/Low         |                          |                          |                          | 00 = 0.6V                    | 01 = 0.7V                    |
| 1                   |                          |      | OE# Pin Control |                          |                          |                          | 10= 0.8V                     | 11 = 0.9V                    |
| 9DBV09xx<br>Name    |                          |      | DIF8_en         |                          |                          |                          |                              |                              |
| 9DBV09xx<br>Default | Reserved<br>Default is 0 |      | 1               | Reserved<br>Default is 1 | Reserved<br>Default is 1 | Reserved<br>Default is 0 | Amplitude(1)<br>Default is 1 | Amplitude(0)<br>Default is 0 |
| 9DBV07xx<br>Name    |                          |      | DIF6_en         |                          |                          |                          |                              |                              |
| 9DBV07xx<br>Default |                          |      | 1               |                          |                          |                          |                              |                              |
| 9DBV05xx<br>Name    |                          |      | DIF4_en         |                          |                          |                          |                              |                              |
| 9DBV05xx<br>Default |                          |      | 1               |                          |                          |                          |                              |                              |

#### Table 18. Byte 1: Output and Amplitude Control Register

### Table 19. Byte 2: Slew Rate Control Register

| Byte 2              | Bit7          | Bit6                 | Bit5          | Bit4          | Bit3          | Bit2          | Bit1          | Bit0          |  |
|---------------------|---------------|----------------------|---------------|---------------|---------------|---------------|---------------|---------------|--|
| Control<br>Function |               | Slew Rate Adjustment |               |               |               |               |               |               |  |
| Туре                |               |                      |               | R             | W             |               |               |               |  |
| 0                   |               |                      |               | Slow S        | Setting       |               |               |               |  |
| 1                   |               |                      |               | Fast S        | Setting       |               |               |               |  |
| 9DBV09xx<br>Name    | Slewrate DIF7 | Slewrate DIF6        | Slewrate DIF5 | Slewrate DIF4 | Slewrate DIF3 | Slewrate DIF2 | Slewrate DIF1 | Slewrate DIF0 |  |
| 9DBV09xx<br>Default | 1             | 1                    | 1             | 1             | 1             | 1             | 1             | 1             |  |
| 9DBV07xx<br>Name    | Slewrate DIF5 | Slewrate DIF4        | Reserved      | Slewrate DIF3 | Slewrate DIF2 | Slewrate DIF1 | Reserved      | Slewrate DIF0 |  |
| 9DBV07xx<br>Default | 1             | 1                    | 1             | 1             | 1             | 1             | 1             | 1             |  |
| 9DBV05xx<br>Name    | Reserved      | Slewrate DIF3        | Slewrate DIF2 | Reserved      | Slewrate DIF1 | Reserved      | Slewrate DIF0 | Reserved      |  |
| 9DBV05xx<br>Default | 1             | 1                    | 1             | 1             | 1             | 1             | 1             | 1             |  |

#### Table 20. Byte 3: Slew Rate Control Register

| Byte 3              | Bit7                     | Bit6                     | Bit5 | Bit4                     | Bit3                     | Bit2                     | Bit1                     | Bit0                    |
|---------------------|--------------------------|--------------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|
| Control<br>Function |                          |                          |      |                          |                          |                          |                          | Slew Rate<br>Adjustment |
| Туре                |                          |                          |      |                          |                          |                          |                          | RW                      |
| 0                   |                          |                          |      |                          |                          |                          |                          | Slow Setting            |
| 1                   |                          |                          |      | Reserved<br>Default is 0 | Reserved<br>Default is 0 | Reserved<br>Default is 1 | Reserved<br>Default is 1 | Fast Setting            |
| 9DBV09xx<br>Name    |                          |                          |      |                          |                          |                          |                          | Slewrate DIF8           |
| 9DBV09xx<br>Default | Reserved<br>Default is 1 | Reserved<br>Default is 1 |      |                          |                          |                          |                          | 1                       |
| 9DBV07xx<br>Name    |                          |                          |      |                          |                          |                          |                          | Slewrate DIF6           |
| 9DBV07xx<br>Default |                          |                          |      |                          |                          |                          | 1                        |                         |
| 9DBV05xx<br>Name    |                          |                          |      |                          |                          |                          |                          | Slewrate DIF4           |
| 9DBV05xx<br>Default |                          |                          |      |                          |                          |                          |                          | 1                       |

#### Byte 4: Reserved Register - default is 0hFF

#### Table 21. Byte 5: Revision and Vendor ID Register

| Byte 5              | Bit7         | Bit6  | Bit5   | Bit4 | Bit3               | Bit2     | Bit1 | Bit0 |
|---------------------|--------------|-------|--------|------|--------------------|----------|------|------|
| Control<br>Function | Revision II) |       |        |      | Vendor ID          |          |      |      |
| Туре                | R            | R     | R      | R    | R                  | R        | R    | R    |
| 0                   |              | A rou | = 0010 |      |                    | IDT/Papa |      |      |
| 1                   |              | Alev  | - 0010 |      | IDT/Renesas = 0001 |          |      |      |
| Name                | RID3         | RID2  | RID1   | RID0 | VID3               | VID2     | VID1 | VID0 |
| Default             | 0            | 0     | 0      | 0    | 0                  | 0        | 0    | 1    |

#### Table 22. Byte 6: Device ID Register

| Byte 6              | Bit7                                              | Bit6          | Bit5      | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|---------------------|---------------------------------------------------|---------------|-----------|---------|---------|---------|---------|---------|
| Control<br>Function |                                                   |               | Device ID |         |         |         |         |         |
| Туре                | R                                                 | R             | R         | R       | R       | R       | R       | R       |
| 0<br>1              | 00 = FG, 01 = ZDB<br>10 = Mux, 11 = Fanout Buffer |               | Device ID |         |         |         |         |         |
| Name                | Device Type 1                                     | Device Type 0 | DevID 5   | DevID 4 | DevID 3 | DevID 2 | DevID 1 | DevID 0 |
| 9DBV09xx            | 0hC9                                              |               |           |         |         |         |         |         |
| 9DBV07xx            | 0hC7                                              |               |           |         |         |         |         |         |
| 9DBV05xx            |                                                   |               |           | 0hC     | 5       |         |         |         |

#### Table 23. Byte 7: Byte Count Register

| Byte 7              | Bit7       | Bit6     | Bit5     | Bit4                                                                                  | Bit3 | Bit2               | Bit1 | Bit0 |  |  |
|---------------------|------------|----------|----------|---------------------------------------------------------------------------------------|------|--------------------|------|------|--|--|
| Control<br>Function |            |          |          | Writing to this register configures how many bytes will be read back on a block read. |      |                    |      |      |  |  |
| Туре                | <b>.</b> . |          | <b>_</b> | RW                                                                                    | RW   | RW                 | RW   | RW   |  |  |
| 0                   | Reserved   | Reserved | Reserved |                                                                                       | Def  | ault value is 0b01 | 000  |      |  |  |
| 1                   |            |          |          | Default value is 0b01000                                                              |      |                    |      |      |  |  |
| Name                |            |          |          | BC4                                                                                   | BC3  | BC2                | BC1  | BC0  |  |  |
| Default             | 0          | 0        | 0        | 0                                                                                     | 1    | 0                  | 0    | 0    |  |  |

## **Package Outline Drawings**

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

#### 9DBV05x1:

www.renesas.com/us/en/document/psc/package-outline-drawing-package-code-nlg32p1-32-vfqfpn-50-x-50-x-09-mm-body-05-mm

#### 9DBV07x1:

www.renesas.com/us/en/document/psc/package-outline-drawing-package-code-ndg40p2-40-vfqfpn-50-x-50-x-09-mm-body-04-mm

#### 9DBV09x1:

www.renesas.com/us/en/document/psc/package-outline-drawing-package-code-ndg48p1-48-vfqfpn-60-x-60-x-09-mm-body-04-mm

# **Marking Diagrams**

### 9DBV05x1



Lines 1 and 2: truncated part number ("I" denotes industrial temperature range)

• Line 3: "YYWW" is the last two digits of the year and the work week the part was assembled.

- Line 4: "COO" denotes country of origin.
- Line 5: "LOT" denotes the lot number.

### 9DBV07x1



- Lines 1 and 2: truncated part number ("I" denotes industrial temperature range)
- Line 3: "YYWW" is the last two digits of the year and the work week the part was assembled.
- Line 4: "COO" denotes country of origin.
- Line 5: "LOT" denotes the lot number.

- Lines 1 and 2: truncated part number ("I" denotes industrial temperature range)
- Line 3: "YYWW" is the last two digits of the year and the work week the part was assembled.
- Line 4: "COO" denotes country of origin.
- Line 5: "LOT" denotes the lot number.

# **Ordering Information**

#### Table 24. Ordering Information

| Number of<br>Clock Outputs | Output<br>Impedance | Orderable Part<br>Number | Package                     | Temperature<br>Range | Part Number Suffix and Shipping Method                           |  |  |  |
|----------------------------|---------------------|--------------------------|-----------------------------|----------------------|------------------------------------------------------------------|--|--|--|
|                            | 33                  | 9DBV0531AKILF            |                             |                      |                                                                  |  |  |  |
| 5                          | 33                  | 9DBV0531AKILFT           | 5 × 5 × 0.5 mm              |                      |                                                                  |  |  |  |
| 5                          | 100                 | 9DBV0541AKILF            | 32-VFQFPN                   |                      |                                                                  |  |  |  |
|                            | 100                 | 9DBV0541AKILFT           |                             |                      |                                                                  |  |  |  |
|                            | 33                  | 9DBV0731AKILF            |                             |                      |                                                                  |  |  |  |
| 7                          | 33                  | 9DBV0731AKILFT           | 5 × 5 × 0.4 mm              | -40°C to +85°C       | None = Trays<br>"T" = Tape and Reel, Pin 1 Orientation: EIA-481C |  |  |  |
| 1                          | 100                 | 9DBV0741AKILF            | 40-VFQFPN                   | -40°C to +85°C       | (see Table 25 for more details)                                  |  |  |  |
|                            | 100                 | 9DBV0741AKILFT           |                             |                      |                                                                  |  |  |  |
|                            | 33                  | 9DBV0931AKILF            |                             |                      |                                                                  |  |  |  |
| 9                          | 33                  | 9DBV0931AKILFT           | 6 × 6 × 0.4 mm<br>48-VFQFPN |                      |                                                                  |  |  |  |
| 9                          | 400                 | 9DBV0941AKILF            |                             |                      |                                                                  |  |  |  |
|                            | 100                 | 9DBV0941AKILFT           |                             |                      |                                                                  |  |  |  |
|                            | 33                  | 9DBV0531AKLF             |                             |                      |                                                                  |  |  |  |
| 5                          | 33                  | 9DBV0531AKLFT            | 5 × 5 × 0.5 mm<br>32-VFQFPN |                      |                                                                  |  |  |  |
| 5                          | 100                 | 9DBV0541AKLF             |                             |                      |                                                                  |  |  |  |
|                            | 100                 | 9DBV0541AKLFT            |                             |                      |                                                                  |  |  |  |
|                            | 33                  | 9DBV0731AKLF             |                             |                      | None = Trays                                                     |  |  |  |
| 7                          | 33                  | 9DBV0731AKLFT            | 5 × 5 × 0.4 mm              | 0°C to +70°C         |                                                                  |  |  |  |
| 1                          | 100                 | 9DBV0741AKLF             | 40-VFQFPN                   | 0 0 10 +70 0         | "T" = Tape and Reel, Pin 1 Orientation: EIA-481C                 |  |  |  |
|                            | 100                 | 9DBV0741AKLFT            |                             |                      | (see Table 25 for more details)                                  |  |  |  |
|                            | 33                  | 9DBV0931AKLF             |                             |                      |                                                                  |  |  |  |
| 9                          | 33                  | 9DBV0931AKLFT            | 6 × 6 × 0.4 mm              |                      |                                                                  |  |  |  |
| 3                          | 100                 | 9DBV0941AKLF             | 48-VFQFPN                   |                      |                                                                  |  |  |  |
|                            | 100                 | 9DBV0941AKLFT            |                             |                      |                                                                  |  |  |  |

"A" is the device revision designator (will not correlate with the datasheet revision).

"LF" denotes Pb-free configuration, RoHS compliant; "T" denotes the orderable suffix for Tape and Reel.

#### Table 25. Pin 1 Orientation in Tape and Reel Packaging

| Part Number Suffix | Pin 1 Orientation      | Illustration                                                                                  |
|--------------------|------------------------|-----------------------------------------------------------------------------------------------|
| Т                  | Quadrant 1 (EIA-481-C) | Carrect Pin 1 ORIENTATION<br>(Round Sprocket Holes)<br>COOOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO |

# **Revision History**

| Revision Date      | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| February 6, 2023   | Updated POD links in Package Outline Drawings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| June 18, 2020      | <ul> <li>Merged duplicate pin names in Table 1 into single rows and combined pin numbers into a single row for the duplicate pin names. Rows merged were VDDIO, VDDO1.8, and GND.</li> <li>Removed duplicate Table subtitle "T<sub>A</sub> = T<sub>COM</sub> or T<sub>IND</sub>. Supply voltages per normal operation conditions; see Test Loads for loading conditions" from Tables 10, 11 and 12. This phrase is at the beginning of the Electrical Characteristics and applies to all electrical tables.</li> <li>Corrected PCIe SRIS maximum values in Table 11. They were shifted down by one cell.</li> </ul> |
| February, 13, 2020 | <ul> <li>Corrected 9DBV05xx pin number typos in pin description table.</li> <li>Rebranded datasheet.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| October 22, 2019   | Combined 9DBV0531_0541, 9DBV0731_741, and 9DBV0931_941 datasheets into one single document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| March 10, 2017     | Last revision date of the 9DBV0531 datasheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| May 30, 2017       | Last revision date of the 9DBV0541 datasheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| March 10, 2017     | Last revision date of the 9DBV0731 datasheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| March 10, 2017     | Last revision date of the 9DBV0741 datasheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| March 14, 2017     | Last revision date of the 9DBV0931 datasheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| March 14, 2017     | Last revision date of the 9DBV0941 datasheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



### Package Outline Drawing

Package Code:NLG32P1 32-VFQFPN 5.0 x 5.0 x 0.9 mm Body, 0.5mm Pitch PSC-4171-01, Revision: 04, Date Created: Aug 15, 2022





### **Package Outline Drawing**

Package Code:NDG40P2 40-VFQFPN 5.0 x 5.0 x 0.9 mm Body, 0.4 mm Pitch PSC-4292-02, Revision: 02, Date Created: Aug 30, 2022



# RENESAS

### Package Outline Drawing

Package Code: NDG48P1 48-VFQFPN 6.0 x 6.0 x 0.9 mm Body, 0.4 mm Pitch PSC-4212-01, Revision: 02, Date Created: Nov 18, 2022



© Renesas Electronics Corporation

#### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.